Descriptive Statistics

LEARNING OBIJECTIVES:

On completing this chapter, you should understand the significance
of and how to calculate measures of the central tendency and varia-
bility of a dataset:

o mode, median and mean;

e range, variance and standard deviation; -

e standard error and confidence intervals.

8.1. Populations and samples

In statistics, the population is the entire group from which data may be
collected and conclusions drawn. However, since populations may be very
large and inconvenient to work with, statistical analysis is frequently per-
formed on a sample, a smaller group drawn from the population. Assuming
the sample is representative of the population, e.g. selected at random and
sufficiently large, conclusions made about the sample should be valid for
the population as a whole. For example, if we wanted to know whether
children born in China in the 1950s were shorter than children born in
China in the 1970s, it would be impossible to study the populations, i.e. all
- children born in China in the 1950s and 1970s, since these are far too large.
- However, statistical conclusions drawn about samples taken from these
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two populations should be valid for the whoile population, assgmin% ti}at
the samples are unbiased and truly representative of the_ p(.)puiatzons.d(f) ar
so good. However, depending on the samgle size, a statistic calcuiat:eb’ or 3
sample based on the formula fora population may tend to produce a 1a;e

result, that is, an overestimate or an underestimate of the true value. For
this reason, formulae for calculation statistics from samples often containa
small correction (e.g. n— 1 in place of #, the number of datapoints) to
provide a more accurate answer. For this reason, you ahyays need to be
clear whether you are calculating a statistic for a population or a sample,
and to use the correct formula (if appropriate).

8.2. The central tendency

Different frequency distributions can be described mathematically by
measuring the central tendency and variability of the dataset. The c§ntrz.11
tendency is a summary measure of the middle of a dataset, which is

commonly measured by any of three common descriptive statistics, the
3 Ms’: mode, median and mean.

Mode

The mode is the most frequently occurring value in a dataset. 'It is easy to
determine, but is subject to great variation and consequently is of limited

value.

Median

The median is the middle value in a dataset, i.e. half the var'iabies have
values greater than the median and the other half values which are less.
The median is less sensitive to outliers {extreme scores) than th.e mean and
' thus a better measure than the mean for highly skewed distributior}s,
such as family income. Note that the median equals the 50th percentile

(Pso), i.e. the second quartile {Oa).

Mean

The mean is the average value of a dataset, Le. the sum of all the data
divided by the number of variables. The arithmetic mean is commonly

called the ‘average’. When the word ‘mean’ is used without a modifier, it
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usually refers to the arithmetic mean. The mean is a good measure of
central tendency for symmetrical {e.g. normal) distributions, but can be
misleading in skewed distributions since it is influenced by outliers. There-
fore, other statistics such as the median may be more informative for
distributions which are highly skewed. The mean, median and mode are
equal in symmetrical frequency distributions. The mean is higher than the
median in positively (right) skewed distributions and lower than the med-
ian in negatively (left) skewed distributions.

The formula for the arithmetic mean is:

_2.X
mean = Mmﬁm
where 3 means ‘sum’; X are the raw datapoints; and N is the number of
scores (datapoints).

The geometric mean is the nth root of the product of the scores, for
example, the geometric mean of the scores 1, 2, 3 and 4 is the 4th root of
1+ 2% 3 x4, which is the 4th root of 24 = 2.21. The geometric mean is less
affected by extreme values than the arithmetic mean and is useful for
some positively skewed distributions. However, the arithmetic mean is
far more commonly encountered than the geometric mean.

8.3. Variability

Measurements in biology are frequently quite variable. There are many
different sources for this variation, such as biological differences between
individuals, resolution of measurement techniques and simple experimen-
tal error. It is important to be able to measure and describe the variability
in datasets. While the central tendency is a summary measure of the mid-
dle of a dataset, variability {or dispersion) measures the amount of scatter
in the dataset (e.g. Figure 8.1). Variability is commonly measured by three
criteria: range, variance and standard deviation.

Range

Range is the difference between the largest and the smallest value in the
dataset. Although it is a crude measure of variability, it is easy to calculate
and useful as an outline description of a dataset, for example in box and
whisker plots (Section 8.8). However, since the range only takes into
account two values from the entire dataset, it may be heavily influenced
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where 2 is the sum, X is the raw score, . is the mean of the population,
and N is the number of datapoints. '

2 LX - m)?

Varjance of a sample = s
* n—1
1

P

where ) is the sum, X is the raw score, m is the mean of the sample, and

n is the number of datapoints in the sample. ’
Note that the variance is expressed in squared units, for example, if the

raw scores are weight in kg, the variance is kg®. For this reason, it is more

Esef'ul.to consider the square root of the variance, which is the standard
eviation.

Equal means Usnequal means Equal variability

jabili equal variability equal means
unequal varitbiiy 4 different distribution (skew)

Figure 8.1 Variability

by outliers in the data. Therefore, another criterion is commonly use_d -
the interquartile range, the interval between the 25th and 75th percentiles.
In a normally distributed population, the interquartile range contains
50% of the datapoints making up the dataset: Q3 — Q. A further mea-
sure which is even less subject to extreme scores is the semi-interquartile
range, which is half of the interquartile range: (O3 — Q1)/2. N
Since the semi-interquartile range is little affected by extreme scores, 1t 18
a good measure of spread-out or skewed distributions. However, it is more
subject to sampling fluctuation {i.e. how much a statistic varies frpm one
sample to another) in normal distributions than the standard deviation (see
below), so it not often used for data which are normally distributed.

Standard deviation

The standard deviation (SD) is the square root of the variance and

is the most commonly used measure of how ‘spread-out’ a distribution
is:

> (X - Mx)2
N

Standard deviation of a population: o, =

Variance
Standard deviation of a sample: S, =

The variance of a dataset is more complicated to understand than the
range, but is a measure of how ‘spread-out’ a distribution is. A deviation
score is 2 measure of by how much each point in a frequency distribution
lies above or below the mean for the entire dataset:

As with the other measures of data variability, the standard deviation
determined from a sample (subset) of a dataset will be biased — since
outliers are excluded, it will tend to underestimate the population stan-
dard deviation. Hence the formula needs to be modified for samples rather
than whole populations. The standard deviation is probably the most
useful measure of data spread. As you will see, many formulas in infer-
ential statistics (Chapters 10 and 11) use the standard deviation. Although
Fhe standard deviation is less sensitive to extreme scores than the range, it
is more sensitive than the semi-interquartile range. For this reason, the
standard deviation should at least be supplemented by if not replaced by
-~ the semi-interquartile range when the possibility of extreme scores is pres-
- ent or for highly skewed datasets.

Deviation score == X — m

where X is the raw score and 2 is the mean for the dataset.
The variance is the mean of the squares of all the deviation scores fora
dataset. This represents the amount of deviation of the entire dataset from

the mean:

M : . L QMZ(X”“.U‘X)
. : Variance of a population = ¢~ =

- - -

- /,/éf’”"”
s o
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8.4. Standard error

Any statistic can have a standard error, which is the standard deviation of
the sampling distribution of that statistic. Inferential statistics and signifi-
cance testing (Chapters 10 and 11), and confidence intervals (below) are all
based on standard errors. The standard deviation is an index of how closely
individual data points cluster around the mean, thus each standard devia-
tion refers to an individual datapoint. In contrast, standard errors indicate
how much sampling fluctuation a summary statistic shows, that is, how
good an estimate of the population the statistic is (e.g. the standard error of
the mean, o,,). The standard error of any statistic depends in part on the
sample size — in general, the larger the sample size the smaller the standard

error.

SD

SE = —=

N
How good an estimate is the mean of a population? One way to determine
this is to repeat an experiment many times and to determine the mean of
the means. However, this is at best tedious and frequently impossible.
Fortunately, the standard error of the mean can be calculated from a
single experiment and indicate the variability of the statistic:

g S0
m ﬁ

We will come back to the use of standard errors again later.

8.5. Confidence intervals

In a normal distribution 68% of datapoints fall within £1 standard -
deviations from the mean; 95% of datapoints fall within +£2 standard
deviations from the mean (actually +1.96 standard deviations}; and
99.7% of datapoints fall within 3 standard deviations from the mean
(Figure 8.2).

A confidence interval gives an estimated range of values which is likely
to include an unknown datapoint. The width of the confidence interval
gives us some idea about how uncertain we are about the parameter, for.
example, a very wide interval may indicate that more data should be
collected before anything very definite can be said about the parameter.:
Confidence intervals are more informative than the results of inferential -
tests {Chapters 10 and 11}, which only help you decide whether to reject a:’

CONFIDENCE INTERVALS 8
9

P 99.7%
¢
P 95%

68%
50%

N
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Figure 8.2 Normal distribution

b C .
; ;};;Eii‘i::lis;) ::zrc:m‘il;}.f provide a probable range of numerical values for
Ina gormal distribution, since there is less than a 1 in 20 chance of

datapolmt falling outside +2 standard deviations from the mean, we E;HY
that this range represents the 95% confidence interval, and the pr(;babiliiy
(P) of' this range containing a particular datapoint is EPm 0.95 (Chapter ;
contains a more detailed explanation of probability). Similarly sincepthere
is le§s than a 1 in 99.7 chance of any sample in the popula:tion fallin

outside 3 standard deviations; this represents a 99% confidence interv %
for the popgiation, and P =10.99. Confidence intervals can be constructil
fors any statistical parameter, not just the mean. ;

int;::iin do you use standard deviations, standard errors or confidence

1. Usf? Standa}rd deviations when you are referring to individual data
points. This tells you about the spread of the data.

