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Abstract

We develop a generalized dynamic factor model for panel data with the goal

of estimating an unobserved performance index. While similar models have been

developed in the literature of dynamic factor analysis, our contribution is three-

fold. First, contrary to simple dynamic factor analysis where multiple attributes

of the same cross sectional unit are measured at each time period, our model

also accounts for multiple cross sectional units. It is therefore applicable to a

panel data framework (i.e. multiple attributes for multiple cross sectional units

observed over time). Second, our model estimates an unobserved index for every

cross sectional unit for every time period, as opposed to previous work where a
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single unobserved index was estimated for all cross sectional units for every time

period. Third, we address the complexity of the model by developing a novel it-

erative estimation process which we call the Two-Cycle Conditional Expectation-

Maximization (2CCEM) algorithm. The 2CCEM algorithm is flexible enough to

handle a variety of different datasets. The model is applied on a panel measuring

attributes related to the operation of water and sanitation utilities. The goal is

to estimate a dynamic benchmarking index that will capture the financial and

operational performance of these utilities.

Keywords: Dynamic Factor Models, EM algorithm, Panel Data, State-Space

models, Water utilities, IBNET

1 Introduction

Over the last several decades, technological developments in computer science have allowed

the accumulation and storage of vast amounts of information. Many government agencies

and research institutions around the world are continuously collecting data that are, more

often than not, made publicly available. Examples include the Penn World Tables and the

Open Data Services of the World Bank, which contain several time series variables for mul-

tiple countries. The emergence of this rich data environment creates the need for statistical

methodologies that can summarize large databases into a few composite indicators which can

be easily used and understood by policy makers and researchers alike.

Methods involving estimation of latent variables have been gaining increasing attention, with

factor analysis being a prominent one. Until the late 1970s, the estimation of factor analytic

models was limited to cross sectional datasets ignoring any dynamic analysis. Geweke (1977)
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along with Sargent and Sims (1977) were the first to propose a new class of dynamic factor

models (DFMs). Stock and Watson (1989) built on those contributions using maximum

likelihood to estimate a dynamic factor model. The authors estimate unobserved coincident

and leading economic indices for the US economy, where the estimation of the leading index

is conducted conditional on the estimate of the unobserved coincident index. However, the

model of Stock and Watson is limited by the fact that it cannot handle panel data, that

is, multiple variables for multiple cross sectional units spanning several years. Forni et al.

(2000) developed a dynamic factor model that could handle panel data. The authors used

principal components to estimate one unobserved index for all cross sectional units for every

time period in their dataset. The extension of factor analysis to a longitudinal setting greatly

expanded the method’s applicability. Apart from summarizing a large number of variables

into a few coincident indicators, forecasts were also made possible. Bai (2003) contributes

to this literature, by providing the inferential theory for DFMs of large dimensions. He

discusses the convergence rates of factors and factor loadings and finds that stronger results

are achieved when the errors of the idiosyncratic components are serially uncorrelated. Boivin

and Ng (2006) suggest that when more data are used to extract factors and the idiosyncratic

errors are correlated the forecasting power of the model can be reduced. In light of those

findings, they question whether using a large set of variables increases the validity of the

model. Doz et al. (2011) address the issue of the use of principle components in DFMs

of large dimensions. They argue that, even though the principle components approach has

been used extensively in the literature, maximum likelihood estimation can lead to greater

efficiency gains, even when the DFM is misspecified.

Our work contributes to this literature by focusing on better exploitation of the panel na-

ture of the data. We develop a novel iterative estimation process, which we call “Two-Cycle
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Conditional Expectation-Maximization” (2CCEM) algorithm. Initially, the unobserved per-

formance index is estimated (first cycle) and then the dynamic component of the index is

incorporated into the estimation process (second cycle). The estimates of each cycle are up-

dated with information from the estimates of the previous cycle until convergence is achieved.

Our estimation strategy can account for multiple cross sectional units, making it flexible

enough to be applicable to different types of datasets. Therefore, contrary to the model

developed by Stock and Watson (1989), our model can be applied to a panel dataset. In

addition, while Forni et al. (2000) estimate a single unobserved index common for all cross

sectional units in their sample, we estimate one latent index for every cross sectional unit.

The paper is organized as follows. In section 2, we present the theoretical framework, and

examine the various components of the model. We also discuss necessary conditions for

identifiability. Section 3 presents the 2CCEM algorithm and illustrates the estimation process

for each of the two cycles. In section 4, we apply our model to a longitudinal dataset of

water and sanitation utilities from various developing countries. We discuss how we obtain

initial values for the parameters and present estimation results. In the final section, we draw

conclusions and discuss future extensions of our work.

