
4—Introduction

should be consulted while reading Chapter 1 and Appen

dix B while reading Chapter 2. A detailed understanding

of differential equations or the methods used for their

solution is not required for an appreciation of the main

theme of this book.

Chapter 1

Diffusion: Microscopic Theory

Diffusion is the random migration of molecules or small

particles arising from motion due to thermal energy. A

particle at absolute temperature 7* has, on the average, a

kinetic energy associated with movement along each axis

of fcT/2, where k is Boltzmann's constant. Einstein

showed in 1905 that this is true regardless of the size ofthe

particle, even for particles large enough to be seen under a

microscope, i.e., particles that exhibit Brownian move

ment. A particle of mass m and velocity vx on the x axis

has a kinetic energy mvx2/2. This quantity fluctuates, but

on the average </m>,2/2> = £7/2, where < > denotes an

average over time or over an ensemble of similar particles.

From this relationship we compute the mean-square
velocity,

W) =kT/mt

and the root-mean-square velocity,

(vx2)m = (kT/m)l/2.

(1,1)

(1.2)

We can use Eq.l .2 to estimate the instantaneous velocity

of a small particle, for example, a molecule of the protein

lysozyme. Lysozyme has a molecular weight 1.4 x 104g.

This is the mass of one mole, or 6.0 x 1023 molecules; the

mass of one molecule is m = 2.3 x lO^g. The value of

kTat 300°K (27°C) is 4.14 x 10"14 g cm2/sec2. Therefore,

(vx2)l/1 = 1.3 x 103 cm/sec. This is a sizeable speed. If

there were no obstructions, the molecule would cross a

typical classroom in about 1 second. Since the protein is

not in a vacuum but is immersed in an aqueous medium, it

does not go very far before it bumps into molecules of
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or

Fig. 1.1. Particles confined initially in a small region of space (a)

diffuse symmetrically outward (b) or outward and downward (c) if

subjected to an externally applied force, F.

water. As a result, it is forced to wander around: to

execute a random walk. If a number of such particles were

confined initially in a small region of space, as shown in

Fig. 1.1a, they would wander about in all directions and

spread out, as shown in Fig. 1.1b. This is simple diffusion.

If a force were applied externally, such as that due to

gravity, the particles would spread out and move down

ward, as shown in Fig. 1.1c. This is diffusion with drift. In

this chapter, we analyze simple diffusion from a micro

scopic point of view. We look at the subject more broadly

in Chapters 2 and 3. Diffusion with drift is considered in

Chapter 4.

One-dimensional random walk

In order to characterize diffusive spreading, it is con

venient to reduce the problem to its barest essentials, and

to consider the motion of particles along one axis only,

say the x axis, as shown in Fig. 1.2. The particles start at

time t = 0 at position x = 0 and execute a random walk

according to the following rules:

1) Each particle steps to the right or to the left once

every r seconds, moving at velocity ±vx a distance
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Fig. 1.2. Particles executing a one-dimensional random

teas Tin steps of Iength S

6= ±^-Forsimplicity,wetreatrand6asconstants In
practice, they will depend on the size of the particle the

structure of the liquid, and the absolute temperature T.
2) The probability of going to the right at each step is

1/2, and the probability of going to the left at each step is
1/2. The particles, by interacting with the molecules of
water, forget what they did on the previous leg of their
journey. Successive steps are statistically independent
The walk is not biased.

3) Each particle moves independently of all the other
particles. The particles do not interact with one another
In practice, this will be true provided that the suspension
of particles is reasonably dilute.

These rules have two striking consequences. The first is
that the particles go nowhere on the average. The second
is that their root-mean-square displacement is propor
tional not to the time, but to the square-root of the time
It is possible to establish these propositions by using an
iterative procedure. Consider an ensemble of^particles
Let Xi{n) be the position of the ith particle after the nth
step. According to rule 1, the position of a particle after
the nth step differs from its position after the (n - l)th
step by ±6: '

*,.(/*) =*,(/*- 1)±6. (ij)

According to rules 2 and 3, the + sign will apply to

roughly halfof the particles, the - sign to the other half
The mean displacement of the particles after the *th step
can be found by summing over the particle index / and
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<x(n)> = -i t

dividing by N:

(1.4)

,(n- l),Eq. 1.3, we find

= ^I W«-D±«]

1 N

The second term in the brackets averages to zero, because

its sign is positive for roughly half of the particles, nega

tive for the other half. Eq. 1.5 tells us that the mean posi

tion of the particles does not change from step to step.

