Why do we study statistics? Clearly one answer is that this knowledge can help us
to understand data that we measure in the lab. We calculate the average and the
variance (miscalled the standard deviation) and use these to report the “true value”
and our confidence in that true value. Is it that simple? Can we make five
measurements and be confident that we know the true average and the values that
bracket it? In other words, do we really know that the mass is 26.5 = .2 g?

We will see in this discussion that we will need to be more careful in our statements
about measuring the true value of a quantity. We will also see that statistics
themselves can be a powerful theoretical tool for building models to understand
nature. In this reading, we will look at some descriptive ideas and apply them to a
few examples that arise from thinking about the outcome of throwing dice. In class,
we have discussed the problems of random sampling from a population of people,
1/5 of whom have green eyes, and we have considered the outcome of flipping a
coin, flipping 2 coins, or flipping 4, 8, 16, ..., 128 coins. We will not revisit these here,
but can hopefully think about the results of the class discussion in terms of what is
written here.

Why do we study statistics in a physics class? The obvious answer is given above
that the proper use and understanding of statistics will help us to better evaluate
data that we measure. Not so obvious is that statistics can help us to understand the
kinematics and dynamics of biological and chemical systems. Think about the limits
of how small a sample of protein you can measure. Is it micromoles? Nanomoles?
Picomoles? Femtomoles? Attomoles? Even if you said attomoles, and this is really
stretching it, we are still talking about a very large number of proteins, almost a
million. Following a million proteins or writing an equation forces acting on a
million proteins and predicting the resulting dynamics is simply not possible by
simply solving kinematical equations. Nevertheless, quantities like velocity,
momentum, and impulsive force will translate to pressure and temperature via
careful use of statistical principals. Ultimately, learning to do this is the major goal
of the rest of the course.

Question 1.1: How large are these quantities: Rank in order, from least to greatest
pico-, atto- micro-, nano-, femto-. How many proteins are there in a one attomole
sample?

Preliminaries: the dice problem.

Let’s think then about rolling 1 dice vs. rolling 2 die. If we only roll one dice, then we
know that the possible values we can get are 1,2,3,4,5,6, and that each of these
values are equally probable. We plot the expected distribution, which has the shape
of a small rectangle below.



—— | Notice several things about this:

1. For each value of the dice, the
probability of getting that value is 1/6.
That is the number of ways to, for
example, get a 5 (one way) divided by
the total number of possible scores (six
possibilities).

2. The sum of all probabilities is equal to 1.
That is we have a 100% chance to roll a

1 2 Disce val4ue 5 6 1,2,3,4,5,0r6.

3. We could ask a different question, what
is the probability to roll an even
number, or to roll a number divisible by
3. More about this in the next section.
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Figure 1: The probability density
for rolling one dice. That is, for
one dice, a plot of the dice value
vs. the probability to roll that
value. Adapted from

http: //www.stat.sc.edu/~west
/javahtml/CLT.html

That was pretty easy. Now let’s make it a little
more challenging by asking what happens
when we roll two die. You are familiar with
this problem from your many hours playing
Backgammon or Monopoly. You know from these games that you can roll any value
between 2 and 12. You also know that the chance of getting a 12 is smaller than for
getting a six or a seven. We now know how to make this quantifiable and actually
calculate the probability. First, we must figure out how many ways there are to roll
each value. For example, there are 3 ways (1+3, 3+1, 2+2) toroll a 4. These are
plotted below for all 11 possible values. Second, we add up all the possible rolls and
find that there are 36 possibilities in all. Third, we divide the number of ways to roll
each score by the total, 36, to get the probability. This is also plotted below, on the
right.
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Figure 2: For two die, the number of ways to get a score vs. the total score (left),
and the probability to get a score vs. the total score (right). The right-hand plot is
the probability density for rolling two die. Adapted from
http://www.stat.sc.edu/~west/javahtml/CLT.html




