TRADE POLICY AND

WAGE INEQUALITY: A

STRUCTURAL ANALYSIS

WITH OCCUPATIONAL

AND SECTORAL Mobility

ER HANARTUÇ
(WITH JOHN MCLAREN)

KEY QUESTION:

䪁 Who gains and who loses from trade liberalization?

粼 Question of how you slice the data.

䇣 Educational class．

蝶Stolper－Samuelson approach．

数 Industry．

橉 Revenga，Attanasio－Goldberg－Pavnik， Artuç－Chaudhuri－McLaren（2010），Dix－ Carneiro（2011）．

䌜Locality．

糍Topalova（2009），Autor，Dorn and Hanson （2011），Hakobyan and McLaren（2011）．

螺Age．

䚡Artuç（2009）．

蝶 Recent trend：Occupation．

教 Ebenstein，Harrison，McMillan，Phillips （2009）；Peri and Sparber（2009）；Liu and Trefler（2011）．

The New York Times bestseller
The Case for Working with Your Hands or Why Office Work is Bad for Us and Fixing Things Feels Good
Matthew Crawford
'A beautiful little book about human excellence'
the New York Times
"Matthew Crawford got a PhD in Political Philosophy from the University of Chicago. Then he abandoned academia after a year, abandoned a Washington DC think-tank job after five months, and opened a one-man motorcycle repair shop. He thinks more now than when he worked at think-tank. He's part of a vibrant, intuitive, well-educated community. He's proud of his work, which matters deeply to his customers. His decisions aren't arbitrarily changed by a superior. His job won't suddenly be shipped to India. Of course, most people assume fixing motorcycles was the only job he could get."
-Business Insider, May 24, 2009

WHAT WE ARE DOING.

蜈 Look more closely at role of occupation.
第 If we allow workers to choose occupation and industry optimally, in equilibrium who benefits from liberalization?

OCCUPATIONAL SWITCHING COST MATTERS：

政Consider 2－good model．
颣High－skill and low－skill workers．
曘 Each good is produced from two tasks：One industry is task－1 intensive．

OCCUPATIONAL SWITCHING COST MATTERS：

蝄Case 1：Only H－workers can do task 1.
彞 Case 2：Any worker can do either task just as well．

政 Case 3：Any worker can do either task just as well，and you can always switch industry，but once you＇ve picked an occupation，you＇re stuck with it．

MODEL．

蝶 I sectors，K occupations．
数 I times K sector－occupation cells．
諩 Workers：College－education $(d=c)$ or not（ $\mathfrak{d}=$ $n)$ ．

蝮Common discount factor β ．
数 Wage in cell $(\mathrm{i}, \mathrm{k}): w_{t}^{i k t}$ ．

蝶 Each period，if I＇m in（i，k），I get the wage there $w_{t}{ }^{i k s}$ ．

螺And the common，non－pecuniary benefit $\eta_{t}^{i k s}$ ．

齿 Then，I can choose to move．

暽At the end of the period，I get an idiosyncratic benefit $\varepsilon_{t}^{n i k}$ ．
 $\varepsilon_{t}{ }^{n i k}-\varepsilon_{t}^{n j l}$ ．

If I switch cells, I also pay a switching $\operatorname{cost} C$ common to all workers:

$$
\begin{aligned}
& C_{t}\left(i, k, j, l, s, \xi_{t}^{i k j l s}\right)=0 \text { if } i=j, k=l \text {; } \\
& =C_{t}^{1, j, s}+\xi_{t}^{i k j l s} \text { if } i \neq j, k=l \text {; } \\
& =C_{t}^{2, l, s}+\xi_{t}^{i k j l s} \text { if } i=j, k \neq l \text {; } \\
& =C_{t}^{1, j, s}+C_{t}^{2, l, s}+C_{t}^{3, s}+\xi_{t}^{i k j l s} \text { if } i \neq j, k \neq l \text {, }
\end{aligned}
$$

Worker's payoff:

$$
\begin{aligned}
U_{t}^{i k s}\left(\varepsilon_{t}^{n}\right) & =w_{t}^{i k s}+\eta_{t}^{i k s}+\max _{j, l}\left\{\varepsilon_{t}^{n j l}-C_{t}(i, k, j, l, s)+\beta E_{t}\left[V_{t+1}^{j l s}\right]\right\} \\
& =w_{t}^{i}+\eta_{t}^{i k s}+\beta E_{t}\left[V_{t+1}^{i k s}\right]+\max _{j, l}\left\{\varepsilon_{t}^{n j l}-C_{t}(i, k, j, l, s)+\beta V_{t+1}^{j l s}-\beta V_{t+1}^{i k s}\right\} .
\end{aligned}
$$