5. .
ise sltandall"d'errors W}l}len you are referring to differences between
mple statistics, e.g. the mean. This tell
' ) s you about the a
your estimate. ! couracy of

-
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8.6. Parametric and non-parametric 8.7. Choosing an appropriate statistical test

statistics
In order to choose an appropriate statistical test, you must answer two

Statistical methods which depend on estimates of the parameters of popu- questions:

lations or probability distributions are referred to as parametric methods,
and include: Student’s #-test; ANOVA (analysis of variance); regression
analysis; and correlation analysis. These tests are only meaningful for con-
tinuous data which is sampled from a population with an underlying
normal distribution, or whose distribution can be rendered normal by
mathematical transformation, Non-parametric methods require fewer as-
sumptions about a population or probability distribution and are applic-
able in a wider range of situations. For example, they can be used with
qualitative data, and with quantitative data when no assumption can be

1. What are the features of the dataset being analysed?

2. What is the goal of the analysis?

Table 8.1 summarizes some of the statistical tests which can be used to
analyse different datasets. Not all of these tests are described in this book,

Table 8.1 Some of the statistical tests which can be used to analyse different datasets

made about the population probability distribution. Goal Dataset
Non-parametric methods are useful in situations where the assumptions N
. : ) o i .
required by parametric methods are questionable. A few of the more diseribusi Eon,;lomai Binomial
. . . SErEDUL i istribwati
commonly used non-parametric methods include: x? test; Wilcoxon on stribution distribution
signed-rank test; Mann~Whitney—Wilcoxon test; and Spearman rank cor- Describe one group Mean, standard Median, Proportion
relation coefficient. These tests are ‘distribution free’, i.e. the population deviation interquartile range
fi‘f)m yvhich the sample W;B:S drawn df)es not geed to have a norma_i dis- Comtpare one group One-sample t-test ~ Wilcoxon test x* or
tribution. Unlike parametric tests which can give erroneous results if ap- to a hypothetical binomial test
plied to the ‘wrong sort of data’, these methods can be safely used in a value
vyuier range of circumstances. Unfortllmately, they are less flexible in prac- Compare two Unpaired #-test Mann-Whitney Fisher's exact test
tice and less powerful than parametric tests. anpaired groups test (or ¥ for
large samples)
Compare two paired Paired #-test Wilcoxon test McNemar’s test
groups
Compare three or more  One-way ANOVA  Kruskal-Wallis test  x? test
unmatched groups
Compare three or more  Repeated-measures  Friedman test Cochrane Q test
matched groups ANOVA
Quantify association Pearson correlation  Spearman Contingency
between two variables correlation coefficients
| Predict value from Simple regression Non-pararetric Simple logistic
In statistical jargon, accuracy is a measurement of how close the average ano,r};r measured regression regression
. .. . variaple
of a set of measurements is to the true or target value. Precision is a
measure of the closeness of repeated observations to each other with- Predict value from Multiple regression Multiple logistic
out reference to the true or target value, i.e. the reproducibility of the Sev‘f’;i measured regression
variapies

result.
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but they have been included in the table for reference purposes. In

subsequent chapters we will explore the most frequently employed statisti-

cal methods and how they can be used.

8.8. Exploratory data analysis

Hopefully, it will now be clear that one of the most important aspect of
statistics is to use the appropriate method rather than a test which may
generate a meaningless and misleading answer. Choosing a test largely
depends on the nature of the data being analysed, and critically whether
this has a normal distribution (so a parametric test can be used) or not
(meaning a non-parametric method must be used). This crucial informa-
tion can be obtained through a process known as exploratory data anal-
ysis, which includes many tools designed to reveal possible errors in the
data (calculation or experimental errors, typing mistakes, etc.), data out-
liers, which should be investigated, and the underlying nature of the dataset
{e.g. frequency distribution).

Exploratory data analysis comprises many different methods, including
descriptive statistics, but the most powerful are graphical methods which
literally paint a picture of the dataset. As an example, we will look at
some of the most frequently used methods, all of which are easily per-
formed by hand or with commonly available software.

Scatter plots

Consider the three datasets in Table 8.2. At first sight, all three look very
similar, with identical means and standard deviations. However, a scatter
plot of the data quickly reveals considerable differences between the three
datasets (see Figures 8.3 — 8.5).

Freguency distribution histograms

A frequency distribution is a series of rectangles representing the frequen-
cies of the class intervals. Since this was described in the previous chapter
(Section 7.5), we will not repeat the description here.

EXPLORATORY DATA ANALYSIS

93
Table 8.2 Datasets 1-3
Set 2 Set 3
x1 vl x2 ¥2 x3 ¥3
10 9,19 10 7.56 8 6.58
8 8.14 8 6.67 8 £.66
13 8.74 13 12.74 8 7.71
9 8.81 9 7.11 8 8.84
11 9.26 11 6.91 8 8.47
14 8.10 14 8.84 8§ 7.04
6 6.23 6 6.17 8 525
4 3.10 4 6.39 19 12.5¢
12 9.13 12 8.15 8 5.56
7 7.26 7 6.42 8 7.91
5 4.74 5 5.73 8 6.89
Mean 9.0 7.5 2.0 7.5 2.0 7.5
Standard deviation 3.3 2.0 33 2.0 3.3 2‘0
12
10
8
X 6
4
%
2
0 ¥ 1 L}
7 9 11 13 15
Y
Figure 8.3 Dataset 1: the datapoints all lie on a smooth curve with litele scatter — this

would appear to be ‘good’ dara

Stem and leaf plots

A fstem a{lci leaf plot is like a histogram turned on its side but shows more
information - the numerical values of each datapoint in addition to the
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i ints lie close to a straight line, but one point
Figure 8.4 Dataset 2: most of the datapoints . :
(zfrow) is suspiciously misplaced. This could be the result of either experimental or

typographical error, but it is certainly worth investigating the cause before performing

further analysis

14

< o= £ (28 o
i

s 7 9 11 13 15 17 19 2
Y

Figure 8.5 Dataset 3: in this example, the single data outl_ier (a%'row) would he?vfy
:nfluence the result of any statistical analysis. It is important to investigate ;hﬁ cau}sle (})1 t txz
isolated datapoint (e.g. experimental error or design) and to consider carefully whether

snelude this datapoint in any analysis
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overall pattern. The dataset — 39, 42, 44, 47, 48, 48, 51, 52, §3, 53, 54,
55, 55, 55, 55, 56, 56, 57, 57, 58, 58, 59, 59, 59, 59, 61, 61, 62, 63, 63,
64, 65, 65, 65, 66, 66, 66, 67, 69, 69, 71, 71, 76, 81, 84, 92 would be
represented as:

3|9

4124788
51233345555
5166778889999
6112334555
61666799

7116

814

9|2

The numbers to the left are the ‘stem’ of the plot — the tens digits in the
frequency distribution of the dataset. The numbers to the right are the
‘leaves’ — the units digits in the frequency distribution, e.g. 5|6 represents
a score of 56. Scores greater than 99 can be represented as follows: 25| 6
for 256, 67| 2 for 679, etc. The effect produced is that of a histogram, but
each individual datapoint can be seen. No graphical software is necessary
to produce the pattern, which can easily be reproduced in text form. In

this example, the data approximates to a normal distribution (with a
slight left-skew).

Box and whisker plots

This alternative method of examining data makes use of common calcu-
lated numerical measures {median, interquartile range), but displays the
data in a visual form (Figure 8.6). In the top plot in Figure 8.6, the median
value is symmetrically placed in the middle of the box {interquartile range,
which by definition covers 50% of the points in the dataset), so this
dataset is normally distributed. In the middle plot, the interquartile range
(box) is the same, but here the median value is at the right-hand end of the
box, meaning that this dataset does not have a normal distribution, but
has what is known as a right or positive skew. This dataset would provide
inaccurate answers if subjected to parametric tests {unless transformed to
a normal distribution first). In the lower plot, the median value is again in
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Figure 8.6 Box and whisker plots

but this (i.e. the box) covers less of

the middle of the interquartile range,
re outliers in the data which could

the dataset, meaning that there are mo

ceduce the accuracy of any statistical analysis.
Examining the data in question using the above methods before apply-

ing any statistical tests is vital to any meaningful analysis, ensuring that
any numerical summaries of the data or predictions made from the data
are valid. Unfortunately, it is frequently overlooked. Abvays carry out
some form of exploratory data analysis before proceeding further. Pref-
erably draw at least one picture or graph. Much of statistics is about
detecting patterns — something which the human eye and brain are very

good at.

Problems (answers in Appendix 1)

Table 8.3 contains a set of data on the microbiological quality of bottled drinking
water. In this study, the number of bacterial cotony-forming units per millilitre of -
bottled water was measured for 120 different water samples.

8.1. Construct a grouped frequency distribution table for this dataset.

8.2. Plot a frequency distribution histogram of the data.

8.3, How would you describe this dataset {(normal, negative skew or positive

skew?)