Questions 1.1: List the 6 ways to roll a 7. And show that the probability to roll a 7 is
16.667%. Go to the web site referenced in Fig. 2, and run the applet for larger
numbers of die (set the number of rolls to 10,000 and roll several times - more on
this later). Describe the shape of the distribution.
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We can go further and extract some
characteristic values from these distributions: the average and standard deviations.
Looking at Figure 2, we can see that the average value is 7. We can calculate this
average by adding 1 x2 +2x3 +3 x4 + ... (and so on for each value, V). We can
write this in a compact form Sum = X n;V; for
* ivarying from 1 to 11 (number of possible values),
* nvarying from 1 to 6 and
e Vvarying from 2 to 12, as in Figure 3.
If we divide this sum by the total number of theoretical rolls, 36 ... Total rolls 36 =
Zn;, then we get the average value of 7. We will give the average a special symbol,
<V>, and then write it as an equation:
<V> = Sum/36 = (Z niVi)/36 =2 (niVi/36).
In the last step we used the associative property to divide each term in the sum by
36.
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If we are watching carefully, in the two-dice example, we notice that n;/36 is just the
probability P; to measure the value Vi. Thus, we can rewrite the average in this way,
<V> =X P;V;. This is then the theoretical value of the average, also called the
expectation value, and we can use the probabilities plotted in the right-hand Figure
above to compute <V> in this way.

We can go even further and ask, “What is the value of the average deviation away
from the average?” This quantity, the standard deviation, gives us some idea of how
sharply peaked our probability distribution is. The standard deviation, also called
the root mean squared (RMS) deviation, is defined, just like its name implies, by the



equation 0 =[((V=<V »)?) = [A/N) S PV, - )* =,J(1/N) ¥, P,(V,)* - i*, where in
the last two steps we simply substitute the symbol u for the average value (u = <V>).
Notice that the symbol, o appears in the formula for the normal distribution. This is the
same quantity, the standard deviation, and it is equal to the width of the Bell curve, at the
half-way point of its height (Also called full-width at half max FWHM). So from a plot

of the Bell curve, we can pick off both the average value (the peak value), and the
standard deviation (the FWHM value).
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Question 1.2: Show that NEPI(VZ - = NEPZ'(VZ') — u” (Hint, first simplify the

quadratic term using the FOIL method).
How we count depends upon the rules we set

Now, in case you haven’t noticed, we have been discussing statistics from an entirely
theoretical perspective. The average value defined above is like no average we
would measure in the lab, rather it is the theoretical value that we expect the
average to take. Thus, <V> is often called the expectation value of V.

Further, we have set some arbitrary rules for the counting. In the examples from
dice rolls, we used the rule (sensibly) that the score was the sum of the number of
dots on the top face of the die. We could have also asked other questions, for
example, what is the probability to roll an even number, or the probability to roll a
7, or the probability to roll a value divisible by three. These are examples where the
answer has two values, did we roll a 7 or not, did we succeed or fail?, to which we
can assign values 1 or 0. This two-possibility distribution has a special
mathematical form, called the binomial distribution, which is given by
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Figure 4: The probability density for attempts, r is the number of times to get
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discussion in the reading material from the Book of Numbers). How would you use
this formula? For example, consider rolling one dice. This formula will give you the
answer to the question, in 6 rolls, what would be the probability two of these will be

1
fives? In this case,n=6,r=2,p=1/6. P = %(1/6)2(5 /6)* =0.2014. In another

example, we could ask, what is the probability to roll 2 even values after 5 rolls of
one dice? Inthiscasen=5,r=2,p="%.

Questions 1.3: Use the binomial calculator, referenced in Fig. 4, with several values
of n. At what value of n does the probability distribution begin to look like the
normal distribution? Once you find a large enough value of n, then vary i. ForI =
0.5, does the average value (estimated from the distribution) make sense? How
about for i=0.2?,i=0.75? Other values?

