1a) (50 pts) Two canoeists start paddling at the same time and head toward a small island in a lake, as shown in the figure.

Canoeist 1 paddles with a speed of \(v_1 = 1.19 \text{ m/s} \) at an angle of \(\theta = 45.0^\circ \) north of east. Canoeist 2 starts on the opposite shore of the lake, a distance of \(D = 1.72 \text{ km} \) due east of canoeist 1. As shown, \(L = 1.09 \text{ km} \). In what direction relative to north must canoeist 2 paddle to reach the island? Give the angle counterclockwise relative to the north. (in deg)

6) geometry problem, 2 triangles, find \(\theta_2 \) estimate \(\theta_2 > 45^\circ \)

\[\alpha = \tan^{-1} \frac{x}{L} \]

\[x = D - L \]

Isosceles \(\Delta \) \(Y \) agrees with estimate correct unit

\[\alpha = \tan^{-1} \left(\frac{1.72 - 1.09}{1.09} \right) = 30^\circ \]

1b) (50 pts) What speed must canoeist 2 have if the two canoes are to arrive at the island at the same time? (in m/s)

6) Simple kinematics estimate \(v_1 = 1.19 \text{ m/s} \)

\[v_2 < 1.19 \text{ m/s} = 90 \text{ m/s} \]

constraint \(t_1 = t_2 \)

\[\begin{align*}
 &d_1 = \frac{L}{\cos \alpha} ; \\
 &d_2 = \frac{L}{\cos \alpha_2} \\
 &\text{can say} \quad \frac{d_1}{v_1} = \frac{d_2}{v_2}
\end{align*} \]

\[\alpha = \frac{L}{v_1 \cos \alpha} = \frac{L}{v_2 \cos \alpha_2} \]

\[v_1 \cos \alpha_1 = v_2 \cos \alpha_2 \] y component of \(v_1, v_2 \) must be equal \(\Rightarrow \) case

\[v_2 = \frac{v_1 \cos \alpha_1}{\cos \alpha_2} = 1.19 \text{ m/s} \cos 45^\circ = 0.972 \text{ m/s} \]

\[L \] correct units estimate 2 ways to solve