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Abstract 

 
Ashley and Ye (2012) exemplifies the state-of-the-art in post-sample Granger 
causality analysis in a small-scale (bivariate) setting, albeit with a sufficiently large 
sample (T = 480 months) as to make post-sample testing feasible. In the present work 
we extend this work in two directions. First, here we analyze four macroeconomically 
important endogenous variables – monthly measures of aggregate income, 
consumption, consumer prices, and the unemployment rate – embedded in a 
six-dimensional information set which also includes two interest rates, both taken to 
be exogenous. Second, we compare the causality results obtained using a traditional 
large-to-small (but partially judgmental) model identification procedure to those 
obtained using the objective (but mechanical) “Autometrics” identification procedure 
given by Doornik and Hendry (2007). 
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1.  Introduction  

 In-sample Granger causality analysis is typically based on an F-test of the null 

hypothesis that the coefficients on the putatively-causing variates in a particular VAR 

model equation are all zero. It has long been known that such tests are so routinely 

misleading as to be of doubtful usefulness. As discussed in Racine and Parmeter 

(2013, Section 1) and Efron (1982, Chapter 7), this is an inevitable consequence of 

the fact that these in-sample F tests are inherently based on the model fitting errors.  

These fitting errors – whose magnitudes are, by definition, being minimized by the 

estimation process itself – correspond to what Efron calls ‘apparent’ rather than ‘true’ 

errors.  Consequently, a comparison of post-sample forecasting effectiveness over 

varying information sets has long been the methodology of choice in this area, albeit 

implemented in a variety of ways; Ashley, Granger, and Schmalansee (1980), Guerard 

(1985), Ashley (2003), and Thomakos and Guerard (2004). The reader is referred to 

Ashley and Ye (2012) and Ashley and Tsang (2013) for a review of this literature.2 

 Ashley and Ye (2012) uses monthly data on the U.S. Consumer Price Index 

(CPIt) – disaggregated into its 31 sub-components – to provide an illustrative example 

of post-sample Granger causality testing in a simple bivariate context. In particular, in 

                                                            
2 Notably, these papers discuss recent criticism of the post-sample forecasting testing framework, 

including the developing realization that particular care must be taken (as is done below) in choosing a 

statistical test for post-sample forecasting improvements in the context of nested models. Another 

problem with post-sample testing is the ad hoc nature of the data split between a model 

identification/estimation sub-period and a post-sample model evaluation sub-period. Ashley and Tsang 

(2014) and Racine and Parmeter (2013) have each developed model validation methods based on 

cross-validation, which surmount this obstacle – for modest sample lengths and for large sample 

lengths, respectively; a follow-on paper to the present work will apply the Racine-Parmeter 

cross-validation model validation procedure to the (large-sample) data set and models examined here. 
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that study the only two time series considered are the mean growth rate in these 

31sub-components (i.e., the monthly CPI inflation rate) and the inter-quartile range of 

these 31 sub-components (i.e., the monthly dispersion in the inflation rate across the 

31categories.3 

 This example is extended here in two ways. First, the two time series 

considered in Ashley and Ye (2012) are replaced by six, arguably more broadly 

interesting, U.S. macroeconomic aggregates: 

· Aggregate real income 

This variable is defined as the monthly growth rate of seasonally adjusted real 

disposable personal income, and is denoted “yt” below. 

· Aggregate real household consumption spending 

This variable is defined as the monthly growth rate of seasonally adjusted real 

personal consumption expenditures, and is denoted “ct” below. 

· CPI inflation rate 

This variable is defined as the monthly growth rate of seasonally unadjusted 

consumer price index (CPI), and is denoted “πt” below. 

· Civilian unemployment rate 

This variable is defined as the monthly change in the seasonally unadjusted 

civilian unemployment rate, and is denoted “Δunt” below. 

                                                            
3 In the calculation of both the mean and the inter-quartile range, the 31growth rates are appropriately 

weighted, using the weights with which each of these sub-components enters the CPIt. 
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These foregoing time-series are taken as endogenous, which is to say as potentially 

Granger-caused by each other and/or by the final two time series considered; these 

latter two time series are taken to be exogenous: 

· Short-term interest rate 

This variable is defined as the monthly change in the seasonally unadjusted 

3-monthTreasury bill rate, and is denoted “Δtbillt” below. 

· Long-term interest rate 

This variable is defined as the monthly change in the seasonally unadjusted 

yield on 10-year Treasury bonds, and is denoted “Δtbondt” below. 

These data are all used in un-deseasonalized form where possible (i.e., for πt, Δunt, 

Δtbillt, and Δtbondt), as the Bureau of Economic Analysis de-seasonalization method 

employs a two-sided filter.   

Data sources, summary statistics, time plots, and sample correlograms are 

presented for these six time series in Tables 1, 2, and 3 below. The changes in Δunt, 

Δtbillt, and Δtbondt are used instead of their levels because these levels data are so 

highly persistent that a unit root in the level time series cannot be credibly rejected on 

standard tests. The null hypothesis of a unit root is rejected at the 1% level for all six 

time series (as defined above) using both the ADF and PP tests; see Table 4.4 

Consequently, we proceeded on the assumption that all six time series, as formulated 

above, are I(0). 