PROBLEMS (ANSWERS IN APPENDIX 1)

8.4. Calculate:

{a) the 90th percentile for this dataset;

(b) the 25th percentile for this dataset.

Table 8.3 Microbiological quality of drinking water

Colony forming units mL™*

915%
3783
848

7478
7999
8652
8952
7818
4117
8939
9246
4584
6171
6538
7645
7799
2396
5417
8512
6571

6351
7613
8799
6758
8492
5791
5184
2085
6512
8672
7598
8686
4184
8793
2092
8659
8365
7685
8079
7732

9726
9527
8259
6038
8712
8392
8005
8292
8432
6105
6098
7919
8906
6611
8158
7619
8566
8519
7912
8739

8859
9292
7645
7552
7718
7698
7912
779
8452
8966
9413
4504
5097
7879
8339
9166
7478
1735
8653
7798

5832
7512
9166
8166
8352
8185
4664
8259
7545
8693
8279
6237
7532
6805
8599
8079
8172
8486
7785
7625

6891
6631
5864
7078
8659
6951

906
8112

383
7532
8252
9146
8586
8246
2006
5084
7812
6905
8699
7519

8.5. Calculate:

(a) the mean for this dataset;

{b) the median for this dataset;

{c) the mode for this dataset.

8.6. Calculate:

fa) the range for this dataset;

(b) the semi-interquartile range for this dataset;
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(¢} the variance for this dataset;

(d) the standard deviation for this dataset.

8.7. Exploratory data analysis:

(a) Construct a scatter plot of the following dataset. Are the data

nogmally distributed?

robability

11 14 6 4 12 7 5

10 8 13 9
Y 128 8 62 3 11.8 7.3 5.7

y 112 81 97 98

(b) Construct a frequency histogram of the following dataset. Are the

data normally distributed?

_ _ . ~100
o 4150 S1-60 61-70 71-80 81-90 I1 LEARNING OBJECTIVES:

x 1-10 11-20 21-30 31-4
9 13 9 8 4

0 0 1 4 6

y
On completing this chapter, you should understand the basic

principles of probability theory, including:

(c) Construct a stem and leaf diagram of the following dataset. Are the

data normally distributed?
e how to calculate probability in simple scenarios;

21, 23, 25, 26, 26, 27, 29, 1, 32, 32, 33, 35, 35, 36, 37, 38, 38,
39, 41, 41, 41, 42, 42, 44, 5, 47, 48, 48, 49, 51, 52, 53, 33, 53, o the difference between selection with and without replacement;

54, 55, 55, 35, 57, 61, 62, 63, 66, 71, 74, 9L

e how to calculate the probability of multiple events.

he following dataset. Are the data
5, 27,28, 31, 33, 38, 42, 51, 53,
86, 91. Median= 52, first

(d) Sketch a box and whisker plot of t
normally distributed? 14, 20, 22, 2
61, 62, 65, 71, 74, 77, 78, 84,
quastile = 29, third quartile =73.

9.1. Probability theory

Although most people find probability an interesting and enjoyable area
of mathematics, why should a biologist need to understand and know
how to calculate probabilities? This is because statistical methods depend
upon probability theory.

Examples include important activities such as sampling from popula-
tions and hypothesis testing {Chapter 10), and probability distributions

{Chapter 8}.

_ number of specific outcomes of a trial
total number of possible outcomes of a trial

.~

Probability,

The simplest way to understand probabilities is through proportional

frequency.

-
o
e

B
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Example

In a group of mice there are 200 white mice and 50 brown mice:

1. Probability, P, is normally written as a decimal, e.g. P=0.5. All
probabilities liec between 0 and 1.

2. The proportional frequency of brown mice is 50/250=1/5=0.2,

3. If we randomly take one mouse there is a 1/5 chance of it being brown
{0.2).

4. The probability of picking a brown mouse as a single rgndgm sample is
equivalent to the proportional frequency of brown mice in the group
{population).

If there were 250 white mice, the probability of §electing a brown
mouse would be 0/250 = 0. The probability of selecting a white mouse
would be 250/250 = 1.

9.2. Replacing or not replacing selections

If we replace the first selection from a poplulation b_efore mak'mg a
second selection, then the probability of making any given SEIt‘?Ctl.On is
unaltered. Thus, in the above example the probgbliity of picking a
brown mouse is still 50/250=1/5=0.2. However, if we do not repl.ace
our first selection the probability when making the second selection
changes.

Example

In a group of mice there are 200 white mice and 50 brown mice:

1. Selection one == a brown mouse.

2. If this is not replaced there are now 249 mice (not 250) and on.ly 49
brown mice (not 50}. The probability of picking a brown mouse in the
second sample is now 49/249, not § 0/259. The chance of randomly

selecting a brown mouse has decreased {slightly).

N

CALCULATING THE PROBABILITY OF MULTIPLE EVENTS 101
3. Similarly, the probability of randomly picking a white mouse in the
second sample is now 200/249 rather than 200/250 as it would have
been in the first selection, i.c. the chance of picking a white mouse in

the subsequent selection increases as the chance of picking a brown
mouse decreases.

Studying repeated samples (selections) from natural populations is easier
if we assume that replacement occurs. This is usually true if the popula-
tion is large, for example, taking one locust from a swarm of millions will
not significantly change the overall population. When the result of the first

sample does not affect the probability of the result of subsequent samples,

the samples are said to be independent (an important requirement of
many of statistical tests).

9.3. Calculating the probability
of multiple events

There are two rules of probability:

1. The SUM or OR rule — the probability of any one of several distince
events is the sum of their individual probabilities, provided that the

events are mutually exclusive (occurrence of one event precludes the
others, e.g. selection without replacement}

2. The PRODUCT or AND rule — the probability of several distinct
Cvents occurring successively or jointly is the product of their
individual probabilities, provided that the events are independent

(the outcome of one event must have no influence on the others, e.g.
tossing a coin).

The number of possible combinations of events is given by the factorial
product of the number of events (written as ‘#’) - the product of an
integer and all the lower integers, for example, for three events (X, Y,
Z), the number of possible combinations =31 =32 % — 6:

XYZ  XZY YXZ
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the road.

Example

replacement:

PROBABILITY

1. The probability of three brown mice in three selections:
(50/250) + (50,/250) * (50/250)

= (1/5)  (1/5) % (1/5) = 0.008

= (1/5) % (1/5) = (4/5) = 0.032

Table 9.1 Possible outcome of three selections with replacement

Note that these are all different combinations, for example, crossing Fhe
road then looking for cars is not the same as looking for cars then crossing

A population of 50 brown mice, 200 white mice, selections with

2. The probability of selecting, in order, brown, brown and then white:
(50/250) x (50/250) + (200/250)

3. If, however, we are not interested in the order (i.e. brgwn, brown, wl@fte)
but just the overall outcome (i.e. two brown, one Whitc?), the probablht‘y
is different. The possible outcome of three selections with replacement is
shown in Table 9.1. Thus, the sum of probabilities of a set of mutually
exclusive, exhaustive outcomes is 1, but the probability of two brf)wn
mice and one white mouse, irrespective of the order of selection is as
shown in Table 9.2. Note the difference in outcome betwet_en an ordered
selection (probability =0.032) and selectiop irrespective of . order
(probability = 0.096) = the sum of all the possible ordered selections.

Selection outcome Probability of selection Probability of outcome

1 2 3 1 2 3 Surn Total
B B B 1/s 1/5 1/5 (1/5) % (1/5) % (1/3) 0.008
B W B 1/5 4/5 1/5 (1/5) +{4/5) = (1/5) 0.032
B ‘B W 1/s 1/5 4/5 (1/5) % (1/5) = (4/5) 0.032
B W W 1/5 4/5 4/5 (1/5)4(4/5) % (4/5) 0.128
w B B 4/5 1/5 1/5 (4/5) % (1/5) £ {1/5) 0.032
w W B 4/5 4/5 1/5 (4/5) = (4/5)%(1/5) 0.128
W B w45 1/s 4/5 (4/5) % (1/5) + (4/5) 0.128
w W W 4/5 4/5 4/5 (4/5) % (4/5) % (4/5) 0.512

Total 1.0
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Table 9.2 Probability of two brown mice and one white mouse irrespective of order of
selection

Selection outcome Probability of selection Probability of ontcome

1 2 3 1 2 3 Sum Total

B w B 1/5 4/5 1/5 (1/5) % (4/5) 5 (1/5) 0.032

B B w 1/S 1/5 4/5 (1/5)% (1/5) = (4/5) 0.032

W B B 475 1/5 1/5 (4/5)%{1/5) % (1/5) 0.032
Total 0.0%6

9.4. The binomial distribution

The binomial probability distribution describes what will happen when
there are only two possible outcomes of an event, e.g. tossing a coin
(heads or tails) or selections from a population consisting of two types
of member {e.g. brown and white mice).

Such binary variables turn out to occur quite frequently in biology. In its
simplest form, the binomial expansion summarizes the possible outcomes
for any number of samples when there are only two possible outcomes

(e.g. brown and white mice}. For independent events, the binomial dis-
tribution is given by:

(P+ Q)

where P is the probability of one of the possible events, O is the prob-

ability of the second event (O =1 — P), and # is the number of trials in the
series.

