Surveying the Asteroids & Comets with NEOWISE

Amy Mainzer – JPL
J. Bauer, T. Grav, J. Masiero, R. Cutri, C. Nugent, S. Sonnett, R. Stevenson, E. Wright
Why Study Asteroids with Infrared?

• Infrared \rightarrow diameter errors ±10%
 – Visible light \rightarrow diameter errors ±200-300%
 – \rightarrow impact energy errors of 10-30x

• Representative sample
 – Equally sensitive to dark asteroids missed by visible light surveys
 – Space-based survey has consistent biases that are easier to model accurately: no weather, no seeing, no daytime

• Unbiased sample: IR \sim insensitive to albedo (p_V)
Wide-field Infrared Survey Explorer (WISE)

- Astrophysics Medium Explorer mission surveyed the entire sky at 3.4, 4.6, 12, 22 \(\mu m \)
- 40 cm telescope using solid hydrogen cryostat
- Sun-synchronous 525 km orbit
- PI: Ned Wright, UCLA
- Prime mission: 14 Jan 2010 – 1 Feb 2011
- NEOWISE:
 - Funded by NASA Planetary Science
 - Created an archive of individual epoch images + a tool for accessing them
 - Permitted the discovery of new asteroids with WISE
New NEOs
Known NEOs
New Comets
Known Comets

- >158,000 total asteroids observed
- ~34,000 new discoveries
- ~700 NEOs
- 135 NEO discovered
- ~150 comets
• ~430 NEOs
• No significant change in albedo vs. diameter
 – Albedo is constant all the way down to small sizes
• Contrary to previous studies that are biased against small, low albedo objects
New Estimate of Numbers of NEAs

A Near-Earth Asteroid Census
Each image represents approximately 200 objects

Known Near-Earth Asteroid Population
New Predicted Total (NEOWISE) ○
Old Predicted Total (pre-NEOWISE) ○
Potentially Hazardous Asteroids

- 4700 ± 1500 PHAs larger than 100 m
- 2x more PHAs in low inclination orbits
 - More hazard, but more potential low Δv targets for exploration

Reactivated WISE satellite 13 Dec 2014 using 3.4 & 4.6 um channels until late 2016
 − Renamed NEOWISE (A. Mainzer PI)

NEOWISE discoveries are large, dark; 25% potentially hazardous asteroids
 − 45 NEOs & 3 comets discovered to date
 − 1st NEO discovery 6 days after survey start

~12,000 objects observed to date, including 281 NEOs
Future Project:
Near-Earth Object Camera (NEOCam)

- NEOWISE: the prototype for a more comprehensive NEO survey
- NEOCam: A bigger, better NEOWISE
 - Larger field of view
 - Longer lifetime
 - No expendable cryogens
- Earth-Sun L1 orbit
Enhanced Visibility Zones

- NEOWISE Viewing Zone
- NEOCam Viewing Zones
- Mars
- 30 m NEO detection limit
- Earth
- NEOCam is at L1
- 140 m NEO detection limit
- 500 m NEO detection limit
NEOCam Detectors

- Have made 1024^2 HgCdTe arrays that operate from 0.4 – 10.7 um (McMurtry et al. 2013, Girard et al. 2014)

- Excellent quantum efficiency, dark current, read noise, well depth: exceeds NEOCam requirements at 35-40 K
NEOCam Integral Survey
Completeness for NEAs >140m

• 2/3 of potentially hazardous asteroids >140 m ~3 years
• 10% of 50 m NEAs
• Superior performance to Venus-trailing orbit, even assuming no lossy compression
Conclusion

- Space-based infrared surveys are an efficient means of finding asteroids, characterizing them, and learning about our solar system