                                                            
4 The absence of a strong negative sample autocorrelation at lag one in the correlograms for Δunt, 

Δtbillt, and Δtbondt confirms that they are not over-differenced. An ARFIMA model for the levels 

variables was not considered for the reasons given, at length, in Ashley and Patterson (2010). 
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 The present paper is an extension of Ashley and Ye (2012) in a second 

important way in that here we identify the relevant time series models (over both the 

full and the restricted information sets) in two interestingly distinct ways.  First – as 

in Ashley and Ye (2012) – the models are identified in the somewhat ad hoc 

“large-to-small” manner commonly identified with David Hendry: one starts with as 

complicated a model as the data set will support (i.e., a vector autoregression in each 

included variable, utilizing all lags out at least to the seasonal lag) and one then pares 

down this formulation by eliminating statistically insignificant terms, starting at the 

largest, least plausible, lags.5  

Some judgment is sensibly used in this process, so below we will identify this 

as the “partially judgmental” identification procedure.  For example, an isolated 

statistically significant lag structure term at lag twelve is likely worth retaining in a 

model for monthly data, whereas such a term at lag eight or eleven is not.6 Second, 

for comparison, analogous models for each of the four endogenous time series (over 

both the full and restricted information sets) are also identified and estimated using 

the “Autometrics” mechanized model specification procedure introduced by Doornik 

and Hendry (2007) and currently implemented in the Oxmetrics software program. 

Both of these model identification algorithms are described at greater length in 

Section 2 below. Thus, the present work provides an excellent opportunity to compare 

the effectiveness of these two model identification approaches. 

                                                            
5 If reasonably feasible, it is a good idea to exceed the seasonal lag at the outset, as a multiplicatively 

seasonal model can be expected to yield terms beyond the seasonal when one identifies an additive 

model. 
6 See Ashley (2012, Section 14.4) for a discursive example. 
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 The plan of the remainder of this paper is as follows. The models identified 

and estimated using these two approaches are described and compared in Section 2.  

The post-sample forecasting is described in Section 3. The forecasting results for the 

full information set, based on the two model identification approaches, are compared 

in Section 3; and the post-sample Granger causality testing and results are described 

in Section 4. Section 5 concludes the paper with overall comments on the causal 

relationships found and on the relative effectiveness of the two model identification 

procedures employed. 

 

2. Model Identification and Estimation 

This section describes the two alternative model identification procedures and 

presents their respective in-sample model coefficient estimates. 

Prior to model identification and estimation, we reserved the first 12 

observations (February 1959 to January 1960) for creating lagged variables. We then 

used the 395 sample observations from February 1960 to December 1992 for model 

identification/estimation, and reserved the remaining 245 observations over the period 

from January 1993 to May 2013 solely for post-sample forecasting and 

Granger-causality tests, although model coefficient estimate updating is allowed (and 

done) throughout this post-sample forecasting period.7 

                                                            
7 When using the Autometrics approach to identify model specifications, the first 24 observations are 

used to create lags and the in-sample estimations are conducted over the period 1961M2 to 1992M12 

with a total of 383 observations.  This particular sample vs. post-sample split decision was made here 

at the outset so as to yield a reasonably representative post-sample testing period which is also 

sufficiently lengthy as to allow the post-sample MSE reduction tests to have adequate power.  As 

noted above, a companion paper using the present data, in which this sample-splitting decision is 
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To carry out the Granger causality tests between two variables, we compare an 

unrestricted model, which includes lags in the putatively “causing” variable as 

explanatory variables, to a restricted model, in which these lags are excluded. For 

example, when testing for Granger-causality from consumption (ct) to income (yt), we 

simply compare the unrestricted model of income in which lags of consumption are 

included as explanatory variables to the restricted model of income in which the 

consumption lags are not used in the model identification process. In both restricted 

and unrestricted models we also control for the other (possibly causative) variables, 

and for short-term and long-term interest rates when these additional variables have 

been identified as belonging in the model for income. 

Here we use two different approaches to identify the unrestricted model for 

each of the four endogenous variables. We first identify the models in the 

“large-to-small” manner commonly identified with David Hendry. This identification 

procedure is referred to as “partially judgmental” below and consists of the following 

steps: (1) For each endogenous variable, one starts with an equation including 12 lags 

of its own, 12 lags in each of the five remaining variables, and also outlier dummies 

when a plot of the fitting errors indicates that some of these are necessary; (2) remove 

all of the statistically insignificant lag 12 terms (including the 12th lag in the 

dependent variable) one at a time in alphabetical (or inverse-alphabetical) order; (3) 

next remove, one at a time in the same way, all of the non-significant lag 11 terms, 

                                                                                                                                                                          
side-stepped, using crossvalidation methods described in Ashley and Tsang (2014) (for modest sample 

lengths) and in Racine and Parmeter (2013) (for large sample lengths) – is in preparation. 
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including those that are significant per se but not part of a coherent lag structure (a 

"coherent lag structure" including a term at lag 11 would very likely also have 

statistically significant terms at lags 10, 9, 8, etc.); (4) repeat Step (3) for lag 10, and 

so forth; (5) remove any outlier dummies that have become statistically insignificant. 