Since the particles all start at the origin, where the mean

position is zero, the mean position remains zero. This is

the first proposition. The spreading of the particles is

symmetrical about the origin, as shown in Fig. 1.3.

Fig. 1.3. The probability of finding particles at different points x at

times / = 1, 4f and 16. The particles start out at position x = 0 at time

t = 0. The standard deviations (root-mean-square widths) of the dis

tributions increase with the square-root of the time. Their peak

heights decrease with the square-root of the time. See Eq. 1.22.
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How much do the particles spread? A convenient

measure of spreading is the root-mean-square displace

ment <x2(w)>1/2. Here we average the square of the dis
placement rather than the displacement itself. Since the

square of a negative number is positive, the result must be

finite; it cannot be zero. To find <*2(w)>, we write *,(*) in
terms of x,(n - I), as in Eq. 1.3, and take the square:

xfrri) = xftn - 1) ± 26x,in -

Then we compute the mean,

(1.6)

1 *

17 L xi W» 0-7)

which is

<x2(n)> = 1 £ [x?{n - 1) ± 2&,(/i - 1) + 62]

62. (1.8)

As before, the second term in the brackets averages to

zero; its sign is positive for roughly half of the particles,

negative for the other half. Since *,-(()) = 0 for all particles

/, <*2(0)> = 0. Thus, <*2(1)> = 62, <*2(2)> = 2b\ ....

and (x\n)> = nd2. We conclude that the mean-square
displacement increases with the step number n, the root-

mean-square displacement with the square-root of n.

According to rule 1, the particles execute n steps in a time

/ = nr\n is proportional to t. It follows that the mean-

square displacement is proportional to t, the root-mean-

square displacement to the square-root of /. This is the

second proposition. The spreading increases as the

square-root of the time, as shown in Fig. 1.3.

To see this more explicity, note that n = t/r, so that

<X2(0> = (t/r)82 (1.9)
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where we write x(t) rather thanx(n) to denote the fact that

x now is being considered as a function of /. For con

venience, we define a diffusion coefficient, D = 62/2r, in

units cm2/sec. The reason for the factor 1/2 will become

clear in Chapter 2. This gives us

= 2Dt

and

<jc2>1/2 = (2Dt)1/2

(1.10)

(1.11)

where, for simplicity, we drop the explicit functional

reference (t). The diffusion coefficient, D, characterizes

the migration of particles of a given kind in a given

medium at a given temperature. In general, it depends on

the size of the particle, the structure of the medium, and

the absolute temperature. For a small molecule in water at

room temperature, D = 10~5 cm2/sec.

A particle with a diffusion coefficient of this order of

magnitude diffuses a distance x = 10"4 cm (the width of a

bacterium) in a time t^x2/2D = 5 x 10"4 sec, or about

half a millisecond. It diffuses a distance x = 1 cm (the

width of a test tube) in a time / - x2/2D = 5 x 104 sec, or

about 14 hours. The difference is dramatic. In order for a

particle to wander twice as far, it takes 4 times as long. In

order for it to wander 10 times as far, it takes 100 times as

long. Therefore, there is no such thing as a diffusion velo

city; displacement is not proportional to time but rather

to the square-root of the time. What happens if we try to

define a diffusion velocity by dividing the root-mean-

square displacement by the time? The result is an explicit

function of the time. Dividing both sides of Eq. 1.11 by t,

we find

(1.12)
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Thus, the shorter the period of observation, t, the larger
the apparent velocity. For values of t smaller than r the
apparent velocity is larger than S/r = vx, the instanta

neous velocity of the particle. This is an absurd result

In Chapter 2 we will speak of adsorption rates or diflu-
sion currents. These expressions refer to the number of

particles that are adsorbed at, or cross, a given boundary
in unit time. They are bulk properties of an ensemble of
particles, proportional to their number. They are not
rates that tell us how long it takes a particle, by diffusion
to go from here to there. This time depends on the square
of the distance, as denned by Eq. 1.10. When next you
come across the expression "diffusion rate," think twice!

