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We hope you like the kind of problem where someone gives you
an intriguing number sequence and asks you what comes next.

In this chapter we’ll give you several ways to find out. Most of these
involve building some kind of pattern from your numbers. Pascal’s

triangle is one very well-known pattern. __

If you're like us, you'll also enjoy playing with number sequerices
for their own sake, so we’ll also show you some number games that
often use patterns to magically transform one sequence into another.

One of the nicest of these is described next.

MOESSNER'S MAGIC

Alfred Moessner discovered that some of our favorite sequences can
be found in a surprising new way. Start with the counting numbers
and circle every second number; then form the cumulative totals of

the uncircled numbers, and you’ll see the squares:
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64 THE Book OF NUMBERS

If instead you circle every third number, total what's left, circling the

last number in each block, and total the uncircled (hex) numbers,
you'll see the cubes:

1 2(3) 4 5067 8(9101102 13 14353
®@ @ é@ @ @6@@

Circling every fourth number:

L 2 3(4)s 6 7(89 10113013 14 1509

leads similarly to the fourth powers, and so on.
S0 circling the numbers

n+n n+n+n n+n+n+n.
has led to the numbers
nXxXn nXnXn nXnXnXn..

If we circle each triangular number, 1 + 2 + 3 + - - . + 5

we get the factorial numbers, 1 X 2 X 3 X ... X . which we'll
talk about soon.

What if we circle the squares?
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If these numbers mystify you, notice that the squares are

1
1+ 2+ 1
1+2+3+2+1
1 +2+3+4+3+2+1

and that the final circled numbers are

1
1 X2 X1
] X2 X3 X2X1
1 X2X3X4X3X2X1

The general rule is that if you start by circling

la, 2a+lb, 3a + 2b + lc, 4a+3b_+2(:+1d...,

then the final circled numbers are

19, 29 X 1%, 3* X 22 X 1° 42 X 3P x 2% 1¢....

FACTORIAL NUMBERS

How many ‘“words’’ can we make from the letters A, E, T, each used
just once?

AET, ATE, EAT, ETA, TAE, TEA

The first letter can be any one of the three, the second can be either
one of the two remaining, and the third is then the one left over,

3 X 2 X 1= 6 words.

If you have n different letters, they can be arranged in
nXm—1DXmn—2)X..-. X3 X2 X 1ways.

This number is called factorial n, or n factorial. It often used to be
written | 7, but today is usually written #!.

Of course, there’s just one way to arrange no objects, so 0! = 1.
In general, 7! is the product of the numbers from 1 to 7, the empty
product being 1 (Figure 3.1).
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= 1 =0l
1 = ] = 1}
1 X 2 = 2 =
1 X 2X3 = o = I
I X2X3 X4 = 24 = 4
T XZ2ZX3X4XD5 = 120 = 5l
I X2XIEIX4XHB X6 = 720 = ¢
I X2Z2X2I2X4XDHDX6XT7=5B04 =7

FIGURE 3.1 The factorial numbers.

We just saw how we can get the factorial numbers from
Moessner’'s magic, and in fact we already met them in Chapter 2
when we piled up triangular pyramids in more and more dimen-
sions.

ARRANGEMENT NUMBERS

Factorial 7z is the number of arrangements, or orders, or per-
mutations of n things in a row. How many arrangements are
there of r objects, chosen from 7 different things? The first can be
any one of the #, the second can be any one of the remaining n—1,
the third any one of remaining #—2, and so on, the rth being
any one of n — r + 1. The total number of different arrange-
ments is

nXm-—-DXm—-—2)X---Xnmn—r+1,

the product of all the numbers from 1 to »n, except for those from
1 to n — r, so we can express this concisely using the factorial num-
bers:

The number of arrangements
of r things out of 7 is
7!

(n — )
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CHOICE NUMBERS

If we’re only concerned with the number of choices, or combina-
tions, of the r things chosen from the 7, then we don’t distinguish
between the factorial r different ways in which we could have ar-

. L n ] »
ranged them in a row. So to get the choice numbers, ( r) , we divide
the arrangement numbers by 7!

i =

The number of choices
of r things from 7 is

ny _ 73
¥ ri(n — r)!

In this formula, you can swap r for n — r without altering the
value. The number of ways of choosing 5 things out of 8 is the same
as the number of ways of choosing the 3 you want to leave out:

(+)-C)
(0)-(.2)

This is the left-right symmetry of Pascal’s triangle, see Figures 3.2 and
3.3

and generally,

t

Suppose a class of 28 students wants to choose a soccer team of
11 players. In how many ways can they do it? We now know that
this is

11 1><2><3><4><5><6><7><8><9><10><11

28!
111171

|

=22 X 3 X5XT7X 13 X 19 X 23 = 21474180.