For samples of 1 (m=1): (P+ Q)" = (P + Q),

For samples of 2 (n=2): (P + Q> =P? 4 2P0 + OF,
For samples of 3 (n=3): (P+ Q)*=P*+3P2Q + 3PO?* 4+ Q3 ete.

i
o

To return to the mice, these expansions of the binomial equation de-
scribe all the possible outcomes from the experiment above. If P = brown
mice and Q = white mice, for three samples from the population (z =3}
there is: one way of obtaining three brown mice (BBB) = P three ways of
obtaining two brown mice and one white mouse {BBW:BWB:WRBB) =
3P*Q; three ways of obtaining one brown mouse and 2 white mice

(BWW.WBW:WWB) == 3PQ% and one way of obtaining three white mice
(WWW) =0



104 PROBABILITY

These are all the possible outcomes. In the population from which the
samples were drawn:

50 brown mice, P = 50/250=10.2
200 white mice, Q = 200/250 = 0.8

and we can therefore calculate the distribution of outcomes fr(?xp the
binomial equation. In this example we can calculate the probability of
two brown mice and one white mouse being selected as:

3P0 = 3(0.2)%(0.8) = 0.096

This method is acceptable when there is a small number of samples and a
small number of outcomes, but gets progressively more difficult as the
sample size increases. For example, try using this method to calcularce
how many different ways there are to select seven brown mice and six
white mice in 13 selections. To perform such calculations as this, we can
use the following equation:

n!

uicomes == ———————
Number of o A= 7]

where # is the number of selections and 7 is the number of one of the
outcomes {remember ‘1" = factorial).’

Example

For two brown mice and one white mouse (i.e. BBW, BWB, WBB}, the _

number of outcornes is:

3l 3x2x1 6
- = =3
AB -2 211 2

So for seven brown mice and six white mice, the number of possible out-

comes is given by:

131 130 13%12%11%10%9%8
T3 =T 7146l 6#%5%d%3%2%1
_ 1235520

720

THE BINOMIAL DISTRIBUTION 105

If we know the probability of the outcome for a single selection (e.g.
probability of selecting a brown or a white mouse), we can calculate
the total probability for the outcome using:

P(r) == ;}(f};ﬁ*ﬂ(i - p)""

where P is the total probability of the outcome (e.g. two brown mice and
one white mouse), p is the probability of the event that occurs 7 times, and
{1 —p) is the probability of the event that occurs 7 —  times,

In our example of two brown mice and one white mouse:

3L (30, (200!
213 -2t \ 250 250
= 3% (0.2)” * (0.8) = 3 %0.04 % 0.8 = 0.096

In practice, rather than actually performing such calculations, it is more -
usual to look up the probability of an event from a pre-calculated table of
binomial probabilities (Appendix 3).

A particular importance of probability theory in statistics is that it
controls sampling of populations and can be used to determine how large
a sample needs to be taken from a population in order for an experiment
to be successful, i.e. to have a statistically meaningful outcome.

Example

Suppose that 4% of students carry an inherited defect in the (mythical}
statz gene which restricts the ability of carriers to understand statistics.
The only way to determine if someone is a carrier is to select individuals
from the population at random and test them. If the number of students
tested is too small there is a risk of not finding any carriers, but if it is too
large, it will not be possible to mark all the tests. What sample size is
required to give a good likelihood of sampling affected individuals? The
binomial distribution can be used in a case such as this because the vari-
able is binary, that is, each individual will or will not carry the defective
gene. If 4% of students are carriers of the gene, then P=0.04 (statz™)
and Q =0.96 (statz ™). To find the probability of finding some (i.e. one or
more) carriers of the gene, the most common method is to calculate is the
probability of no cases [i.e. P(0)] for a given sample size, e.g. 10. Using the
binomial equation, if the number of carriers, 7, is 0, and the number of
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trials, #, is 10, we can calculate the probability of testing 10 individuals
and finding no carriers:

n—-r

P{r) mwﬂj‘;’;ﬁ*ﬁ(l - p)

10! 0 10--0
o 0.04%(1 ~ 0.04
P(O)‘0§(10~0)!*004( )

(NB. Any number raised to the power 0 is 1 and any number raised to the
power 1 is itself, e.g. 200=1 and 20* =20, so 11 =0t =1.)

P(0) = 1% 1%0.96'
P(0) = 0.67

Thus, if 4% of students are carriers, there is a 67% chance that a sarmnple
of 10 students will fail to find any carriers. This tells us a sample size of 10
is too small to give a reasonable chance of finding at least one carrier, so
we need to test a larger sample of the population:

1. If the number of students tested is 20, P(0) = 0.96%° = 0.44, i.e. there is
now a 56% chance of finding an affected carrier (1 —0.44=0.56).

2. 1f the number of students tested is 40, P(0) = 0.96%° =0.20, i.e. 2 80%
chance of finding an affected carrier (1 0.2=0.8), etc.

Of course, the lower the frequency of any charact?:r‘istic in a pf)pulation,
the higher the probability of not finding any positive if:suits in a small
sample. For example, if only 1% of students are starz there is onlig a
10% chance of finding a carrier in a sample of size 10, i.e. P(0)=0.99"" =
0.9. This method is useful to determine the minimum sample number

needed to obtain at least one positive result from a samp%e fqr any binary .
variable, for example to find at least one affected carrier in a random .
sample. For other types of variable which may be continuous and nor-

mally distributed, the usual method of determining sample sizes to use the
standard deviation {Chapter 8).

9.5. Coincidences

When working with large numbers (populations), probability theory has

some unexpected results. Many apparently unexpected coincidences are
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merely the result of probability theory operating on very large popula-
tions, for example:

1. The chances of winning the UK National Lottery jackpot with a single
ticket are about 14 million to one. What are the chances of someone
who buys one Lotto ticket every week winning the jackpot twice within
a year? Astronomical? Not necessarily. The chance of any single person
(e.g. you) winning the jackpot twice within a year are approximately
10" to one, but if 25 million people each buy one ticket every week, the
chance of anyone winning the jackpot twice within a year are much
greater ~ less than 100 to one.

2. What are the chances that someone else in a group of people has the
same birthday as you?

P =1 — (364/365  363/365 + 362/365 .. )

In a group of 22 people, there is a 50% chance that two people have
the same birthday (P=0.5). In a group of 120 people it is likely that
someone else has the same birthday as you (work it out yourself).

3. In a large grassy field, the chances of putting your finger on a particular
blade of grass are millions to one, but if you reach down and touch the
ground, the chance of touching any blade of grass is nearly 100% (P = 1).

Why do ‘coincidences’ matter? They matter because, when you are trying
to determine if an event is statistically significant or not, the seemingly
logical ‘expected’ answer can be very misleading — events which might
seem very unlikely to occur by chance can do precisely that if enough
cases are involved. Consider a statistical analysis of whether banging your
head against a hard surface can cure the common cold. Many studies of
this problem are conducted, each with 95% confidence limit (P = 0.05).
As soon as 20 studies have been performed, there will be, on average, at
least one scientific paper published which proves that banging your head
against a wall cures colds. Yet if you had a cold, what would you do?

Problems (answers in Appendix 1)

9.1. Cystic fibrosis (CF) is the most common recessive genetic disorder in
Caucasians - approximately one person in 2500 carries one copy of the CF
gene, which occurs with equal frequency in males and females. If a couple are
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both carriers of the CF gene and have a child, the following probabilities
apply: normal child, non-carrier, P =0.25; normal child, carrier, P =10.50;
child with cystic fibrosis, P = 0.25. What is the probability that the couple
will have:

being infected with HIV after:

(a) ﬁve‘occurrences of unprotected sexual intercourse with an HIV
carrier;

(b) nine occurrences of sharing an infected needle for intravenous drug

Two children (either sex) who do not carry the CF gene?
use;

(a)
{(b) One son who is a carrier? o
(c) one needlestick injury in a healthcare worker who subsequently has

¢) Two daughters, one who is a ier and one who has cystic fibrosis? . .
) Two ghters, one carr ¥ b unprotected sexual intercourse with an HIV carrier three times.

(
(d) Two daughters with cystic fibrosis?
9.5. Ina practical class, you are given three tubes of an enzyme (A B C) needed to
perform an experiment you only have time to do once. A kind demonstrator
has told.yoa that only one of the tubes contains active enzyme — the other
two are inactive. You choose tube A. To help you further, the demonstrator
tells you that tube B contains inactive enzyme. Should you stick with tube A
or switch to tube C for the experiment? Explain why.

9.2. In order to study great crested newt (Triturus cristatus) populations, 150
newts are harmlessly marked with a temporary non-toxic dye. Fifteen newts
are then returned to each of 10 ponds known to contain this species. One
week later, the ponds are fished again and, of 351 newts caught, 54 are
marked.

(a) Estimate the total population of great crested newts in these 10 ponds.

(b) If one pond has a population of 107 newts (15 marked), what is the
probability of catching marked (M) and unmarked (U) newts in this
order: UUMUUUMU?

9.3. In a health survey, 19 of 60 men and 12 of 40 women are found to smoke
cigarettes.

(a) What is the probability of a randomly selected individual being a male
who smokes?