This phrase is ambiguous, at best, and often used in
correctly.

Two- and three-dimensional random walks

Rules 1 to 3 apply in each dimension. In addition we
assert that motions in the x, y, and z directions are statis
tically independent. If <**> = 2Dt, then <y> = 2£*and
(z > - IDt. In two dimensions, the square of the dis
tance from the origin to the point {x,y) is r2 = x2 + v2-
therefore, ^ '

<r2>=4Dt. (U3)

In three dimensions, x2 + y2 + ^t and

<r2> = 6Dt.
(1.14)

A computer simulation of a two-dimensional random
walk is shown in Fig. 1.4. Steps in the x and y directions
were made at the same times, so the particle always moved

diagonally. The simulation makes graphic a remarkable
feature of the random walk, discussed further in Chap
ter 3. Since explorations over short distances can be
made m much shorter times than explorations over long
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Fig. 1.4. An x, y plot of a two-dimensional random walk oi n -

18,050 steps. The computer pen started at the upper left corner of the

track and worked its way to the upper right edge of the track. It

repeatedly traversed regions that are completely black. It moved, as

the crow flies, 196 step lengths. The expected root-mean-square dis

placement is {2n)m = 190 step lengths.

distances, the particle tends to explore a given region

of space rather thoroughly. It tends to return to the same

point many times before finally wandering away. When it

does wander away, it chooses new regions to explore

blindly. A particle moving at random has n6 tendency to

move toward regions of space that it has not occupied

before; it has absolutely no inkling of the past. Its track

does not fill up the space uniformly.

The binomial distribution

We have learned so far that particles undergoing free

diffusion have a zero mean displacement and a root-

mean-square displacement that is proportional to the

square-root of the time. What else can we say about the

shape of the distribution of particles? To find out, we

have to work out the probabilities that the particles step

different distances to the right or to the left. While doing
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so, it is convenient to generalize the one-dimensional ran

dom walk and suppose that a particle steps to the right
with a probability p and to the left with a probability q.

Since the probability ofstepping one way or the other is 1,

q = 1 - p. The probability that such a particle steps
exactly k times to the right in n trials is given by the
binomial distribution

P(k;n,p)
n\\ k

- k)l pq
n-k

0.15)

This equation is derived in Appendix A; see Eqs. A. 17,

A. 18. The displacement of the particle in n trials, x(n\ is
equal to the number of steps to the right less the number

of steps to the left times the step length, 6:

x(n) = [k - (n - k)]6 = (2k - n)8. (1.16)

Since we know the distribution of k, we know the distri

bution of a:. The two distributions have the same shapes.

The probability machine shown in Fig. A.3 converts one
into the other.

The mean displacement of the particle is

<*(«)> =(2<it> -/0<5, (1.17)

where

(1.18)

see Eq. A.22. The mean-square displacement is

<x\n)) = <[(2k-n)6]2)

where

npq;

(1.19)

(1.20)

see Eq. A.23. For the case p = q = 1/2, Eqs. 1.17 and

1.19 yield <*(*)> = 0 and <x2(n)) = n62, as expected.



14—Diffusion: Microscopic Theory Diffusion: Microscopic Theory—15

The Gaussian distribution

A small particle, such as lysozyme, steps an enormous

number of times every second. Given the instantaneous

velocity estimated from Eq. 1.2, vx = 8/r = 103 cm/sec,

and a diffusion coefficient, D = S^llr^ 10"6cm2/sec, we

can compute the step length, 6, and the step rate, l/r. The

step length is 2D/vx = (10"6 cm2/sec)/(103 cm/sec) =

10"9 cm, and the step rate is vx/5 - (103 cm/sec)/

(10"9cm) = 10l2 sec'1. Of these n = 10 n steps taken each

second, np = 0.5 x 1012 are taken to the right. The stan

dard deviation in this number is (npq)l/2 = 0.5 x 106; see

Eq. A.25. So, to a precision of about a part in a million,

half of the steps taken each second are made to the right

and half to the left. What happens to the distribution ofx

in this limit? As stated in Appendix A, when n and np are

both very large, the binomial distribution, P(k;n9p)9 is

equivalent to

where P(k)dk is the probability of finding a value of k

between k + dk, fi = <k) = np, and a2.** npq; see

Eq. A.27. This is the Gaussian or normal distribution. By

substituting x = {2k - n)5, dx = 26dk, p = q « 1/2,

t = n/r, and D = 52/2r, we obtain

1
P(x)dx

(4irDt)l/2
(1.22)

where P(x)dx is the probability of finding a particle

between x and x + dx. This is the function plotted in Fig.