2 A generalized dynamic factor model for panel

data

The main contribution of our work lies in the development of the generalized dynamic factor

model that accounts for correlations between cross sectional units and is applicable to a panel

data setting. We begin by presenting the notation that will be used throughout the paper.
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2.1 Notation

Denoting vectors with bold letters, we let yij,t be the ith indicator of the jth cross sectional

unit at time t with:

• i = 1, ..., p denoting the number of observed variables (indicators) in the model;

• j = 1, ...,m denoting the number of cross sectional units;

• t = 1, ..., n denoting the time point of an observation;

To ease formulation of our model, we collect the observed data in vector form. Let:

• Yij be an n× 1 vector with elements, yij,t, for i, j fixed and t = 1, ..., n;

• Yt be a mp× 1 vector with elements, yij,t, for t fixed with i = 1, ..., p and j = 1, ...,m;

• Y be a nmp×1 vector of all p indicators for all m cross sectional units over all n years.

2.2 The theoretical framework of the model

State space models have been used extensively, particularly in the early literature of DFMs,

since they allow the study of unobserved factors over time through the use of the observed

data (Stock and Watson 2010). We formulate our model using a state space approach,

letting Ut denote the vector of m unobserved factors at time t. We assume that the dynamic

properties of Ut can be captured by a Markov process. Thus, we form the following linear

Gaussian state space model:

Yt = BUt + et, et ∼ N(0,D), (2.1)

Ut+1 = TUt + ηt, ηt ∼ N(0,Q), (2.2)
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where B is the matrix of factor loadings with dimensions mp×m, Ut is the m×1 unobserved

state vector at time t, Yt is a mp × 1 vector of observed variables at time t, T is a m ×m

transition matrix that describes the Markovian nature of the unobserved state vector, and et

and ηt are error terms (Koopman 1993). Equation (2.1) is known as the observation equation

(or measurement equation) and equation (2.2) is called the state equation (or transition

equation) and represents the first order autoregressive nature of the model. The state space

formulation described in (2.1) and (2.2) models the behavior of the unobserved state vector

Ut over time using the observed values Y1, ...,Yn. The state vector Ut is assumed to be

independent of the error terms et and ηt for all t = 1, ..., n. In addition, the error terms et and

ηt are assumed to be independent, identically distributed (i.i.d.) and mutually uncorrelated

(deJong 1991; Kohn and Ansley 1989).

We will describe the structure of each matrix, B, D, T, Q, separately, and its implications

for model interpretation. The general form of the matrix of factor loadings B is:

B
mp×m

=



b11 b12 ... b1m

b21 b22 ... b2m

... ... ... ...

bm1 bm2 ... bmm


,

where bjj (j = 1, ...,m) is a p× 1 vector of the factor loadings for the jth cross sectional unit

and bjj∗ (j, j∗ = 1, ...,m and j 6= j∗) is also a p × 1 vector representing the loadings of the

indicators of cross sectional unit j to the factor of cross sectional unit j∗. For example, b11

contains the factor loadings of the first cross sectional unit, while b12 loads the indicators of

the first cross sectional unit to the factor of the second cross sectional unit. There are four

alternative formulations of B that we consider, which are illustrated in Table 1.
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Table 1: Possible formulations of B.
Off-diagonal elements

bjj∗ = 0 bjj∗ 6= 0
Notation for B Parameters Notation for B Parameters

Diagonal bjj = b B1 m B2 mp× [m− 1] + 1
elements bjj 6= b B3 mp B4 mp×m

Formulations B1 and B2 represent the cases where factor loadings are equal for all cross

sectional units, while formulations B3 and B4 represent cases of unequal factor loadings

across units. For example,

B1
(m×p)×m

=



b 0 ... 0

0 b ... 0

... ... ... ...

0 0 ... b


. (2.3)

The difference between B1 (or B3 ) and B2 (or B4 ) lies in the way cross sectional units

interact with each other. In formulations B1 and B3 the indicators of each cross sectional

unit do not load on the factors of other cross sectional units, since bjj∗ = 0. On the other

hand, in formulations B2 and B4 bjj∗ is unconstrained, so that indicators of each cross

sectional unit are allowed to load on factors other than their own.