(b) What is the probability of a randomly selected individual smoking?

{c) What is the probability of a randomly selected male smoking?

: (d) What is the probability that a randomly selected smoker is male?

9.4, The probability of being infected with HIV from each single exposure to
one of the following events is approximately: unprotected sexual intercourse
with an HIV carrier, 0.005; sharing an infected needle for intravenous
drug use, 0.007; needlestick injuries in healthcare workers, 0.003. The
cumulative probability of being infected P(f) after # occurrences is given by
the formuia:

AT o
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where k is the probability of being infected with HIV from each single
exposure and 7 = the number of occurrences. What is the probability of
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Inferential Statistics

LeEArRNING OBJECTIVES:

On completing this chapter, you should understand:

e how to draw reliable conclusions about samples taken from
larger populations;

» how to compare different populations;

o when to use various inferential statistical methods:

when #ot to use particular inferentia)l statistical methods.

10.1. Statistical inference

To infer means to conclude from evidence. Statistical inference allows the
formation of conclusions about almost any parameter of a sample taken
from a larger population, for example, are conclusions based on a sample
valid for the whole population? It also allows the formation of conclu-
sions about the difference between populations with regard to any given
parameter. There are two methods of reaching these sorts of statistical
inference, estimation and hypothesis testing.

Estimation
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In estimation, a sample from a population is studied and an inference is
made about the population based on the sample. The key to estimation is
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the probability with which particular values will occur during sampling;
this allows the inference about the population to be made. The values
which occur are inevitably based on the sampling distribution of the po-
pulation. The key to making an accurate inference about a population
therefore depends on random sampling, i.e. where each possible sample
of the same size has the same probability of being selected from the po-
pulation. In real life, it is often surprisingly difficult to take truly random
samples from a population. Shortcuts are frequently taken, e.g. every third
item on a list, ‘expert’ opinion, or simply taking the first » results obtained.
Estimation is a relatively crude method of making population inferences.
A much better method and the one which is normally used in statistical
analysis is hypothesis testing.

Hypothesis testing

To answer a statistical question, the question is translated into a hypoth-
esis — a statement which can be subjected to test. Depending on the result
of the test, the hypothesis is accepted or rejected. The hypothesis tested is
known as the null hypothesis (Hg). This must be in the form of a
true/false statement. For every null hypothesis, there is an alternative
hypothesis (Ha). Constructing and testing hypotheses is an important
skill, but the best way to construct a hypothesis is not necessarily obvious:

1. If one of the two hypotheses is ‘simpler’ it is given priority so that a
more ‘complicated’ theory is not adopted unless there is sufficient
evidence against the simpler one (Occam’s Razor: ‘If there are two
possible explanations always accept the simplest’).

2. In general, it is ‘simpler’ to propose that there is no difference between
two sets of results than to say that there is a difference.

3. The null hypothesis has priority and is not rejected unless there is
strong statistical evidence against it. '

The outcome of hypothesis testing is to ‘reject Hy” or ‘do not reject Ho'. If -
we conclude ‘do not reject Hy’, this does not necessarily mean that the null -

hypothesis is true, only that there is insufficient evidence against Ho and in
favour of Hy. Hypothesis testing never proves that the null hypothesis is

true, just as rejecting the null hypothesis suggests but does not prove that-

the alternative hypothesis may be true.
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In order to decide whether to accept or reject the null hypothesis, the

level of significance () required of the result must be decided. In general
terms:

a=10.05 - significant (confidence interval 95%, P=1—0.95 =0.05)
most commonly used; ,

a=0.01 — highly significant (confidence interval 99%, P=1 ~ .99 =
0.01), strong statistical evidence;

a=0.001 - very highly significant (confidence interval 99.9%, P =
1-0.999=0.001), rarely used.

The level of significance allows us to state whether or not there is a
‘significant difference’ (note that this is a technical term which should
only be used in the correct context) between populations, that is, whether
any difference between populations is a matter of chance, due to experi-
mental error, or so small as to be unimportant.

10.2. Procedure for hypothesis testing
1. Define Hy and Hy, based on the guidelines given above.

2. Choose a value for o. Note that this should be done before performing
the test, not when looking at the result,

3. Calculate the value of the test statistic.

4. Compare the calculated value with a table of the critical values of the
test statistic,

5. 1f the calculated value of the test statistic is less than the critical value
from the table, accept the null hypothesis {(Hy). Note that this does not

mean that the null hypothesis has been conclusively proved, only that it
has not been rejected.

6. If F}}e calculated value of the test statistic is greater than or equal to the
critical value from the table, reject the null hypothesis (Ho) and accept
the alternative hypothesis (Hy).
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Note that very small P-values (e.g. 0.001) do not signify large statistical
differences, only that the observed differences are highly improbable given
the null hypothesis tested. P-values indicate how sure you can be that
there is a real difference, not the size of the difference. For example, a
very small P-value can arise when any difference is tiny but the sampi.e
sizes very large. Conversely, a large P-value can arise when the effect is
large but the sample size is small.

10.3. Standard scores (z-scores)

z-scores define the position of a score in relation to the mean using the
standard deviation as a unit of measurement. They are therefore useful for
comparing datapoints in different distributions.

z = (score ~ mean}/standard deviation

The z-score is the number of standard deviations by which the score
departs from the sample mean. Since this technique normalizes distribu-
tions, z-scores can be used to compare data from different sets, e.g. a
student’s performance on two different exams (e.g. did Joe Blogg’s per-
formance on test 1 and test 2 improve or decline?):

1. Joe B scored 71.2% on exam 1 (mean=65.4%, SD=3.55} z=
(71.2 — 65.4)/3.55 =1.63.

2. Joe B scored 66.8% on exam 2 (mean=61.1%, SD=2.54) z=
(66.8 -61.1)/2.54=2.24.

3. Conclusion ~ Joe B did better, compared with the rest of his
classmates, on exam 2 than on exam 1, even though his mark was
lower in the second exam.

Note that the z-score is a parametric statistic (Chapter 8), and is only
meaniﬁgful when it refers to a normal distribution — calculating a z-score
from a skewed dataset may not produce a meaningful number. Compar-
ing z-scores for different distributions is also meaningless unless: the da-

Vﬁww . N ' :

tasets being compared are as similar as possible (e.g. response to different
s - = . - iy

- - doses of a drug under the same physiological conditions); and the shapes

of the distributions being compared are as similar as possible.
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10.4. Student’s -test (r-test)

Biological systems are complex, with many different interacting factors.
To compensate for this, the most common experimental design in biol-
ogy involves comparing experimental results with those obtained under
control conditions. To interpret this type of experiment, we must be able
to make objective decisions about the nature of any differences between
the experimental and control results — is there a statistically significant
difference or are the results due to experimental error or random chance
(e.g. sampling error)? A frequently used test of statistical significance
is Student’s t-test (or simply #-test), devised by William Gosset {‘Stu-

dent’) in 1908. The #-test is used to compare two groups and has two
variants:

1. Paired #-test — used when each data point in one group corresponds to
a matching data point in the other group.

2. Unpaired #test ~ used whether or not the groups contain matching
datapoints.

The #-test is a parametric test which assumes that the data analysed:

o Is continuous, interval data comprising a whole population or is
sampled randomly from a larger population.

s Has a normal distribution (Chapter 8).

e If the sample size (n) is < 30, the variances (Chapter 8) of the two
groups should be similar (¢tests can be used to compare groups with
different variances if # > 30).

e The sample size should not differ hugely between the groups (e.g.
< 50%).

If you use the z-test under other circumstances, the results may be mis-
leading. In other situations, non-parametric tests should be used to com-
pare the groups, for example, the Wilcoxon signed rank test for paired
data and the Wilcoxon rank sum test or Mann~Whitney test for unpaired
data (not covered in this book). The #-test can only be used to compare
two groups. To compare three or more groups, other tests must be used,
for example, analysis of variance between groups (ANOVA; see Section
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10.5}. In general though, the ¢-test is quite robust and produces approxi-
mately correct results in many circumstances. . '

The paired z-test is used to investigate the relationship between two
groups where there is a meaningful one-to-one correspondence bet\yeen
the data points in one group and those in the other, for example a variabi.e
measured at the same time points under experimental and control condi-
tions. It is not sufficient that the two groups simply have the same number
of datapoints. The advantage of the paired #-test is that the formula pro-
cedure involved is fairly simple.

Procedure

1. Start with the hypothesis (Hp) that the mean of each group is equal,
that is, there is no significant difference between the means of t.he
two groups, e.g. control and experimental data. The alternative
hypothesis (Hy) is therefore that the means of the groups are not equal.
We test this by considering the variance (standard deviation) of each
group.

Set a value for a (significance level, e.g. 0.05).

. Calculate the difference for each pair (i.e. the variable measured at the
same time point under experimental and controlled conditions).

-

Plot a histogram of the differences between data pairs to confirm that
they are normally distributed - if not, stop.

Ln

Calculate the mean of all the differences between pairs (d,,) and the
standard deviation of the differences {SD).