28) 28 X 27 X 26 X 25 X 24 X 23 X 22 X 21 X 20 X 19 X 18
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Now suppose you're in the class and want to know if you're on the
team. In how many ways could you be included? If you’re on, the
other 10 must be chosen from the other 27:

(f;) = 8430285 ways.

In how many ways are you not included? All 11 have to be chosen
from the other 27:

(fz) = 13037895 ways.

SO ( f?) is the sum of these two numbers, and generally, since you

are either on the team of  or not,

(7)=079-02)

PASCAL’S TRIANGLE

This is a very simple way of generating the choice numbers. Start

from (8) = 1 on row 0, and ((1)) = 1 and (i) = 1 on row 1, and

calculate successive rows by putting (H) = 1 and ( n) 1 at each

O n
end and forming each other number as the sum of the two in the row
immediately above (Figure 3.2).
The first few choice numbers are shown in Figure 3.2. The array
in Figure 3.3 is usually known as Pascal’s triangle, because it was

intensively studied by Blaise Pascal (1623-1662), the famous French

philosopher and mathematician. It had already been described much
earlier by Chinese mathematicians and by Omar Khayyam, who died
in 1123,
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FIGURE 3.2 Generating the choice numbers.

Of course, we’ve seen some of these numbers before, in Chapter
2, when we piled up triangular pyramids in more and more dimen-
sions. The numbers at the beginning of each row are just ones,

i, 1,1, 1,1,1,1,1, 1,1, 1, ....
The second numbers in each row are the counting numbers,

1, 2,3,4,5,6,7,8,9,10, 11, .. ..

1
[
[
15 3 1
1 4 o 47
1 5 10 10 5 1
1 © 15 20 15 © 1
17 21 55 55 21 7 1
1 286 5o 70 Bo 26 & 1
19 50 64 120 126 84 26 9 1
110 45 120 210 252 210 120 45 10 1
1 M55 165 250 402 402 550 165 55 11 1
112 0o 220 495 792 924 792 495 220 66 12 1
115 76 2560 721267 17716 1710 1267 715 266 75 13 1

FIGURE 3.3 Pascal’s numbers: the choice numbers, or binomial coefficients.

i
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The third numbers are the triangular numbers,
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, . . ..
The fourth numbers are the tetrahedral numbers,
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, . . ..
The fifth ones are the pentatope numbers,
1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, . . .,

and so on. The numbers in each diagonal are the cumulative sums of
those in the previous diagonal.

CHOICE NUMBERS WITH REPETITIONS

In how many ways can you choose five things from #, if repetitions
are allowed? In other words, how many essentially different kinds of
“poker hands” are there, if we ignore flushes and straights and are
playing with a double deck, so that you can have five of a kind?

“Poker hand” 13 in a suit n cards in a suit

all different (E) = 1257 (g)
12 n— 1
' X = X
one pair 15 (5) 2500 f ( % )
two pairs (gj) X 1M = 856 (;) X (n— 2)
three of a kind 15 X (1'22) = 5556 n X (” ; 1)
full house (5 & 2) 15 X 12 =156 nX(n-—1
four of a kind 15 X 12 = 156 nX(n-—1)
five of a kind 12 =13 H
17 n-+ 4
| —

oo = (7 (s
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Surely such a simple answer can be found more simply? In fact,
the hands correspond to the number of 5.card hands chosen from a
Sweet Seventeen deck of 17 distinguishable cards: A, K, Q, J, 10, 9,
8. 7,6,5, 4,3, and 2 and four distinguishable jokers: j;, j2, j3, and js.

If you are dealt a Sweet Seventeen hand (Figure 3.4(a)), sort it 1n
the usual way, high on the left, low on the right, but with any jokers
in the positions corresponding to their labels (Figure 3.4(b)). To con-
vert it into a poker hand, replace any jokers by copies of the first
genuine card that follows them: Figure 3.4(c) shows the resulting full

house, nines on twos.
To see why the correspondence is €xact, convert your sorted

poker hands (Figure 3.5(a)) into a Sweet Seventeen hand by replacing
all duplicates of cards farther to the right by jokers, labeled by their

position counting from the left (Figure 3.5(b)).
In general, to find the number of choices of r things from »n dif-

ferent ones, but with repetitions allowed, imagine that you are play-
ing Sweet Seventeen, but instead of a deck of 13 + 4 jokers, you have
a deck of n + (r — 1) jokers, and the answer is

r*f-'!r-‘.'.”.g;'mﬂﬁ'%:??ﬁ"fﬁ?fff?q??;fT_' o, PEL G TR AR 2 ApEh e G
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i FIGURE 3.5 A poker band becomes a Sweet Seventeen hand.