Finally, diagnostic checks (such as plotting the fitting errors) are applied.8 Two of the 

co-authors independently applied this ‘partially judgmental” identification algorithm 

to all four endogenous variables (yt, ct, πt and Δunt), obtaining essentially identical 

model specifications, which are given as:9 
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The three “restricted information set” models were obtained similarly for each of 

these four dependent variables, in each case dropping one of the other three 

potentially causative explanatory variables – out of (yt, ct, πt and Δunt) – from 

consideration. The coefficient estimates, standard error estimates and I, the usual 

                                                            
8 Such plots would warn of outliers or grotesque heteroscedasticity, although the latter is less 

consequential because of the use of robust standard error estimates. The inclusion of a sufficient 

number of lagged dependent and explanatory variables in general eliminates serial correlation in the 

errors.   
9 D75M5t, D87M4t and D73M8t are outlier dummies for the three months of May 1975, April 1987 and 

August 1973, respectively. Where variables at the seasonal lag (12) were found to be significant, we 

then also considered terms at lags 13 and 14, as such terms could arise from a multiplicative seasonal 

model. 
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best-practice measure of sample fit, adjusted for model complexity, are all listed in 

Table 5a for each of the four unrestricted models. 

Using just the data up through December 1992, as was the case also for the 

previous “partially judgmental” model identifications, the remaining co-author then 

identified models for each of these four endogenous time series (over both the full and 

restricted information sets) using the “Autometrics” mechanized model specification 

procedure introduced by Doornik and Hendry (2007) and currently implemented in 

the Oxmetrics software described in Hendry (2000), Doornik and Hendry (2009a, 

2009b) and Castle and Shepard (2009).  

Autometrics, as described by Doornik (2009) is the third generation of the 

Hendry (2000) GETS (“general-to-specific”) model selection procedure, which has 

evolved into the Autometrics algorithm over the past 20 to 30 years. The Autometrics 

algorithm has several primary ingredients: (1) The General Unrestricted Model, GUM, 

is the starting point for all analysis; (2) Multiple path searches are performed; (3) The 

Encompassing test is performed; (4) Diagnostics checks are employed; and (5) a 

Tiebreaker procedure is employed.  The estimated GUM is checked by diagnostics 

tests, so that the GUM is statistically well-behaved. The k insignificant variables 

identified by the algorithm create k paths for model reduction, beginning with the 

variables with the lowest absolute t-values. The Encompassing test is used, ensuring 

that the current model must encompass the GUM.  Other diagnostics tests are used 

for examining normality, residual correlation, and residual ARCH issues. An 

automated “Tiebreaker” routine is used so that this fully automated procedure can 
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decide on a final model specification.10  

The starting point for the initial model in Autometrics is the entire space 

generated by using all variables in the regression model. The most statistically 

insignificant variable, on the basis of the absolute t-value, is eliminated before 

estimating the next model. Subnodes are reordered with the most insignificant 

variable first. The search algorithms in Autometrics : (1) prune the model, at every 

reduction removing one variable; (2) bunch several statistically insignificant variables 

together; and (3) chop the least statistically variables from the branches of the model. 

The final (“terminal”) model cannot be reduced on the basis of the adopted criteria. 

The regression tree analysis is uniquely ordered and one can determine the minimal 

branch that can be deleted to produce a different model. Diagnostic checking is used 

only after the terminal model is reached.  

In Autometrics, the initial GUM is estimated. Dummy variables are added for 

possible outliers, with regressors tested at a large significance level; if the null 

hypothesis that they enter with coefficient zero is not rejected, then diagnostic tests 

are performed. The starting point for the current model is the GUM. If all variables 

are statistically significant, then the algorithm pauses and the diagnostic testing is 

updated. In an ideal world, the regressors in the GUM should pass all diagnostic tests. 

If this is not the case, then the p-value is raised for each failed diagnostic test statistic. 

Terminal candidates are collected as the search procedures run and previously 

                                                            
10 Model coefficient estimates are updated in subsequent (“recursive”) post-sample forecasting – as are 

those of the models obtained using the partially judgmental method described earlier – but the model 

specifications are not updated using either approach. 
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identified sub-trees are skipped. Terminal candidates are removed that fail diagnostic 

tests. Terminal candidates are removed which fail the Encompassing test.   

Table 5b reports the in-sample estimates of the unrestricted models for the 

four endogenous variables identified using Autometrics procedures, again including a 

BIC value for each estimated model.  

In Table 6 we provide a condensed summary comparing the in-sample model 

identification/estimation results provided by the partially-judgmental versus 

Autometrics model identification algorithms. Broadly speaking, while the two 

approaches usually (but not always) agree on the variables to be included in each 

equation, they differ with respect to the lag length of each variable, whether to control 

for changes in short-term/long-term interest rates, and also in the outlier dummy 

variables included.  