6. The value of ¢ can then be calculated from the following formula:

dav

"= SpjUN

where d,, is the mean difference, i.e. the sum of the differences of all

the datapoints (set 1 point 1—set 2 point 1, etc.) divided by the

number of pairs; SD is the standard deviation of the differences

between all the pairs; and N is the number of pairs. NB. The sign of #

(+/—) does not matter; assume that ¢ is positive.
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7. The calculated value of # can then be looked up in a table of the ¢
distribution {Appendix 3, or obtained from appropriate software). To
do this, you need to know the ‘degrees of freedom’ (df) for the test. The
result of any statistical test is influenced by the population size, for
example it is more accurate to make 200 measurements than 20 mea-
surements. Since the number of observations (population size) affects
the value of statistics such as £, when we calculate of look up ¢, we need

to take the population size into account — this is what degrees of
freedom does. For a paired t-test:

df = n ~ 1 (number of pairs — 1)

To look up 2, you also need to determine whether you are performing a
one-tailed or two-tailed test. In any statistical test we can never be 100%
sure that we have to reject {or accept) the null hypothesis. There is there-
fore the possibility of making an error as shown in Table 10.1.

Table 10.1 The possibility of making an error

Null hypothesis
True False
Decision Reject Type 1 error Correct
Accept Correct Type I error

Falsely rejecting a true null hypothesis is called a type I error. The prob-
ability of committing a type I error is always equal to the significance level
of the test, c. Failure to reject a false null hypothesis is called a type IT error.
The ‘power’ of a statistical test refers to the probability of correctly claim-
ing a significant result. As scientists are generally cautious, it is considered
‘worse’ to make a type I error than a type II error; we thus reduce the
possibility of making a type I error by having a stringent rejection limit,
5% (c=0.05). However, as we reduce the possibility of making one type
of error, we increase the possibility of making the other type. Whether you
use a one- or two-tailed test depends on your testing hypothesis.

1. One-tailed test — used where there is some basis (e.g. previous exper-
imental observation) to predict the direction of the difference, such as
expectation of a significant difference between the groups. In some
circumstances, one-tailed tests can be valuable, for example if it is
proposed that a new drug is more effective in the treatment of a disease
than an existing drug. The new drug should only be adopted if there is a
significant improvement in treatment outcome.
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2. Two-tailed test ~ used where there is no basis to assume that there may
be a significant difference between the groups; this is the test most
frequently used. The result of a two-tailed test does not tell you if any
difference between groups is ‘greater than’ or ‘less than’, only that
there is a significant difference.

They are called ‘tails’ because of the region of retention and regions of
rejection on a graph of the distribution of the test statistic (Figure 10.1).
Note that the alternative hypothesis states ‘there is a ditference’; it does
not state why there is a difference or whether the difference between the
two groups is ‘greater than’ or ‘less than’. If the alternative hypothesis had
specified the nature of the difference, this would have been a one-tailed
hypothesis. However, if the alternative hypothesis does not specify the
nature of the difference, we can accept either a reduction or an increase
and it is therefore a two-tailed hypothesis. For a variety of reasons two-
tailed hypotheses are safer than one-tailed. Statistical tables are sometimes
tabulated only for one-tailed hypotheses. To convert them to two-tailed,
double the value of . A table of critical values of ¢ for Student’s # dis-
tribution is given in Appendix 3.

If the calculated value of ¢ is greater than or equal to the critical value of
the test statistic, the null hypothesis is rejected, that is, there is evidence of
a statistically significant difference between the groups. If the calculated
value of £ is less than the critical value, the null hypothesis is accepted ~
there is no evidence of a statistically significant difference between the two
groups.

The unpaired #-test does not require that the two groups be paired in
any way, or even of equal sizes. A typical example might be comparing a
variable in two experimental groups of patients, one treated with drug A
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Figure 10.1 “Tails’
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and one treated with drug B. Such situations are common in medicine
Wher'e an accepted treatment already exists and it would not be ethical
to withhold this from a control group. Here, we wish to know if the
dlfferen.ces between the groups are ‘real’ {statistically significant) or could
hsitve arisen by chance. The calculations involved in an unpaired ¢-test are
slightly more complicated than for the paired test. Note that the unpaired

t-test is quivaient to one-way ANOVA (Section 10.5), used to test for a
difference in means between two groups

‘e Xp—Xg
V/(SEA)® + (SE3 )’

where X is the mean of groups A and B, respectively, and SE = SD/ VN
For an unpaired #-test: .

df = (nA +nB) —2

where " is the number of values in the two groups being compared. Note
that this is different from the calculation of the number of degr.ees of
fr@qdom for a paired t-test. Compare the calculated value of £ with the
cmmc‘al value in a table of the ¢ distribution (Appendix 3). Remember that
the sign of # (+ / - does not matter, and assume that ¢ is positive. If the
calculatefi value of ¢ is greater than or equal to the critical value, the null
hypothesis is rejected ~ there is evidence of a statistically signifi,cant dif-
fngnce between the groups. If the calculated value of £ is less than the
critical value, the null hypothesis is accepted — there is no evidence of a
statistically significant difference between the groups.

Example

Consider the d_ata from the following experiment. A total of 12 readings
were taken, six under control and six under experimental conditions

(Table 10.2). Before starting to do a I-test, several questions must be
answered:

1. Are the datapoints for the control and experimental groups paired?

No, Fhey are just replicate observations, so we need to perform an
unpaired #-test.

2. Are the data normally distributed?
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Table 10.2 Experimental data

Experimental, Control,
group A group B
11.2 10.3
13.1 12.6
9.3 8.4
10.2 9.3
9.6 10.8
9.8 8.9
Variance 1.68 1.96
SD 1.30 1.40
SE = SD/yN 0.53 0.57
Yes, approximately:
Experimental Control
Mean 10.53 10.05
Median 10.00 9.80

3. Ho: ‘There is no difference between the populations of measurements
from which samples have been drawn’ (H,: there is a difference).

4. Set the value of a==0.05 (i.e. a 95% confidence interval).
5. Are the variances of the two groups similar?
Yes, approximately (1.68 vs 1.96).
6. Since all the requirements for a #-test have been met, we can proceed:

. 10.53 - 10.05 — 0.62

(0537 +(0.57)"

7. 1Is this a one-tailed or a two-tailed test?

Two-tailed, since we have no firm basis to assume the nature of any
difference between the groups.
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8. How many degrees of freedom are there?
df = (np — 1)+ (ng — 1) = 10

9. From the table of critical values of 7 (Appendix 3}, we can see that for
a two-tailed test with df = 10 and o= 0.05, ¢ would have to be 2.228
or greater for >5% (0.05) of pairs of samples to differ by the
observed amount,

10. Since feqe==0.62 and ey ==2.228, the null hypothesis is accepted.
The conclusion is that there is no evidence of a statistically significant
difference {at the 95% confidence level) between the experimental
and the control groups in this experiment.

10.5. Analysis of variance (ANOVA)

Student’s #-test can only be used for comparison of two groups. Although it
is possible to perform many pair-wise comparisons to analyse all
the possible combinations involving more than two groups, this is undesir-
able because it is tedious, but more importantly because it increases
the possibility of type I errors (Section 10.4). However, ANOVA can com-
pare two ot more groups. ANOVA is a parametric test which assumes that:

1. The data analysed is continuous, interval data comprising a whole
population or sampled randomly from a population.

2. The data has a normal distribution. Moderate departure from the
normal distribution does not unduly disturb the outcome of ANOVA,

especially as sample sizes increase, but highly skewed datasets result in
maccurate conclusions.

3. The groups are independent of each other.

4. The variances in the groups should be similar. For ANOVA, this is
more important to accuracy that normal distribution of the data.

5. For two-way ANOVA, the sample size the groups is equal {for one-
way ANOVA, sample sizes need not be equal, but should not differ
hugely between the groups). This is because the results of ANOVA
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tests can be upset by different variances in the groups, but this effect is
minimized if the groups are of the same or simular sizes.

ANOVA tests come in various forms:

1. One-way (or one-factor) ANOVA - tests the hypothesis that means
from two or more samples are equal (drawn from populations with
the same mean). Student’s f-test is actually a particular application
of one-way ANOVA (two groups compared) and results in the same
conclusions.

2. Two-way (or two-factor) ANOVA - simultaneously tests the
hypothesis that the means of two variables (‘factors’) from two or
more groups are equal (drawn from populations with the same mean),
for example the difference between a control and an experimental
variable, or whether there is a difference between alcohol consumption
and liver disease in several different countries. It does not include more
than one sampling per group. This test allows comments to be made

about the interaction between factors as well as between groups.

3. Repeated measures ANOVA — used when members of a random sample
are measured under different conditions. As the sample is exposed to
each condition, the measurement of the dependent variable is repeated.
Using standard ANOVA is not appropriate because it fails to take into

account correlation between the repeated measures, violating the

assumption of independence. This approach can be used for several
reasons, such as where research requires repeated measures, for
example, longitudinal research which measures each sample member
at each of several ages — age is a repeated factor.

The F-ratio (‘Fisher ratio’} compares the variance within sample groups
(‘inherent variance’) with the variance between groups {‘treatment effect’}
and is the basis for ANOVA:

F == variance between groups/variance within sample groups

ANOVA works by comparing the relationship between the variability
within groups, across groups and the total. The actual ANOVA calculation
itself is quite laborious and best performed using statistical software
(Appendix 2). If you insist on knowing the equations involved, they can
be looked up in a statistics textbook or software manual. This chapter will
concentrate on how to use ANOVA. The basic procedure is similar to that
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for performing a t-test:
1. Formulate the null hypothesis, i.e. that the means of the groups are equal.