Bellman Equation:

$$
\begin{align*}
V_{t}^{i k s} & =E\left[w_{t}^{i k s}+\eta_{t}^{i k s}\right]+\beta E_{t}\left[V_{t+1}^{i k s}\right]+E\left[\max _{j, l}\left\{\varepsilon_{t}^{n j l}-C_{t}(i, k, j, l, s)+\beta\left(V_{t+1}^{j l s}-V_{t+1}^{i k s}\right)\right\}\right] \\
& \equiv E\left[w_{t}^{i k s}+\eta_{t}^{i k s}\right]+\beta E_{t}\left[V_{t+1}^{i k s}\right]+\Omega_{t}^{i k s} \tag{5}
\end{align*}
$$

絜 Assume that $\varepsilon_{t}{ }^{n i k}$. is distributed extremevalue.

䠛 Variance parameter v.

$$
\begin{equation*}
m_{t}^{i k j l s}=\frac{\exp \left[\frac{1}{\nu}\left(\beta E_{t}\left(V_{t+1}^{j l s}-V_{t+1}^{i k s}\right)-C_{t}(i, k, j, l, s)\right)\right]}{\Sigma_{j^{\prime}=1 \ldots, l^{\prime}=1 \ldots K} \exp \left[\frac{1}{\nu}\left(\beta E_{t}\left(V_{t+1}^{j^{\prime \prime s}}-V_{t+1}^{i k s}\right)-C_{t}\left(i, k, j^{\prime}, l^{\prime}, s\right)\right]\right.}, \tag{6}
\end{equation*}
$$

The "gross flows" of labor from cell (i, k) to cell (j, l).

DATA \& ESTIMATION

DATA: SAMPLE SELECTION

Current Population Survey (March): From 1980 to 2001: White male workers between 23 and 58 , transition probabilities corrected using NLSY.

颣Bureau of Economic Analysis: Industry input shares used to calibrate production functions (not used in estimation).

蝫＂White Collar：＂

暽 1．Managerial and Professional Specialty Occupations（3－199）

㽭＂Service Blue Collar：＂
＊2．Technical，Sales and Administrative Support Occupations（203－389）
＊3．Service Occupations（403－469）

蛙 5．Precision Production，Craft and Repair（503－699）

䗱＂Production Blue Collar：＂

4．Farming，Forestry and Fishing Occupations（473－499）

㲫 6．Operators，Fabricators，and Laborers（703－889）．

DATA: DISTRIBUTION OF WORKERS

		Share in Sector	Share in Occupation	Ratio of College Grads.
White	Agri/Cons	0.17	0.07	0.43
	Manuf	0.26	0.21	0.58
	Non-Traded	0.29	0.19	0.52
	Traded	0.44	0.52	0.72
BlueS	Agri/Cond	0.5	0.14	0.07
	Manuf	0.39	0.23	0.12
	Non-Traded	0.59	0.28	0.16
	Traded	0.42	0.36	0.23
	Agri/Cons	0.33	0.19	0.06
	Manuf	0.35	0.44	0.03
	Non-Traded	0.11	0.11	0.05
	Traded	0.14	0.26	0.05

DATA, KEY FEATURES:
 OCCUPATION TRANSITION MATRICES

No College			
	White	Blue \boldsymbol{S}	Blue \boldsymbol{P}
White	96.5%	2.7%	0.8%
Blue \boldsymbol{S}	0.9%	97.6%	1.5%
Blue \boldsymbol{P}	0.5%	3.0%	96.5%

College			
	White	Blue \boldsymbol{S}	Blue \boldsymbol{P}
White	98.5%	1.3%	0.2%
Blue \boldsymbol{S}	3.9%	95.6%	0.5%
Blue \boldsymbol{P}	4.5%	5.2%	90.3%

DATA, KEY FEATURES: SECTOR TRANSITION MATRIX

	Agr/Cons	Manuf	Non-traded	Traded
Agr/Cons	94.8%	1.4%	1.4%	2.5%
Manuf	0.6%	97.0%	0.7%	1.7%
Trade	0.6%	0.8%	95.6%	2.9%
Service	0.7%	0.9%	1.3%	97.1%