Next, we consider the variance of the idiosyncratic errors in D. The general form of D

is D
mp×mp

= diag(dj), where dj (j = 1, ...,m) is a p × p diagonal matrix representing the

variance of the error term for every cross sectional unit. Diagonality of D is required due to

the factor analytic nature of (2.1). The matrix form of each dj is dj = diag(σ2ij), where σ2ij

is the variance of the error term of a specific cross sectional unit. We disitnguish between

two alternative formulations of D, namely D1 whereby each dj is identical for every cross

7



sectional unit, and D2 where σ2ij varies. Consequently, D1 and D2 have p and mp unknown

parameters respectively.

The general form of T is illustrated as follows:

T
m×m

=



φ11 φ12 ... φ1m

φ21 φ22 ... φ2m

... ... ... ..

φm1 φm2 ... φmm


,

where φjj is the autoregressive parameter that determines the effect through time of a cross

sectional unit’s own latent variable. The off-diagonal elements φjj∗ (where j, j∗ = 1, ...,m

and j 6= j∗), capture the correlation between latent variables of different cross sectional units.

T is not symmetric and as a result we may have φjj∗ 6= φj∗j . We distinguish between four

cases for T, illustrated in Table 2:

Table 2: Possible formulations of T.
Off-diagonal elements

φjj∗ = 0 φjj∗ 6= 0
Notation for T Parameters Notation for T Parameters

Diagonal bjj = b T1 1 T2 m [m− 1] + 1
elements bjj 6= b T3 m T4 m2

In formulations T1 and T2, all cross sectional units share the same autoregressive parameter,

while in T3 and T4, these parameters are allowed to vary by cross sectional unit. Formula-

tions T1 and T3 imply that there is no correlation between the values of the state variable of

different cross sectional units across time. In contrast, formulations T2 and T4 have uncon-

strained φjj∗ , hence accounting for cross-temporal correlations between the state variables of

different cross sectional units.
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Finally, we focus on Q, the covariance matrix of the error term in the state equation. The

general form of the matrix is the following:

Q
m×m

=



σ21 E (η1η2) ... E (η1ηm)

E (η2η1) σ22 ... E (η2ηm)

... ... ... ..

E (ηmη1) E (ηmη2) ... σ2m


,

where the diagonal elements σ2j are the variances of the error term of the state equation.

The off-diagonal elements E(ηjηj∗) (where j, j∗ = 1, ...,m and j 6= j∗) represent covariances,

with E(ηjηj∗) = E(ηj∗ηj) by symmetry of Q. In the following section, we impose certain

restrictions on Q to ensure identifiability of the model.

2.3 Identifiability

A central issue in the literature of unobserved component models is identifiability. We explore

identifiability directly using the order condition. The latter suggests that the number of

parameters in an equation must be at least as great as the number of explanatory variables

(Hamilton 1994, p.244). Hotta (1989) provides the order conditions for identifiability of

a structural time series model. We follow a similar approach to derive the conditions for

theoretical identifiability in the model specified in equations (2.1) and (2.2). In this section,

we show the correlation structure of Y and derive the autocovariance equation of our model.

Since the state vector Ut is unobserved, all the information in our model is contained in Y.

9



The covariance matrix of Y, denoted by Ω, has the following structure:

Var(Y) = Ω
nmp×nmp

=



Var(Y1) Cov(Y1Y2) ... Cov(Y1Yn)

Cov(Y2Y1) Var(Y2) ... ...

... ... ... ...

Cov(YnY1) ... ... Var(Yn)


, (2.4)

where Cov(Yt, Y∗t ) is a mp × mp matrix, for t, t∗ = 1, ..., n and t 6= t∗. The off-diagonal

elements of Ω capture the covariance of Yt across time. For ease of presentation, and without

loss of generality, we assume that E(Yt) = E(Ut) = 0. The unconditional covariance matrix

of Yt, that is, the covariance matrix of all indicators for all cross sectional units at a given

time period t, is denoted by Σ. It follows from (2.1) and (2.2) that:

Σ = Var(Yt) = BVar(Ut)B
′ + D, (2.5)

and

E(Yt+1Y
′
t) = BTVar(Ut)B

′. (2.6)

In addition, the variance of the state variable Ut is given by:

E(UtU
′
t) = TVar(Ut−1)T

′ + Q, (2.7)

while E(YtUt) is:

E(YtU
′
t) = E

[
(BUt + et)U

′
t

]
= BVar(Ut). (2.8)

Therefore, the joint multivariate normal vector (YT
t ,U

T
t )T has zero mean and a covariance

matrix that can be calculated recursively, using equations (2.5)-(2.8). In order to obtain the
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necessary conditions for indentifiability, we first derive the autocovariance function of Yt in

the following lemma.

