ELECTRO-OPTICAL SYSTEMS - 1995 10 TO 5.8 METER DATA

- SPOT
- BEST COMMERCIAL RESOLUTION
- 10 M PANCHROMATIC (PAN)
- 20 M MULTISPECTRAL (MSI)
- GLOBAL DISTRIBUTION NETWORK
- IRS-10
- INDIAN REMOTE SENSING SATELITTE
-5.8 M PAN DATA

- accellerated pace

- MILITARY QUALITY
- 1-3 M DATA

SMALLSAT TECHNOLOGY

- LIGHT STRUCTURAL MATERIALS
-ELECTRONIC MINIATURIZATION

- TURNKEY SYSTEMS

- CONFIGURATION OPTIONS

ELECTRO-OPTICAL SYSTEMS 1996-1998 1-3 METER DATA

COMMERCIAL HIGH RESOLUTION SENSORS
-IMPROVED RESOLUTIONS

- SPECTRAL CAPABILITY
- NO CHANGE IN SPECTRAL COVERAGE - NO CHANGE IN NUMBER OF BANDS

SYNTHETIC APERTURE

 RADAR SYSTEMS 1995 30 TO 10 M DATA
-

- EUROPEANIEARTH RESQURCES SATELLITE (ERS)
- EUROPEAN SPACE AGENCY (ESA)
- 30 M RES
UAPANESE EARTH RESOURCES SATELLITE (JERS)
- 18 M RES
RADARSAT
- CANADIAN (WITH US COOP) - 10 M RES

RADAR SYSTEMS 2000 3-5 M DATA

 SPOTICIVIL SAR
 - 4 - 5 M RESOLUTION
 - POSSIBLE SAR PROLIFERATION DESICN IMPROVEMENTS
 - LIGHTSAR CONGEPT
 - MULTIBAND/MULTIPOLARIZED SAR

IMAGING SPECTROMETERS

- REVOLUTIONARY APPROACH HYPERSPECTRAL MMAGERY
-100S OF BANDS
- COMPONENT ANALYSIS OF OBJECT

O SRECIAL SICNATURE (FINGERPRINT)

ATM IMACING SPECTROMETERS HYPERSPECTRAL TECHNOLOCY

- HSI
- NASA LEWIS 1996
- 384 SPECTRAL BANDS
- . 4 - 2.5:MICRONS
- HYDICE
- NRL AIRBORNE SENSOR
- 4 - 2.5 MICRONS
- 206 SPECTRAL BANDS

ROW SPACEEBASED REMOTE SENSINC

- TRENDS
 - DUAL USE
 - SYNERGY OF SYSTEMS
 - MULTINATIONAL

ELECTRO-OPTICAL CAPABILITY 1995

SPOT DATA CHARLES DE GAULLE AIRPORT, PARIS

10 M PAN

20 M MSI

ELECTRO-OPTICAL SYSTEMS SMALLSAT TECHNOLOGY

ORBVIEW DEPICTION

SAR SYSTEMS 1995 ERS-1

SAR SYSTEMS 2000

FUTURE SAR DESIGN 384 KG TOTAL 100 KG RADAR

HYPERSPECTRAL VS CURRENT SPACE MULTISPECTRAL SENSORS

SYSTEM
LEWIS
(384 Bands)
Ins-1c
(4 Bands)
spot-1,2,3
(3 Bands)
Landsat 4
(7 Bands)

HYPERSPECTRAL AND MULTISPECTRAL SCENE CHARACTERIZATION

IMAGING SPECTROMETERS HYPERSPECTRAL TECHNOLOCY

DISCRIMINATION OF DIFFERENT TENTING MATERIALS \& VEHICLES

HSI SENSOR
NASA LEWIS SATELLITE
nvo ROW SPACE-BASED REMOTE SENSING FUTURE SYNERGY

SPAGE IMAGING - CUPERTINO, CA

SIMULATED 0.82 M PAN

PRODUCT 0.82 M MSI
(0.82 M PAN +3.2 M MSI)
PRODUCT 0.82 M MSI
($0.82 \mathrm{M} \mathrm{PAN}+3.2$ M MSI)