On the other hand, it is worth noting that the model specification algorithm 

choice is not entirely inconsequential with regard to Granger-causality among the 

variables. In particular, the partially judgmental specifications include lagged yt in the 

equations for ct, whereas the Autometrics specifications do not.  And the 

Autometrics specifications include lagged values of Δunt in the yt and the πt equations, 

whereas the partially judgmental specifications do not. Thus, if one uses the partially 

judgmental model identification algorithm then the possibility of finding Granger 

causality running from Δunt to either yt or πt is eliminated at the outset, whereas the 

use of the Autometrics algorithm at the outset eliminates the (Keynesian) possibility 

of Granger causality running from yt to ct. Of course, this result does not eliminate the 
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possibility that lagged values of one or more of the other variables is “proxying” for 

lagged yt, nor the possibility that this Keynesian-type causal link is operating 

primarily on a contemporaneous (within a month) basis. 

Based on the observed BIC values, the Autometrics model specifications are 

generally distinctly preferable, in terms of their fit to the sample data.11 On the other 

hand, precisely as one might expect, the partially judgmental model specifications 

seem more intuitively plausible to us than do the corresponding Autometrics-based 

specifications. For example, the Autometrics-chosen unrestricted model for ct 

includes isolated (albeit statistically significant) terms in ct-8 and Δunt-7, which we find 

a bit unappealing. 

Clearly, these issues need to be addressed with a consideration of the 

post-sample forecasting performance of the models, to which we now turn. 

   

3. Post-Sample Forecasting  

Based on both of the model specifications identified above, we next obtained 

one-step-ahead post-sample forecasts from the restricted and unrestricted models for 

each of the four endogenous variables, using a rolling scheme with a fixed forecasting 

window of width equal to the number of in-sample observations.12  

                                                            
11 The BIC value is calculated as: BIC=-2ln(L)+kln(N), where ln(L) is the maximized log-likelihood of 

the model, k is the number of parameters estimated and N is the number of observations. To ensure the 

BIC values are comparable between two model identification methods, we also re-estimated the 

partially judgmental model specifications over the sample period 1961M2 to 1992M12 and obtained 

the BIC values for the income, consumption, inflation and unemployment rate equations as 710.7858, 

723.2877, 34.3288 and -245.1629, respectively.  The Autometrics method still yields smaller BIC 

values than the partially judgmental method.   
12This window comprised 395 observations for forecasts using the partially judgmental specifications 
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More explicitly, for each of the partially judgmental specifications, the model 

parameters are first estimated on the sample running from 1960M2 to 1992M12 and 

used to produce a forecast for each endogenous variable at date 1993M1, then the 

model parameters are re-estimated on the sample running from 1960M3 to 1993M1 

and used to produce forecasts at date 1993M2, and so forth. (The Autometrics-based 

forecasting was almost identical, except that the initial window began twelve months 

later.) The corresponding (rolling) one-step-ahead forecast errors were then used to 

compute the post-sample mean squared forecast error (MSFE) for each of the four 

endogenous variables, using both the unrestricted and the restricted models for that 

variable.  

We also constructed naïve benchmark forecasts (intercept-only models, 

corresponding to a constant growth rate or change) for each of the four endogenous 

variables and then compared the post-sample MSFE from these naïve forecasting 

models to those from both the restricted and unrestricted models.  

In addition to these forecasting results over the entire post-sample period (i.e., 

from 1993M1to 2013M5), we also computed post-sample MSFE results for two 

subsets of this period: a “pre-crisis” period (1993M1 to 2007M12) and a 

“crisis-plus-aftermath” period (2008M1 to 2013M5).   

These results, with separate columns for each of the two model identification 

methods, are all reported in Tables 7a through 7d. The naïve forecast MSFE values 

are displayed in the top row of each table and the MSFE results for both restricted and 

                                                                                                                                                                          
and (because it considered variables lagged 24 rather than just 12 months) 383 observations for the 

Autometrics-based forecasts. 
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unrestricted models are presented in the immediately following rows as the ratios to 

the results for naive forecasting models.  

Regardless of which model identification approach is used, we find that the 

restricted and unrestricted models are able to produce more accurate forecasts than the 

naïve model in most cases and that the forecasts for the crisis-plus-aftermath period 

(2008M1~2013M5) are generally less accurate than those for the pre-crisis period 

(1993M1~2007M12).  

Notably, the post-sample MSFE results from the models based on the 

Autometrics specification algorithm are always larger than those from partially 

judgmental model specification approach. While it is not clear that these differences 

are statistically significant, the uniformity of these results strongly suggests that the 

“informed common sense” utilized in the partially judgmental model specification 

method yields better models, in terms of post-sample forecasting ability, than does the 

current state-of-the-art in mechanical model specification methodology.  

Some specific post-sample forecasting results are worth elaborating on a bit.  