Lemma 2.1. The autocovariance function of Yt is:

vec[ΓY(0)] = B⊗B{[Im2 −T⊗T]−1vec(Q)}+ vec(D) (2.9)

vec[ΓY(1)] = B⊗ (BT){[Im2 −T⊗T]−1vec(Q)} (2.10)

vec[ΓY(h)] = B⊗ (BT){[Im2 −T⊗T]−1, for h > 1 (2.11)

Proof. The proof is provided in the Appendix.

Theorem 2.2 provides the necessary conditions for the model to be identifiable.

Theorem 2.2. The necessary conditions for the model in (2.1) and (2.2) to be identifiable

are:

1.

ΓU(0) = C, (2.12)

where C is a known symmetric positive definite matrix, and

2.

m >
1

3p− 2− 2
p

(2.13)

Proof. The proof is provided in the Appendix.

The choice of C is arbitrary as long as the conditions for a symmetric positive definite matrix

are satisfied.
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Remark 2.1. For C = I we obtain the dynamic version of the factor analytic model of

McLachlan and Peel (2000, p.243). It follows from the proof of Theorem 2.2 that, when

C = I, the necessary conditions for identifiability imply that Q = I−TT′.

3 The 2CCEM algorithm

Another contribution of our work is the development of the 2CCEM algorithm, which is

a novel approach to the estimation of dynamic factor models. The high dimensionality of

the data vector Yt makes estimation of our model rather problematic. Usual Newton-type

gradient methods do not work in this situation creating the need for a novel estimation

approach. The likelihood function of the model described in (2.1) and (2.2) is:

L(B, D, T, Q; Y1, ...,Yn) =

n∏
t=2

f(Y1)fY(Yt; [B, D, T, Q] |Yt−1), (3.1)

where Yt−1 represents the set of past observations Y1, ...,Yt−1 and the model parameters to

be estimated are B, D, T and Q. We showed in Theorem 2.2 that the parameterization of

Q depends on T for identifiability of the model. Therefore, although Q is not estimated by

the model, for ease of presentation we continue to include it in the parameter space.

We introduce the 2CCEM algorithm that makes estimation of the model specified in (2.1) and

(2.2) feasible through an iterative two-cycle process. The 2CCEM algorithm is an extension

of the EM algorithm developed by Dempster et al. (1977). The EM algorithm has been

widely used in cases where maximization of the likelihood function cannot occur because

of missing or unobserved data. Shumway and Stoffer (1982) were the first to use the EM

algorithm to estimate state space models, similar to the one specified in (2.1) and (2.2). The

algorithm is comprised of an Expectation and a Maximization step, referred to as E-step and
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M-step respectively. The former replaces the unobserved quantities with their expected values

while the latter maximizes the likelihood conditional on those expectations (McLachlan and

Krishnan 1996, p.13).

We let the complete-data log likelihood function of Ψ, if Yt and Ut were fully observable,

be:

logLc(Ψ) = logfc(Yt, Ut; Ψ), (3.2)

where the subscript c denotes the complete-data likelihood.

The 2CCEM algorithm starts by partitioning the vector of unknown parameters Ψ into

(Ψ1,Ψ2) where Ψ1 contains the elements of B and D that need to be estimated, while Ψ2

contains the relevant elements of T and Q. Partitioning the parameter space is a common

practice in the EM algorithm literature (Meng and Van Dyk 1997; McLachlan and Peel 2000,

p.245) since it facilitates the maximization process. We let Ψ
(k−1)
1 and Ψ

(k−1)
2 denote the

initial values of Ψ where k denotes the number of iterations in the estimation process with

k = 1, ...,m. Following the terminology of Meng and Van Dyk (1997) we use the term “cycle”

as an intermediary between a “step” and an “iteration”. In the case of our 2CCEM algorithm,

every iteration is comprised of two cycles. The first cycle includes three steps (one E-step

and two M-steps) and estimates Ψ1, while the second cycle is composed of two steps (one

E-step and one M-step) and estimates Ψ2.
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3.1 First cycle of the 2CCEM

During the kth iteration of the first cycle, the E-step of the 2CCEM algorithm requires the

following calculation:

ZΨ1
(Ψ1; Ψ

(k−1)
1 , Ψ

(k−1)
2 ) = EΨ1

{
logLc (Ψ1) |Y, Ψ

(k−1)
1 , Ψ

(k−1)
2

}
. (3.3)