2. Choose a confidence interval and set the significance level accordingly,
e.g. Cl=95%, a=10.05.

3. Calculate the test statistic (F) {best done using software),

4. Compare the calculated value of F with a table of critical values of F.

5. If the calculated value of the F is less than the critical value from the
table, accept the null hypothesis (Hg). If the calculated value of F is

greater ti?an or equal to the critical value from the table, reject the null
hypothesis (Hy) and accept the alternative hypothesis (Ha).

Examples

Tables 1_0.?—10.5 show an example of one-way ANOVA. The null
hypothesis is that there is no difference between the four groups being

Table 10.3 Experimental data
Pain Score for three analgesics

Aspirin  Paracetemol (Acetaminophen) Ibuprophen  Control (no drug)

4
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Table 10.4 Summary

Groups Count Sum  Average  Varance
Aspirin 7 31 4.43 0.62
Paracetemol 7 27 3.86 0.48
Ibuprophen 7 27 3.86 0.81
Control (no drug) 7 34 4.86 0.14
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Table 10.5 ANOVA

INFERENTIAL STATISTICS

Source of variation SS df

F

Pcrit

Between groups 4,96 3
Within groups 12.29 24
Total 17.25 27

3.23

3.01

Table 10.6 Experimental resuits

compared. In this example, with a significance level of 95% (a= O.QS R
since the calculated value of F (3.23) is greater than F.;, (3.01), we reject
the null hypothesis that the three drugs perform equally. Thf: null hy.pot-h—
esis would have been rejected if even one of the groups differfed §1gn1ﬁm
cantly from the other three. A post-boc comparison or series of 1‘nd1vxdgal
pair-wise comparisons would have to be performed to deter‘mme wf'nch
pair or pairs of means caused rejection of the null hypotheszs,.but‘ since
this was not part of the original question, we cannot address th{S directly
here. If ANOVA is performed on three or more groups an_d it finds a
significant difference, then a post-hoc test {also called pair-wise compar-
isons, multiple comparison tests, and multiple range tests) needs to be
performed in order to make multiple comparisons be.twelen the groups.
By comparing pairs of groups in every possible combination, the diff_er~
ences among them are revealed. There are various post-boc tests which
can be used, such as the ‘Bonferonni’, ‘Scheffe’, “Tukey’ and ‘LSD’ (least

pheromone traps

. Apple codling moth (Cydia pomonella) caught in

21

Bait 1 Bait 2

Qrchard 1 19 20
22 22

19 18

18 19

20 19

21 20

‘ Orchard 2 22 21
19 19

19 18

18 18

20 20

22
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Table 10.7  Anova: two-factor without replication

Summary Count Sum Average Vartance
Qrchard 1 2 39 19.5 0.5

2 44 22 0

2 37 18:5 0.5

2 37 18.5 0.5

2 39 19.5 0.5

2 41 20.5 0.5
Orchard 2 2 43 21.5 0.5

2 38 19 0

2 37 18.5 0.5

2 36 18 0

2 40 20 0

2 43 21.5 0.5
Bait 1 12 238 19.83 1.97
Bait 2 12 236 19,67 2.06

Table 10.8 ANOVA

Source of variation SS df F P
Rows 40.5 i1 10.57 2.82
Columns 0.17 1 0.48 4.84
Error 3.83 11
Total 445 23
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significant difference) tests. It is beyond the scope of this chapter to go into
post-hoc tests, so you will need to consult other sources or software man-
uals if you are ever in a position to need such tests.

Tables 10.6-10.8 show an example of two-way ANOVA. As always,
the null hypothesis is that there is no difference between the groups being

compared. In this example, with a significance level of 95% {a=0.05)
the calculated value of F (10.57) for the table rows (orchard 1 vs orchard

2

2) is greater than F_; (2.82), so the hypothesis that there is no difference
between the orchards is rejected. However, the calculated value of F
(0.48) for the table columns (bait 1 vs bait 2) is less than F.g, (4.84), so
the hypothesis that there is no difference between the pheromone baits is
accepted, This example only compares two groups, so it is relatively easy

to interpret the outcome.
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10.6. x*-test

This is an example of a non-parametric test which, unlike Student’s ¢-test
and ANOVA, makes no assumptions about the distribution of the data.
x* (pronounced ‘kye-squared’) is used when data consists of nominal
or ordinal variables rather than quantitative variables, when we are
interested in how many members fall into given descriptive categories
(not for quantitative measurements, such as weight, etc.).

The x*-test of independence asks ‘Are two variables of interest indepen-
dent {not related) or related {dependent)?’ and deals with nominal and
ordinal variable expressed as integers, that is, variables which fall into
different, mutually exclusive categories. This is distinct from the #-test,
which deals with interval variables, although the ANOVA test can also
be performed on nominal data (Chapter 7). The x’-test investigates
whether the proportions of certain categories are different in different
groups. When the variables are independent, knowledge of one variable
gives no information about the other variable. When they are dependent,
knowledge of one variable is predictive of the value of the other variable,
for example:

1. Is level of education related to level of income?

2. Is membership of a political party related to a person’s preferred
television station?

3. Is there a relationship between gender and examination performance?

The x*-test has two main uses: comparing the distribution of one category

variable (nominal or ordinal) with another; and comparing an observed
distribution with a theoretically expected one.
The expectation might be that the data would be normally distributed,

or that particular attributes (e.g. treatment and disease) are independent,

meaning there is no closer association than might be expected by chance.
In the first case, a table of values for a normal distribution would be the
source of the expected values. In the second, the expected values would be

calculated assuming independence (random distribution). The y*-test is a :

non-parametric test which assumes that the data analysed:

1. Consist of nominal or ordinal variables.

2. Consist of entire populations or are randomly sampled from the -

population.
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3. No single data point should be zero (if s0, use Fisher’s exact test:
Section 10.7). ’

4. All the objects counted should be independent of one another.

5. Eighty per cent of the expected frequencies should be 5 or more (if not,

try aggregating groups or use Fisher’s exact test for small sample sizes:
Section 10.7). ’

‘If you use the )gz—test under other circumstances, the results may be
misleading. The x*-test is by default one-tailed and can only be carried

out on raw data (not percentages, proportions or other derived data). The
basis of the y*-test is:

2 = Z (observed frequency ~ expected frequency)’
expected frequency

Note that acceptance or rejection of the null hypothesis can only be inter-
py_:eted strictly in terms of the question asked, for example “There is a
d1ffer_ence between the observed and expected frequencies’ or “There is
no difference between the groups’ and not extrapolated to ‘There is a
difference between the observed and expected frequencies because .. >,

Example A: comparing the distribution of one
category variable with another

Of 120 male and 100 female applicants to a university, 90 male and 40
female had work experience. Does the gender of an applicant to university
cotrespond to whether or not they have prior work experience?

The starting point for most y> analyses of this type is to construct a
contingency table, a table showing how the values of one variable are
related to (‘contingent on’) the values of one or more other variables:

Work experience
Yes No Total

Gender of applicant  Male 20 30 120
Female 40 60 100

Total 130 90 220
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Next, formulate the null hypothesis (F): male and female appiiicants have
equivalent work experience (Ha, male and female applicants have
different work experience). Set a confidence interval, e.g. CI=95%, so

a=0.05. Calculate x*:

5 — (observed frequency - expected frequency)?
X = Z expected frequency

Work experience

Yes No Total

Gender of applicant  Male a b a+b
Female c d c+d

Total at+c b4+d n

2 n(ad — be)?
X = Lvb)c+darobrd

- 220(90 x 60 — 30 x 40)°
X" = 750 5 30)(40 + 60)(90 + 403(30 + 60)

,  220(5400 — 1200)*
X =120 x 100 x 130 x 90

, 3880800000
X 140400 000

y? = 27.64

As explained earlier,- the distribution of x* depends upon the number of
degrees of freedom (df) in the test:

df = (number of columns — 1} * (number of rows — 1)

For the above test, df = (2 — 1) % (2 — 1) = 1. Look up the calculated value
of * in a table of critical values of the x* distribution (Appendix 3). If the
calculated value of x? is greater than the critical value of x* (from the
table), reject Hp. If the calculated value of x* is less than the critical value

of ¥* (from the table), accept Hy.
In this example, x* = 27.64, greater than the critical value for 1 df, $0
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equivalent work experience. Note that, from the test result alone, we
cannot say whether males or females have greater work experience, only
that the two groups are not equal. In this example, it is fairly easy to work
out which group has greater work experience by simply scrutinizing the
table. The x*-test has simply proved that the difference between the two
groups is statistically significant {at a 95% confidence level). Of course, the
differences between groups are not always as clear-cut as in this example.

Alternative method: x? calculation
using observed and expected values

An alternative method of calculating x? for the above example is to cal-
culate the expected distributions assuming the null hypothesis to be true:
130 students out of a total of 220 had work experience. If the proportion
of males and females with work experience were equivalent we would
expect: males with experience = (130/200) % 120 = 71. Table 10.9 shows
the contingency table.