For the income equation, including lagged consumption generally reduces the MSFE, 

while including the inflation rate or changes in unemployment rate actually increases 

the MSFE somewhat. For the consumption equation, including lagged values of the 

inflation rate leads to a rise in the post-sample MSFE. While including income (in the 

case of the partially judgmental models) increases the MSFE of the consumption 

forecasts over the pre-crisis period, it reduces the MSFE a little bit during the 

crisis-plus-aftermath period. In the case of the Autometrics models, including the 
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change in unemployment rate raises the MSFE of the consumption forecasts over the 

entire post-sample period and also the pre-crisis period; this variable decreases the 

MSFE by about 3% during the crisis-plus-aftermath period. 

For the inflation rate equation, including lagged values of consumption or 

changes in unemployment rate tends to increase the MSFE overall. In contrast, 

including lagged income reduces the MSFE over the entire post-sample period in the 

model identified by the partially judgmental approach, although it raises the MSFE in 

the model identified by the Autometrics approach. While both model specifications 

imply that including lagged income increases the MSFE over the pre-crisis period (by 

about 0.6% in the partially judgmental specification and by 4% in the Autometrics 

specification), the two identification approaches differ with regard to the forecasting 

power of lagged income for inflation over the crisis-plus-aftermath period: including 

lagged income reduces post-sample MSFE by about 2.5% in the partially judgmental 

specification but raises MSFE by 1.7% in the Autometrics specification.  

Finally, with regard to the equation for the change in the unemployment rate, 

including consumption reduces the post-sample MSFE in forecasting Δunt over the 

entire post-sample period, by 4.5% in the partially judgmental specification and by 

2% in the Autometrics specification. While both model specifications imply that 

including lagged consumption reduces the MSFE during the crisis-plus-aftermath 

period, the forecasting results for the pre-crisis period are different: including lagged 

consumption reduces the MSFE in the partially judgmental specification but raises the 

MSFE in the Autometrics specification. 
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Because they are better able to forecast post-sample generally, the partially 

judgmental specification results seem to be more clearly interpretable than the ones 

based on the Autometrics specifications. However, before framing the differential 

forecasting results over differing information sets explicitly in terms of Granger 

causality, it is appropriate to test whether forecasting improvements found are 

statistically significant; this is the topic of the next section. 

 

4. Post-Sample Granger Causality Testing 

Based on the above post-sample forecasting results, we now proceed to the 

post-sample statistical testing for Granger causality among the four endogenous 

variables. Specifically, in each case we examine whether the post-sample MSFE from 

the unrestricted model for a particular endogenous variable is smaller than that 

obtained from a restricted model which omits the past values of the putatively 

causative variable; this done by testing the null hypothesis that these two MSFE 

values are equal.  

For example, to test for Granger-causality from consumption (ct) to income 

(yt), we compare the MSFE for the unrestricted model of income to the MSFE for the 

restricted model that omits lagged values of consumption. If the former is smaller than 

the latter and if the null hypothesis of equality can be rejected, then one can conclude 

that consumption has predictive power for income. Such a result is then taken to be 

evidence for Granger causality running from consumption to income.13 

                                                            
13 The MSFE-reduction testing methodology used here is essentially identical to that of Ashley and Ye 

(2012), which the reader should consult for a more detailed discussion than is given below. In fact, the 
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Per theoretical results in McCracken (2007), when the restricted and 

unrestricted models are nested, the asymptotic distributions of the Granger-Newbold 

and Diebold-Mariano test statistics are significantly non-normal and hence can lead to 

serious testing size distortions. To eliminate this problem we use McCracken’s F-type 

test statistic: 

 −=− 2
,

2
,

2
, /)( tututr eeePFMSE  

where er,t and eu,t are the post-sample forecast errors from the restricted and 

unrestricted models, respectively and P is the number of post-sample observations. As 

shown in Clark and McCracken (2001) and McCracken (2007), this test is also more 

powerful than the Diebold and Mariano test when the models are nested. 

As pointed out in McCracken (2007), the asymptotic distribution of the 

MSE-F test statistic itself is non-standard and depends on the forecasting scheme 

(fixed, rolling or recursive), the number of excess parameters in the nesting model, 

and also on the ratio of the number of out-of-sample observations to the number of 

in-sample observations. Here, as in Ashley and Ye (2012), we sidestep these problems 

by using Monte Carlo simulations to compute p-values for rejecting the null 

hypothesis of equal out-of-sample forecasting effectiveness for the restricted and 

unrestricted models. Simulated data for each of the four endogenous variables are 

generated by bootstrap re-sampling from the fitting errors of the unrestricted models 

for each of these variables. In view of the likely presence of heteroskedasticity in the 

                                                                                                                                                                          
only differences here are that a noticeably larger number of (substantially more macroeconomically 

interesting) economic time-series are considered in both the unrestricted and restricted models and that 

the two different model-identification schemes are employed and compared. 
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data, this re-sampling was done using the ‘wild’ bootstrap proposed by Goncalves and 

Kilian (2004). Specifically, denoting the fitting errors from the unrestricted models 

for income, consumption, the inflation rate and the change in unemployment rate as τt, 

υt, ηt and ωt, respectively, we draw a sequence of i.i.d. innovations εt, t = 1, 2, … T, 

from the standard normal distribution and use εtτt, εtυt, εtηt and εtωt as the 

bootstrapped innovations to generate an artificial data set of 652 observations.14 The 

restricted and unrestricted models are then re-estimated and the MSE-F test statistic is 

calculated for the new data set. That completes one bootstrap replication. A total of 

5,000 such replications are done, and the p-value for the MSE-F test statistic is 

computed as the proportion of the generated test statistic values exceeding the test 

statistic value obtained using the actual sample data to estimate models and produce 

the post-sample forecasts. 