1.3. The variance of this distribution is a2 = 2Dt\ its

standard deviation is ax = (2Dt)l/2.

The Gaussian or normal distribution is the distribution

encountered most frequently in discussions of propaga

tion of errors. It is tabulated, for example, in the Hand

book ofChemistry and Physics, as the "normal curve of

error"; see Fig. A.5. About 68% of the area of the curve

is within one standard deviation of the origin. Thus, if

the root-mean-square displacement of the particles is

(2£>/)I/2, the chances are 0.32 that a particle has wandered

that far or farther. The chances are 0.045 that it has

wandered twice as far or farther and 0.0026 that it has

wandered three times as far or farther. These numbers are

the areas under the curve for Ixl^cr^, 2ax, and 3ax,

respectively.

Visualizing the Gaussian distribution: It is instructive

to generate the distributions shown in Fig. 1.3 experimen

tally. This can be done by layering aqueous solutions of a

dye, such as fluorescein or methylene blue, into water.

For a first try, layer the dye at the center of a vertical

column of water in a graduated cylinder. The dye

promptly sinks to the bottom! It does so because it has a

higher specific gravity than the surrounding medium. For

a second try, match the specific gravity of the medium to

the dye by adding sucrose to the water. Now the dye drifts

about and becomes uniformly dispersed in a matter of

minutes or hours. It does so because there is nothing

to stabilize the system against convective flow. Any

variation in temperature that increases the specific gravity

of regions of the fluid that are higher in the column rela

tive to those that are lower drives this flow. For a final try,

layer the dye into a column of water containing more

sucrose at the bottom than at the top, i.e., into a sucrose

density gradient; a 0-to-2% w/v solution will do. Match

the specific gravity of the solution of the dye to that at

the midpoint of the gradient and layer it there. Now,

patterns of the sort shown in Fig, 1.3 will evolve over a

period of many days. The diffusion coefficients of fluo

rescein, methylene blue, and sucrose are all about
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5 x 10"6 cm2/sec. A sucrose gradient x = 10 cm high

will survive for a period of time of order t = x2/2D =

107 sec, or about 4 months. The dye will generate a Gaus

sian distribution with a standard deviation ax = 2.5 cm in

a time t = <rx2/2D = 6 x 105 sec, or in about 1 week. Try

it!

It is evident from this experiment that diffusive trans

port takes a long time when distances are large. Here is

another example: The diffusion coefficient of a small

molecule in air is about 10"1 cm2/sec. If one relied on diffu

sion to carry molecules of perfume across a crowded

room, delays of the order of 1 month would be required.

Evidently, the makers of scent owe their livelihood to

close encounters, wind, and/or convective flow.

Chapter 2

Diffusion: Macroscopic Theory

Fick's equations

Most discussions of diffusion start with Fick's equa

tions, differential equations that describe the spatial and

temporal variation of nonuniform distributions of parti

cles. I find it more illuminating to derive these equations

from the model of the random walk. Suppose we know

the number of particles at each point along the x axis at

time t, as shown in Fig. 2.1. How many particles will

move across unit area in unit time from the point x to the

point x + 6? What is the net flux in the x direction, Jxl At

time t + t, i.e., after the next step, half the particles at x

will have stepped across the dashed line from left to right,

and half the particles at x + 6 will have stepped across the

dashed line from right to left. The net number crossing to

the right will be

To obtain the net flux, we divide by the area normal to the

A/U+8)

Fig. 2.1. At time /, there are N(x) particles at position xt N{x + 8)

particles at position x + 5. At time t + t, half of each set will have

stepped to the right and half to the left.