Table 6: Regression Results - Stage 1

C/ - Non-College						
Sector/Occ	Mean	Change	Min	Max	Max StdE	Min StdE
White	6.209	-0.102	5.576	6.902	(0.199)	(0.332)
Blues	3.712	-0.647	3.269	4.605	(0.198)	(0.327)
BlueP	5.546	0.308	4.972	5.947	(0.198)	(0.328)
Aggr/Cons	5.130	0.739	4.708	5.654	(0.170)	(0.242)
Manuf	5.616	-0.342	5.303	6.155	(0.167)	(0.244)
NonTraded	4.866	-0.066	4.532	5.226	(0.165)	(0.228)
Traded	4.254	-0.207	3.885	4.590	(0.157)	(0.213)
Ch All	-4.124	0.004	-4.623	-3.866	(0.125)	(0.179)

C/ - College						
Sector/Occ	Mean	Change	Min	Max	Max StdE	Min StdE
White	5.031	0.821	4.469	5.982	(0.323)	(0.534)
Blues	3.836	-0.486	2.787	4.400	(0.324)	(0.536)
BlueP	5.652	0.932	4.448	6.548	(0.338)	(0.581)
Aggr/Cons	5.972	-0.357	4.800	7.154	(0.296)	(0.574)
Manuf	5.710	-0.434	5.007	6.557	(0.253)	(0.417)
NonTraded	5.028	0.257	4.299	5.737	(0.236)	(0.416)
Traded	3.799	-0.305	2.850	4.432	(0.225)	(0.390)
Ch All	-3.886	0.259	-4.269	-3.445	(0.179)	(0.278)

SIMULATIONS．

龇 Assume that initially manufacturing has a 25% tariff，otherwise free trade．

彞 Initially，steady state with the tariff expected to be permanent．

絭 At date $t=0$ ，the tariff is suddenly and permanently removed．

粈Study transitional dynamics to new steady state．

粦 Compute change in lifetime expected utility of each worker．

Figure 1: Data - Labor Allocation - Sectors

Figure 2: Simulation - Labor Allocation - Sectors $-\beta=0.97$

Figure 3: Data - Labor Allocation - Occupations

Figure 4: Labor Allocation - Occupations - $\beta=0.97$

Figure 5: Average Real Wages - Education Level - $\beta=0.97$

Figure 6: Average Real Wages - Occupation - $\beta=0.97$

Figure 7: Average Real Wages - Sector $-\beta=0.97$

SHORT RUN (IMPACT)

Change in Wages, $\beta=0.90$				
	Aggr/Cons	Manuf	NonTraded	Traded
White	2.58	-12.34	2.58	12.71
BlueS	2.58	-12.34	2.58	12.71
BlueP	2.58	-12.34	2.58	12.71

Change in Welfare, No-College, $\beta=0.90$				
	Aggr/Cons	Manuf	NonTraded	Traded
White	1.92	-2.33	1.82	4.16
BlueS	1.58	-2.41	1.57	3.43
BlueP	1.31	-2.53	1.33	3.08

Change in Welfare, College, $\beta=0.90$				
	Aggr/Cons	Manuf	NonTraded	Traded
White	2.09	-2.54	2.08	4.41
BlueS	1.79	-2.26	1.83	4.15
BlueP	1.48	-1.81	1.68	3.01

LONG RUN

Change in Wage, $\beta=0.90$				
	Aggr/Cons	Manuf	NonTraded	Traded
White	1.35	0.63	1.58	2.08
BlueS	1.71	0.50	1.83	2.57
BlueP	2.20	0.56	2.12	2.85

Change in Welfare, No-College, $\beta=0.90$				
	Aggr/Cons	Manuf	NonTraded	Traded
White	1.30	0.79	1.26	1.62
BlueS	1.26	0.59	1.25	1.58
BlueP	1.21	0.51	1.22	1.58

Change in Welfare, College, $\beta=0.90$				
	Aggr $/$ Cons	Manuf	NonTraded	Traded
White	1.38	0.80	1.41	1.73
BlueS	1.34	0.71	1.37	1.87
BlueP	1.27	0.66	1.32	1.56

Thank you ...