More on the shape of the distribution

We could see from Question 1.3 that the binomial distribution does begin to
resemble the normal distribution for large values of n. This is also the observation
for rolling large numbers of die. These two cases are examples of what is called the
central limit theorem. One very useful result that can be found by looking at the
binomial distribution for progressively larger values of n is that the average value
and the standard deviation may be calculated for any value of n, once they have
been calculated for n = 1. This is expressed by the simple formulae below:

u, =np,
and
o, =no;

What does this tell us about measurements?

In case you are still have not noticed, everything that we have discussed has been
theoretical. How does it relate to what we would measure in the lab. For example,
in the example with one dice, the average value would be 3.5. If we rolled a dice 6
times, would we geta 1,a 2,a3,a4,a5,ana 6 to get an average value of 3.5?
Probably not. How about for two die, after 36 rolls, would we roll a 7, exactly 6
times? Again, probably not. You can see that the actual number of rolls has to be
very large in order to get a measurement that looks the same as the theoretical
distribution.

The take-away message is that you should be careful how much significance you
attach to average values measured from sample populations. Are these sample
populations large enough to be representative of the theoretical, parent
distributions.

Question 1.4. Try this yourself by invoking the applet at the website,
http: //www.stat.sc.edu/~west/javahtml/CLT.html. Go there and set the number of




die equal to one. How many rolls does it take to recover the distributions in Figure
1?7 Answer the same for two die, how many rolls are required to recover Figure 2?7

What does this tell us about nature and particularly about biology?

The short answer is yes, we can learn from statistics. In fact, there are a number of
models for biological structures and processes that are described by statistical principles.
We have already discussed one of them, the Brownian motion, which is modeled by a
random walk, a process whereby a particle moves a short distance, collides with another
object, generally a water molecule, and then moves off in a completely random direction.
This process is governed by binomial statistics and ultimately by the normal distribution
in the limit of a large number of steps. We covered this in class, and in the readings from
Berg’s textbook, which are on the class web site.

Furthermore, the very same statistical model links Brownian motion to a very
fundamental way of moving materials in cells, that is diffusion. We have demonstrated
that small molecules do diffuse in gels, in a manner that is quantitatively described by an
increasingly spreading normal distribution. The very fact that there are so many
molecules in the measurements that we made allows us to reach the large sampling limit
where 1) the binomial distribution goes over to the normal distribution (large n = the
number of steps = “number of coin flips”) and 2) the number of molecules sampled is
large enough that we can confidently say that we our measurements are a representative
sample of the parent distribution (which happens to be the normal distribution). This
happens over and over in physics, chemistry, and particularly in biology, where the
thermal energy at room temperature is large enough to jostle biological molecules out of
place so that they sample a statistically large number of the possible configurations
available to them. For the counter example, think of freezing a cell culture (or your gel)
and asking whether the thermal energy is now sufficiently large to push the molecules
from one place to another. Clearly, it is not, and so the die molecules will not diffuse at
all.

Where will we go from here?

We can and will go well beyond the example of diffusion when using statistical models
to describe biological processes. We will define a new quantity, entropy, not in terms of
a popularized measure randomness and disorder, but rather in terms of a measure of the
number of ways that a system can arrange itself. We can go back to the idea if rolling
two die, and ask “For any given roll, what state are we likely to observe?” We have seen
that safe money is on observing a 5, 6, 7, 8 or 9 as opposed to a 2, 3, 4, 10, 11, or 12.
Why is this? Simply because there are more arrangements of the two die that will give a
5,6,7, 8 or 9 than will give a2, 3,4, 10, 11, or 12. We say that the state of “5, 6,7, 8§,
or 9” has a higher entropy than the state of 2, 3, 4, 10, 11, or 12. Just as the dice find
their way into the higher entropy (multiplicity) state, nature also finds the way to be in
the most likely state. This only makes sense and thinking in this very sensible way will
allow us to spend some time over the rest of this course to quantitatively model a number
of phenomena from membrane formation to protein folding.



Question 1.5 How many ways can we roll a 5, 6, 7, 8 or 9? How many ways can we roll
a2,3,4,10, 11, or 12? What is the probability toroll a 5, 6, 7, 8 or 9? Toroll a2, 3, 4,
10, 11, or 12?