The first M-step involves differentiating ZΨ1
(Ψ1; Ψ

(k−1)
1 , Ψ

(k−1)
2 ) with respect to Ψ1 in order

to obtain Ψ
(k/2)
1 :

ZΨ1
(Ψ

(k/2)
1 ; Ψ

(k−1)
1 , Ψ

(k−1)
2 ) ≥ ZΨ1

(Ψ1; Ψ
(k−1)
1 , Ψ

(k−1)
2 ), (3.4)

The second M-step maximizes ZΨ1
with respect to B and D using Ψ

(k/2)
1 as the initial value

of the parameters. Our goal, in this step, is to obtain Ψ
(k)
1 such that:

ZΨ1
(Ψ

(k)
1 ; Ψ

(k−1)
1 , Ψ

(k−1)
2 ) ≥ ZΨ1

(Ψ
(k/2)
1 ; Ψ

(k−1)
1 , Ψ

(k−1)
2 ) (3.5)

3.1.1 Estimation in the first cycle

As mentioned in section 2.3 since the state variable is unobserved, all the information that is

observed is contained in Y. Following the notation presented in McLachlan and Peel (2000,

p.242) the sample covariance matrix of Y, Σ, is denoted by Cyy. The latter is the main

building block in the E-step of the first cycle of the 2CCEM algorithm described in equation

(3.3) and treats the unobserved state vector Ut as missing data while iteratively maximizing

ZΨ1
assuming that Ut is observed (Rubin and Thayer 1982). This first E-step of the 2CCEM
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algorithm requires the calculation of the expected value of the sufficient statistics, namely:

E(YYT |Y) = Cyy,

E(YTU|Y) = Cyyγ,

E(UTU|Y) = γTCyyγ + nω, (3.6)

where:

γ =
(
BBT + D

)−1
B and ω = I− γTB. (3.7)

The distribution of the unobserved state vector Ut, conditional on Yt, is given by:

Ut|Yt ∼ N(γTYt, I− γTB). (3.8)

Equations (3.6) and (3.7) constitute the E-step of the first cycle of the 2CCEM algorithm

illustrated in (3.3). The subsequent first M-step, illustrated in equation (3.4), is identical to

the M-step of the traditional EM algorithm which involves replacing the sufficient statistics

in (3.6) into ZΨ1
and differentiating with respect to Ψ1. The functional form of ZΨ1

is:

logLc(Ψ1) =
n

2
log{|D−1|+ log|Q−1|} − 1

2

n∑
t=1

{(yt −Bût)
TD−1(yt −Bût)

−(ût+1 −Tût)
TQ−1(ût+1 −Tût)}. (3.9)

Equation (3.9) is the complete data log likelihood; complete both in terms of data and

parameters. Setting the first derivatives of ZΨ1
equal to zero yields the following first order
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conditions:

B(k/2) = Cyyγ
{
γTCyyγ + nω

}−1, (3.10)

D(k/2) = n−1diag
{
Cyy −CyyγBT

}
, (3.11)

where B(k/2) and D(k/2) represent the updated values Ψ
(k/2)
1 . We introduce a second M-step,

where (3.9) is maximized, through a Newton-Raphson algorithm, with respect to Ψ1, using

(3.10) and (3.11) as initial values. Upon convergence of this maximization we obtain the final

updated values for Ψ
(k)
1 .

Our approach builds on the Expectation Conditional Maximization (ECM) algorithm intro-

duced by Meng and Rubin (1993) which is itself an extension of the EM algorithm (Dempster

et al. 1977). The ECM algorithm uses the same first M-step as we do, but in the second

M-step maximizes the log likelihood with respect to one parameter, holding the value of the

other parameter fixed to the estimate of the first M-step.

3.2 Second cycle of the 2CCEM

In the E-step of the second cycle we estimate Ψ
(k)
2 . We proceed by calculating:

ZΨ2
(Ψ2; Ψ

(k)
1 , Ψ

(k−1)
2 ) = EΨ2

{
logLc (Ψ2) |Y, Ψ

(k)
1 , Ψ

(k−1)
2

}
. (3.12)

The E-step involves forming the expected complete-data log likelihood by conditioning ZΨ2

on the estimates Ψ
(k)
1 . The subsequent M-step involves differentiating ZΨ2

(Ψ2; Ψ
(k)
1 , Ψ

(k−1)
2 )

with respect to Ψ2. We choose Ψ
(k)
2 such that:

ZΨ2
(Ψ

(k)
2 ; Ψ

(k)
1 , Ψ

(k−1)
2 ) ≥ ZΨ2

(Ψ2; Ψ
(k)
1 , Ψ

(k−1)
2 ). (3.13)
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Upon maximization of ZΨ2
, the estimate Ψ

(k)
2 is used in the E-step of the first cycle. This

iterative maximization process will continue until convergence of both likelihood functions

ZΨ1
and ZΨ2

is achieved.