Table 10.9  Contingency table

Observed (O} Expected (E) O~E (O - E/E

Yes No Yes No Yes No Yes No
Male 90 30 71 49 19 ~ 19 5.1 7.4
Female 40 &0 59 41 -19 19 6.1 8.8
Total 130 90 130 90 0 0 11.2 16.2

x*=11.2+16.2=27.4. From the table of critical values of x2, the
calculated value is greater than the critical value, so the null hypothesis
is rejected. The advantage of this method is that it can be applied to
problems where there are more than two groups, for example:

1. Each of a group of 1350 students were immunized with one of five
influenza vaccines under test. Is there any evidence that any one influenza
vaccine is better than the others based on the numbers of students who
developed influenza and those who did not?

2. We can produce a table with observed and expected values (not shown
here). The overall v* value will inform us whether there are differences
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3. The sums of the (O — E)*/E for each vaccine will provi;:le information
about the contribution of each vaccine to the overall ¥* ~ the vaccine
contributing the most to the overall difference will have the largest

(O — EY/E.

Example B: comparing an observed distribution
with a theoretically expected one

2
Using the method of observed and expected values we can use the x*-test
to compare an observed distribution with a theoretically expected one.
For example, in a population of mice:

Colour  Observed  Expected from genetic theory

White 380 51%
Brown 330 40.8%
Black 74 8.2%

Do the proportions observed differ from those expected? Formulate the
null hypothesis (Hg): the observed distribution does not differ from the
expected distribution (H,, the observed distribution differs from the ex-
pected distribution). Set a confidence interval, e.g. CI1=95%, so = 0.05.
Table 10.10 shows the contingency table.

Table 10.10  Contingency table

Colour Observed Theoretical Expected O-E (O —EP/E
proportion

- - White 380 0.510 400 ~20 1.0
- WW : (0.510  784)
- ' Brown 330 0.408 320 10 0.3125
e
- (0.408 * 784)
Black 74 0.082 64 10 1.5625
(0.082  784)

Total 1.0 784 O 2.8730

s

-
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Calculate x* =2.875. Calculate df:
df == (number of columns — 1) * (number of rows 1)

(columns = observed, expected = 2; rows = white, brown, black = 3)
=2-DxB-1)=1%2=2

From the table of critical values of 2 {Appendix 3), the calculated value
of x7 is less than the critical value, so the null hypothesis is accepted.
Although the x*-test is, strictly speaking, non-parametric, it still has
limitations. All the objects counted should be independent of one another,
so the outcome of counting one should not influence the outcome of
counting any of the others. Eighty per cent of the expected frequencies
should be 5 or more. If this is not the case, it is sometimes possible to get
around this difficulty by aggregating (combining) groups. Also, no single
data point should be zero. This can present an insuperable problem. For
datasets where many of the values are less than § or any are equal to 0, it
is necessary to substitute Fisher’s exact test for the y*-test (Section 10.7).

10.7. Fisher’'s exact test

Sir Ronald Aylmer Fisher {1890-1962) ‘the father of modern statistics’,
developed the concept of likelihood:

The likelihood of a parameter is proportional to the probability of
the data and it gives a function which usually has a single maximum
value, called the maximum likelihood.

He also contributed to the development of methods suitable for small
samples and studied hypothesis testing, Fishet’s exact test is an alternative
to x* for testing the hypothesis that there is a statistically significant
difference between two groups. It has the advantage that it does not make
any approximations {Fisher’s exact test), and so is suitable for small sam-
ple sizes. Fisher’s exact test is a non-parametric test which assumes that

1. The data analysed consist of nominal or ordinal variables.

2. The data consist of entire populations or be randomly sampled from
the population, as in all significance tests.

3. The value of the first unit sampled has no effect on the value of
the second unit — independent observations. Pooling data from
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before—after tests or matched samples would violate this
assumption.

. A given case may fall in only one class — mutual exclusivity.

‘he formula for calculating Fisher’s exact test is not complex, but can be
edious. Where:

a b n
c d ¥
G ¢ H

P=(r!rlclcal)/alal bl cd

\s long as the criteria for test have been met, you can perform Fisher’s test
1sing statistics software or one of the many online calculators {search the
nternet for ‘Fisher’s’ ‘exact’” and ‘calculator’).

>roblems (answers in Appendix 1)

0.1, The heights of a group of girls and a group of boys was measured. The
frequency of measurements in both groups was found to have a normal

distribution:
Girls Boys
Mean 1.25m 1.29m
Standard deviation 6cm Scm

(a) Susan’s height is 1.31m. What is her z-score?
(b) Michael’s height is 1.31 m. What is his z-score?

(c) Sally’s z-score is — 1.2. Is she taller or shorter than the average for her
group?

(d) True or false: the boys’ z-scores are higher than the girls’ z-scores
{explain your answer).

(e) What percentage of boys are taller than 1.39 m?

10.2. A group of 12 patients with high blood pressure is treated with drug A for
3 months. At the end of the treatment period, their blood pressure is
measured and treatment with drug B started. After a further 3 months,
their blood pressure is measured again. Analyse the data from this trial
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using Student’s #-test:

Drug A Drug B
Patient 1 189 186
Patient 2 181 181
Patient 3 1758 179
Patient 4 186 189
Patient § 179 175
Patient 6 191 189
Patient 7 180 183
Patient 8 183 181
Patient 9 183 18e
Patient 10 189 190
Patient 11 176 176
Patient 12 186 183

{a) What sort of t-test should you perform to analyse these data?
{b) Should you use a one tailed or two-tailed test?

(¢} How many degrees of freedom are there in this test?

(

d) Is there a statistically significant difference at the 95% confidence
level in the blood pressure of the patients after treatment with the
two drugs?

10.3. In a study of the acidification of lakes, pH measurements were made of a
series of lakes draining into two different rivers, A and B. Analyse the data
from this trial using Student’s #-test:

A B
6.97 7.20 5.93 6.70
5.88 7.81 4.88 6.81
6.41 6.98 5.71 6.18
6.85 7.42 5.85 6.42
6.24 5.59 5.24 4.59
6.26 6.77 7.86 6.77
5.01 5.84 4.01 5.24
7.64 8.41 6.64 7.31
6.40 6.59 7.20 6.29
6.72 7.10 6.32 6.10
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(a) What sort of z-test should you perform to analyse these data?
(b) Should you use a one-tailed or two-tailed test?
(¢) How many degrees of freedom are there in this test?

(d) Is there a statistically significant difference at the 95% confidence
leve! in the pH readings of the lakes draining into the two rivers?

10.4. The number of eggs in robins® nests in three different areas of woodland
were counted and found to be:

A: 2,0,1,1,1,3,1,3,2,1,1,2,2,2,1,3,3,1,2,0,1,1,1,1,0
B: 2,1,2,0,1,5,1,2,3,2,1,2,2,2,0,3,2,0,1,1,0,1,0,0,1
C: 2,0,2,0,2,5,1,2,2,1,0,1,3,2,3,2,1,1,0,1,2,1,1,4,2

Can you perform an ANOVA test to demonstrate whether or not there a
statistically significant difference at the 95% confidence level between the
three woodlands?

10.5. A biologist measures the preference of three-spined sticklebacks
(Gasterosteus aculeatus) for various food items. In a 3h period, fish of
length less than 4 cm consumed 14 Daphnia galeata, 14 Daphnia magna
and 36 Daphnia pulex, while fish longer than 4 cm consumed 6 Daphnia
galeata, 24 Daphnia magna and 31 Daphnia pulex. Use the x*-test to
compare the distribution of these variables and decide whether there is a
statistically significant difference at the 95% confidence level between the
feeding behaviour of the larger and the smaller sticklebacks.

(a) Construct a contingency table for the data.
(b} Formulate the null hypothesis for this experiment.
(¢} How many degrees of freedom are there in this case?

(d) Calculate x*.

(e) Is there a statistically significant difference at the 95% confidence
level between the feeding behaviour of the larger and the smailer
sticklebacks?

10.6. A group of 353 cancer patients are treated with a new drug. Of the patients
who receive this treatment, 229 survive for more than § years after the
commencement of treatment. Compare this result with a control group of
529 similar patients treated with the previously accepted drug therapy, 310
of whom survive for more than 5 years after the commencement of
treatment. [s there a statistically significant difference at the 95% confidence
level between the survival rates of the patients who received the new drug

Correlation and Regression

LearNING OBJECTIVES:

On completing this chapter, you should understand:

o the differences between correlation and regression;

e when to use each;

o the limitations of these tests.

11.1. Regression or correlation?

The correlation between two or more variables demonstrates the degree to
which the variables are related. Linear regression demonstrates the rela-
tionship between selected values of X and observed values of Y, from which
the most probable value of Y can be predicted for any value of X. Both
C(.)rrelation and regression are based on geometry and graphs and plots.
Linear regression and correlation are similar and easily confused. In some

situations it makes sense to perform both calculations. Calculate linear
correlation if:

® You measured both X and Y in each subject and wish to quantify how
well they are associated.

. Do’not calculate a correlation coefficient if you manipulated both
variables, for example salt intake (in diet) and blood pressure (by drug