Tables 8a, 8b, and 8c report the MSE-F test statistic values and the null 

hypothesis rejection p-values for the entire post-sample period, the pre-crisis 

subsample and the crisis-cum-aftermath subsample, respectively. Based on 

forecasting throughout the entire post-sample period and using the post-sample 

forecasts based on the partially judgmental model specifications, there is evidence for 

Granger causality running from consumption growth rates to income growth rates, 

from income growth rates to the inflation rate, and also from consumption growth 

rates to changes in the unemployment rate. The analogous post-sample forecasts 

based on the Autometrics model specifications yield evidence only for consumption 

                                                            
14 For simplicity, we fix the values of initial observations at their actual sample values. 
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growth rates Granger-causing changes in unemployment over this period. Turning to 

the pre-crisis subset of this period, the partially judgmental specifications still find 

Granger causality from consumption growth rates to income growth rates and from 

consumption growth rates to changes in unemployment rate, whereas the Autometrics 

specifications yield no evidence for Granger causality among these four variables at 

all. In the crisis-cum-aftermath subset of the post-sample period, both the partially 

judgmental and the Autometrics specifications yield evidence for Granger causality 

from consumption growth rates to income growth rates and from consumption growth 

rates to changes in unemployment. Over this latter subset of the post sample period 

the partially judgmental model specifications yield evidence that income growth rates 

Granger-cause inflation, but only at the 10% significance level; the models based on 

the Autometrics specifications yield no evidence for this causality link at all. 

  

5. Conclusions 

 Using the partially judgmental model specification approach, we find 

statistically significant post-sample evidence for Granger causality running from 

consumption to income, from income to the inflation rate, and also from consumption 

to changes in the unemployment rate, over the entire post-sample period of 1993M1 

to 2013M5.  We only find consumption Granger-causing changes in unemployment 

using the Autometrics model specifications; this differential result is the consequence 

of the mechanically-produced model specifications being less able to forecast 

post-sample.  
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Over the pre-crisis sub-period (1993M1 to 2007M12), we still find statistically 

significant Granger causality from consumption to income and from consumption to 

changes in unemployment rate, while the Autometrics-based specifications yield no 

evidence for Granger causality among these four variables at all. In the 

crisis-plus-aftermath sub-period (2008M12 to 2013M5) our results support a 

conclusion of statistically significant Granger causality from consumption to income 

and from consumption to changes in unemployment using either model specification 

algorithm; using the partially judgmental model specifications we also find that 

income Granger-causes inflation, but this result is statistically significant only at the 

10% level.  

Overall, we find that – for better or for worse – a bit of experienced human 

judgment still yields better forecasting models than does the best currently-available 

mechanical method, at least for this particular data set. 
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Table 1 
Data Source and Summary Statistics 

 
All six monthly series used in this study are retrieved from the FRED II dataset. 
Summary statistics for the six variables over the full sample period (1959M2 ~ 
2013M5) are listed below:  
 

 
 

ct yt πt Δunt Δtbillt Δtbondt 

 Mean  0.269  0.263  0.320  0.002 -0.004 -0.003 
 Median  0.269  0.257  0.296  0  0.01  0 
 Maximum  2.382  5.735  1.790  0.9  2.61  1.61 
 Minimum -2.764 -5.359 -1.934 -0.7 -4.62 -1.76 
 Std. Dev.  0.542  0.759  0.356  0.182  0.445  0.286 
 Skewness -0.279 -0.119 -0.006  0.499 -1.760 -0.436 
 Kurtosis  5.781  19.371  6.396  4.737  28.979  8.985 
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Table 2 
Data Time Plots: 1959M1 to 2013M5 
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Table 3 
Sample Correlograms: 1959M1 to 2013M5 
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Table 4 
Unit Root Test Results 

 
 ct yt πt Δunt Δtbillt Δtbondt 
ADF 
test 

-5.663*** -11.588*** -2.599*** -6.844*** -5.982*** -7.2124***

PP 
test 

-29.697*** -31.175*** -15.905*** -26.110*** -17.240*** -18.120***

 
Notes: These results utilize the full data set, 1959M2 to 2013M5. AIC is used to select 
lag length in the ADF test; these tests assume that an intercept is included in the test 
equation for each time series. *** indicates significance at the level of 1%.  
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Table 5a 
Model Coefficient Estimates Using the Partially-Judgmental Identification Procedure 
 