3.2.1 Estimation in the second cycle

The functional form of ZΨ2
is:

logLc(Ψ2) = n− n

2
log2π − 1

2

n∑
t=1

[
log |Ft|+ v′tF

−1
t vt

]
, (3.14)

where vt is the one step ahead forecast error and Ft is the variance of the one step ahead

forecast error. Quantities, vt and Ft can be estimated with the use of the Kalman filter, which

is a set of recursions that allow the information we have about the system to be updated

every time an additional observation Yt is introduced into the model (Kalman 1960; Durbin

and Koopman 2001, p.11). Let Yt−1 be the set of past observations Y1, ...,Yt−1 and assume

that Ut|Yt−1 ∼ N(Ût,Pt), where Ût and Pt are to be determined. If we assume that Ût

and Pt are known, then our goal is to calculate Ût+1 and Pt+1 when Yt is introduced. Once

vt and Ft are calculated, (3.14) is maximized with respect to Ψ2 , as illustrated in (3.13).

In contrast to the filtering process described above, smoothing considers both prior informa-

tion as well as information after time period t. In other words, the smoothed estimate of Ut

incorporates information from the entire sample, Y1, ...,Yn (deJong 1989; Koopman 1993).
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4 Application

We apply our model to a dataset of water and sanitation utilities (hence forth referred to as

water utilities) in order to estimate a dynamic performance index. The data are obtained

from the International Benchmarking Network (IBNET) of Water and Wastewater Utilities

(IBNET 2005). IBNET was launched in 1996 with the goal of facilitating a standardized com-

parison amongst water utilities with respect to their financial and operational performance.

For illustration purposes we apply our model to a random sample of eight IBNET utilities

(one from Armenia, three from Moldova and four from Peru), with each utility measured over

a period of ten years (i.e. 1998-2007).

A critical issue in constructing indices is the weighting scheme applied to the aggregated

variables. Those weights are often determined based on expert knowledge, which makes the

resulting index rather subjective. In the case of water utilities such a subjective index was

created by the World Bank (van den Berg and Danilenko 2010). The authors estimate a static

index called the “APGAR score” whose aim is to assess the health of a water utility based on

a weighted sum of six indicators. The “APGAR score” considers six continuous indicators for

its formulation, namely 1) water coverage (percentage of the urban population with access

to drinking water), 2) sewerage coverage (population with access to sanitation services), 3)

non revenue water (water provided to the network that is not being paid for), 4) affordability

(money spent paying for water services), 5) collection period and 6) operating cost coverage.

For ease of estimation, we transform the indicators so that they are positively correlated.

We easily accomplish this by multiplying non-revenue water, affordability and collection

period by -1, since those three indicators were negatively correlated to the performance

index. Furthermore, to enable comparisons between the factor loadings, all indicators are

standardized.
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Our sample of eight water utilities from the IBNET database considers the same six indicators

that van den Berg and Danilenko use in their APGAR score. Our goal is to estimate a

performance index using the model in (2.1) and (2.2) whose contribution is twofold: 1) It

is dynamic since performance in every time period is assessed using information from the

entire sample; 2) We do not use subjective weighting schemes for the six components of the

index. Instead the estimated factor loadings are used to rank the components of the index

with regards to their importance.

The development of such a dynamic performance index serves several purposes. It can be used

as a benchmarking tool for utility managers and policy makers since it succinctly communi-

cates whether the utility has been performing well or not. Furthermore, it allows managers to

compare their company’s effectiveness vis a vis other water providers at the national, regional

or even international level.

4.1 Initial values

In section 2.2 we specified several scenarios with respect to parameter formulation. In this

application we estimate a specification of the model that includes formulations B1 and D1.

For parameter T we estimate specifications T1 and T3 as well as a scenario whereby all

water utilities from the same country share the same autoregressive parameter. Each of the

parameters and their initial values is discussed below.

The choice of B1 suggests that:

1. The factor loadings for every utility are identical. This is a plausible assumption, since

we estimate an index that can be used as a benchmarking tool among utilities. Having

a different set of factor loadings for each utility would not allow comparisons between
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utilities.

2. The indicators of utility j do not load on the factors of utility j∗. This assumption is

made to facilitate the interpretation of the factor loadings with regards to their effect

on the performance index.

The initial value of B is denoted by B0 and has the matrix form specification of B1 illustrated

in (2.3). The initial value of the block diagonal vector b is denoted by b0 where b0 =
(
1
p

)
ip.

With regards to the covariance matrix of the idiosyncratic errors, we specify formulation D1

such that D = diag(dj) where each dj matrix is diagonal and identical for all j utilities.

This formulation suggests that the idiosyncratic errors of the indicators are the same for each

utility. The initial value of D denoted by D0 is calculated as follows:

D0 = diag
{

Cyy −
(
B0 ×

(
B0
)T)}

. (4.1)

Given the specification of B0 and D0, the first cycle of the 2CCEM algorithm outlined in

(3.3)-(3.5) will yield ML estimates of B and D. During the first iteration of the first cycle

of the 2CCEM algorithm we set T = I and Q = 0. The ML estimates of B and D from the

first cycle of the 2CCEM algorithm are used to obtain the initial value of T by running the

following Vector Autoregression (VAR): Ut+1 = TUt + ηt. In order to initialize the Kalman

filter we need to make some assumption about the distribution of U1, the value of the state

vector during the first period. deJong (1991) proposes the use of a diffuse prior density

whereby U1 ∼ N(Ŭ1, P1) with Ŭ1 fixed at an arbitrary value and P1 →∞. We retain the

assumption that P1 → ∞ but substitute Ŭ1 with the mean of U1|Y1 which, from (3.8), is

equal to γTY1. Finally to ensure that the model is identifiable we make use of Remark 2.1

and set ΓU(0) = I.
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4.2 Results

Table 3 presents the likelihood at convergence of the three versions of the model, that is,

specification T1, T3 and the specification where utilities of the same country share the same

φ. In addition, we present the total number of estimated parameters in each specification as

well as the resulting AIC.

Table 3: Results of alternative specifications

Likelihood Number of parameters AIC
T1 -439.50 13 905.02
T3 -423.27 20 886.35

Same φ per country -425.05 15 880.10

Based on the AIC the preferred model is the one where a different φ is estimated for every

different country. The results of that specification are presented in Table 4.

Table 4: Factor loadings, idiosyncratic variance and AR(1) coefficient estimates

Indicators B D Countries T
Water Coverage .504 .869 Armenia (utility 1) .661

Sewerage Coverage .183 .983 Moldova (utilities 2-4) .821
Non Revenue Water .359 .933 Peru (utilities 5-8) .758

Affordability .455 .893
Collection period .442 .899

Operating Cost Coverage .218 .975

Our results indicate that water coverage, affordability and collection period are the three

indicators that affect the performance index the most. Water coverage is ranked as the most

important indicator, suggesting that providing water access to as many people as possible

should be the primary focus of a water utility. The second most important priority should be

keeping water provision affordable. Collection period ranks third, highlighting the importance

of being able to promptly collect payments from customers. The fourth most important
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indicator is non-revenue water. By minimizing leakages through the network as well as

reducing the amount of water for which it is not getting any compensation a utility can help

bolster its operational performance and increase the value of the smoothed index. Operating

cost coverage ranks fifth. This result underlines the fact that due to the nature of the industry,

public water utilities can be expected to operate at a loss. Sewerage coverage is the least

important out of the six indicators suggesting that provision of sanitation services is not

critical in judging a utility’s performance.

Figure 1 illustrates the smoothed estimate of the performance index for each of the eight

utilities in the sample. When referring to the smoothed index it is implied that the estimate

includes information from the entire sample. For example, the performance of utility 1 in the

year 2000 is assessed both with respect to how that utility did on that specific year, but also

with respect to its performance before and after 2000.