 Dependent Variable 
 yt ct πt Δunt 

yt-1 -0.259** 
(0.111) 

0.130** 
(0.052) 

-0.025 
(0.016) 

 

yt-2 -0.231*** 
(0.071) 

 0.054*** 
(0.019) 

 

yt-3 -0.106** 
(0.048) 

   

ct-1 0.050 
(0.050) 

-0.293*** 
(0.068)

0.037* 
(0.021)

-0.076*** 
(0.014) 

ct-2 0.104** 
(0.045) 

-0.143** 
(0.063) 

0.002 
(0.021) 

-0.062*** 
(0.015) 

ct-3 0.132** 
(0.057) 

-0.063 
(0.066) 

-0.034 
(0.021) 

-0.037** 
(0.016) 

ct-4  -0.097* 
(0.055) 

0.061*** 
(0.021) 

 

ct-5  -0.021 
(0.045) 

  

ct-6  0.061 
(0.050) 

  

ct-7  0.118** 
(0.054) 

  

ct-8  0.115** 
(0.053) 

  

ct-12    -0.033*** 
(0.012) 

πt-1 -0.373*** 
(0.112) 

-0.161 
(0.110) 

0.269*** 
(0.060) 

 

πt-2 -0.197* 
(0.100) 

-0.349*** 
(0.103) 

0.202*** 
(0.051) 

 

πt-3   -0.031 
(0.049) 

 

πt-4   0.196*** 
(0.049) 

 

πt-12   0.209*** 
(0.043) 

 

Δunt-1  -0.055 
(0.189) 

 -0.094* 
(0.052) 

Δunt-2  -0.399** 
(0.199)

 0.162*** 
(0.056) 

Δunt-3    0.133*** 
(0.049) 

Δunt-4    0.195*** 
(0.048) 

Δunt-12    -0.171*** 
(0.045) 
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Δtbillt-1   -0.046 
(0.037) 

 

Δtbillt-2   0.088*** 
(0.033) 

 

Δtbondt-1 0.208* 
(0.120) 

 0.192*** 
(0.055) 

 

Δtbondt-2 0.038 
(0.109) 

   

Δtbondt-3 0.242** 
(0.099) 

   

D73M8t   1.310*** 
(0.050) 

 

D75M5t 5.642*** 
(0.166) 

   

D87M4t -4.013*** 
(0.181) 

   

BIC 729.9494 761.1385 35.0789 -230.3391 

 
Notes: All models are estimated using in-sample period 1960M2 to 1992M12. 
Constant terms are included but not reported. D73M8t, D75M5t and D87M4t are 
month dummies. Robust standard errors are reported in parentheses. ***, ** and * 
indicate significance at the 1%, 5% and 10% levels, respectively.  
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Table 5b 
Model Coefficient Estimates Using the Doornik-Hendry 

“Autometrics” Identification Procedure 
 

 Dependent Variable 
 yt ct πt Δunt 

yt-1 -0.139* 
(0.077) 

 -0.052*** 
(0.018) 

 

yt-2 -0.168*** 
(0.047) 

   

yt-4   -0.050*** 
(0.013) 

 

yt-13 -0.080** 
(0.038)

   

yt-21 -0.119*** 
(0.038)

   

yt-24 0.054 
(0.038) 

   

ct-1  -0.230*** 
(0.052) 

0.055*** 
(0.020) 

-0.062*** 
(0.014) 

ct-2  -0.198*** 
(0.047) 

 -0.049*** 
(0.015) 

ct-3  -0.114** 
(0.049) 

 -0.033** 
(0.013) 

ct-4 -0.088* 
(0.053) 

 0.937*** 
(0.020) 

 

ct-6 -0.133*** 
(0.046) 

   

ct-7 -0.071 
(0.049) 

   

ct-8 0.043 
(0.044) 

0.157*** 
(0.044) 

  

ct-11 0.140*** 
(0.039) 

   

ct-12 0.112*** 
(0.039) 

   

ct-13 0.076 
(0.047) 

   

ct-16 0.118** 
(0.048) 

  -0.042*** 
(0.012) 

ct-17 0.059 
(0.040) 

   

ct-19    -0.062*** 
(0.011) 

ct-20 0.062 
(0.040)

0.106*** 
(0.040)

  

ct-22   0.059*** 
(0.016)
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ct-23 -0.067* 
(0.040) 

   

ct-24  -0.086** 
(0.040) 

  

πt-1 -0.222*** 
(0.082) 

 0.194*** 
(0.052) 

 

πt-2  -0.407*** 
(0.097) 

0.124*** 
(0.047) 

 

πt-4  -0.262*** 
(0.090) 

0.119*** 
(0.043) 

 

πt-7   0.116*** 
(0.041) 

 

πt-9   0.186*** 
(0.045) 

 

πt-10 -0.264*** 
(0.092) 

-0.217** 
(0.100) 

  

πt-12 -0.238** 
(0.108) 