5 Conclusion

Our paper contributes to the literature of DFMs by introducing a generalized dynamic factor

model for panel data. Traditionally, DFMs have considered multiple attributes over several

time periods for a single cross sectional unit, firm or economy (Stock and Watson, 1989). Even

when multiple cross sectional units are considered (Forni et al. 2000) only a single unobserved

index, common for all cross sectional units, is estimated for every time period. We develop a

model that estimates one index for every cross sectional unit in every time period. In addition,

we introduce the 2CCEM algorithm which is a novel estimation process that can handle panels

of large dimensions. Previous dynamic factor models have used similar estimation algorithms

that relied on two separate cycles. In the first cycle of those models, the parameters are
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Figure 1: Standardized indicators and smoothed index for the 8 water utilities.
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estimated using the EM algorithm. Then, conditional on those results, dynamic estimates

of the parameters are obtained using the Kalman filter (Stock and Watson, 2010). However,

those models achieve, at best, a conditional local maximum. The algorithm that we propose

has the advantage of iteratively searching for an unconditional global maximum. Within every

iteration each cycle is conditioned on the results of the previous cycle. Each iteration updates

the estimated parameters until convergence is achieved. Therefore, the convergence point of

previous estimation processes in the dynamic factor literature is, in principle, equivalent to

the convergence point of only the first iteration of the 2CCEM algorithm.

In this paper, we apply the model on data from the IBNET database and estimate a perfor-

mance index for water utilities. Future applications where our model could be applied include

rankings of public institutions such as hospitals and universities (Grosskopf and Valdmanis

1987; Marginson 2007). In addition, our model can be used to estimate dynamic alternatives

of existing static indices such as the Human Development Index (Sen and Anand 1994) or

the Sustainability Index recently developed by FEEM (FEEM 2011).

Appendix

A Proof of Lemma 2.1

Assuming stationarity of the state variable we have:

Var(Ut) = Var(Ut−1) = ΓU(0), (A.1)
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Under assumption (A.1), we can rewrite (2.5), (2.6) and (2.7) and as follows:

ΓY(0) = BΓU(0)B′ + D, (A.2)

ΓY(1) = BTΓU(0)B′. (A.3)

ΓU(0) = TΓU(0)T′ + Q, (A.4)

A closed form solution for (A.4) can be obtained with the use of the vec operator as shown

by Hamilton (1994, p.265):

vec[ΓU(0)] = vec[TΓU(0)T′ + Q]

= (T⊗T)vec[ΓU(0)] + vec(Q)

= [Im2 −T⊗T]−1vec(Q). (A.5)

Using assumption (A.1) and applying the vec operator to (A.2) we have:

vec[ΓY(0)] = vec[BΓU(0)B′ + D]

= vec[BΓU(0)B′] + vec[D]

= B⊗Bvec[ΓU(0)] + vec(D) (A.6)

Replacing (A.5) into (A.6) we have:

vec[ΓY(0)] = B⊗B{[Im2 −T⊗T]−1vec(Q)}+ vec(D) (A.7)
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Similarly for (A.4) we have:

vec[ΓY(1)] = vec[BTΓU(0)B′]

= B⊗ (BT)vec[ΓU(0)]

= B⊗ (BT){[Im2 −T⊗T]−1vec(Q)} (A.8)

Finally the general form of the autocovariance function of Y is:

ΓY(h) = BTΓU(h− 1)B′ for h > 1, (A.9)

where:

ΓU(h− 1) = TΓU(h− 1)T′ ⇒ (A.10)

vec[ΓU(h− 1)] = [Im2 −T⊗T]−1 (A.11)

Replacing (A.11) into (A.9) and applying the vec operator we have:

ΓY(h) = B⊗ (BT){[Im2 −T⊗T]−1 (A.12)

B Proof of Theorem 2.2

Identifiability of the model requires that in the system defined by (A.7) and (A.8) we have

more equations than unknowns and that those equations are linear in their parameters. The
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latter is accomplished by setting the following restriction:

ΓU(0) = C (B.1)

Applying the vec operator to (B.1) we have:

vecΓU(0) = vec(C) (B.2)

Replacing (A.5) into (B.2) we have:

vec(C) = [Im2 −T⊗T]−1vec(Q)⇒

vec(Q) = [Im2 −T⊗T]vec(C)

= Im2vec(C)−T⊗Tvec(C)⇒

Q = C−TCT′ (B.3)

In the most general case of the model we have the following number of parameters: mp×m

parameters in B, mp parameters in D and m2 parameters in T.

There are as many equations as there are elements of ΓY(0) and ΓY(1). ΓY(0) is symmetric

with mp(mp+1)
2 unique elements, while ΓY(1) is non-symmetric with m2p2 unique elements.

Therefore, identifiability of the model requires that:

mp(mp+ 1)

2
+m2p2 > m2p+mp+m2

m >
1

3p− 2− 2
p

(B.4)

The denominator of (B.4) has two real roots, namely -0.15 and 1.48. Therefore, the necessary
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condition for theoretical identifiability of the model requires that m, p > 1.
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