 0.210*** 
(0.039) 

 

πt-14  0.388*** 
(0.105)

  

πt-15   0.130*** 
(0.038) 

 

πt-16 0.180* 
(0.098) 

   

πt-18   -0.157*** 
(0.039) 

 

πt-24 0.105 
(0.085) 

   

Δunt-2 -0.493*** 
(0.141) 

-0.434*** 
(0.155) 

  

Δunt-3    0.111** 
(0.045) 

Δunt-4   -0.174*** 
(0.056) 

0.205*** 
(0.044) 

Δunt-5   -0.179*** 
(0.057) 

 

Δunt-6 -0.160 
(0.159) 

   

Δunt-7  0.432*** 
(0.162) 

 -0.105** 
(0.044) 

Δunt-11   -0.215*** 
(0.056) 

 

Δunt-12    -0.200*** 
(0.043) 

Δunt-13 0.334** 
(0.134) 

   

Δunt-15 0.262 
(0.164) 

   

Δtbillt-2   0.067** -0.050** 
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(0.030) (0.020) 
Δtbillt-3    0.036* 

(0.021) 
Δtbillt-7 -0.153** 

(0.072) 
   

Δtbillt-11 -0.130** 
(0.056) 

   

Δtbillt-15 0.085* 
(0.048) 

   

Δtbillt-16    0.043*** 
(0.014) 

Δtbillt-19 0.134*** 
(0.047) 

   

Δtbillt-21  -0.104*** 
(0.039) 

0.066*** 
(0.022) 

 

Δtbillt-23   0.044** 
(0.022) 

0.033* 
(0.017) 

Δtbillt-24 0.137** 
(0.065) 

   

Δtbondt-1   0.161*** 
(0.035)

 

Δtbondt-3 0.161* 
(0.089)

   

Δtbondt-6 0.131 
(0.094) 

 -0.091** 
(0.039) 

 

Δtbondt-7 0.236** 
(0.114)

   

Δtbondt-11 0.112 
(0.111) 

   

Δtbondt-12 0.202** 
(0.103) 

   

Δtbondt-14    0.093*** 
(0.029) 

Δtbondt-15 -0.272** 
(0.106) 

   

Δtbondt-18   0.083** 
(0.035) 

 

Δtbondt-20 -0.252*** 
(0.091) 

  0.101*** 
(0.025) 

Δtbondt-21 0.272*** 
(0.086) 

   

Δtbondt-24 -0.274** 
(0.114) 

   

D65M9t 2.381*** 
(0.119) 

   

D65M10t  1.562*** 
(0.133) 

  

D66M5t  -1.367*** 
(0.094) 
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D68M3t  1.689*** 
(0.088) 

  

D70M4t 1.756*** 
(0.105) 

   

D72M10t 2.391*** 
(0.132) 

   

D73M8t   1.421*** 
(0.040) 

 

D75M1t    0.800*** 
(0.042) 

D75M5t 3.431*** 
(0.664) 

   

D75M6t - 
D75M5t 

-2.518*** 
(0.510) 

   

D80M4t  -1.685*** 
(0.124) 

  

D85M10t  -1.582*** 
(0.108) 

  

D87M1t  -3.422*** 
(0.175) 

  

D87M4t -4.571*** 
(0.216) 

   

D92M12t 2.333*** 
(0.126) 

   

BIC 680.76 621.1008 -16.8867 -287.1568 

 
Notes: All models are estimated using in-sample period 1961M2 to 1992M12. 
Constant terms are included in all models except for the πt regression. D1965M9t, 
D65M10t, D66M5t, D68M3t, D70M4t, D72M10t, D73M8t, D75M1t, D75M5t, D75M6t, 
D80M4t, D85M10t, D87M1t, D87M4t, and D92M12t are month dummies. Robust 
standard errors are reported in parentheses. ***, ** and * indicate significance at the 
1%, 5% and 10% levels, respectively. 
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Table 6 
Condensed Comparison of Model Specifications 

 
 Partially Judgmental Autometrics 
yt equation:   
    lagged ct √ √ 
    lagged πt √ √ 
    lagged Δunt  √ 
ct equation:   
    lagged yt √  
    lagged πt √ √ 
    lagged Δunt √ √ 
πt equation:   
    lagged ct √ √ 
    lagged yt √ √ 
    lagged Δunt  √ 
Δunt equation:   
    lagged ct √ √ 
    lagged πt   
    lagged yt   
 
Notes: Intercepts and lagged dependent variables are included in all models. 
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Table 7a  
Model Forecasting Results for yt 

{Post-sample MSFE ratio versus Naive Model} 
 Post-Sample Period  
 1993M1 to 2013M5 1993M1 to 2007M12 2008M1 to2013M5 
 P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics 
Naïve Model 0.730 0.503 1.358 
Full information set 0.892 0.989 0.875 1.017 0.910 0.961 
Omitting lagged ct 0.950 0.991 0.918 1.007 0.982 0.974 
Omitting lagged πt 0.885 0.968 0.862 1.008 0.909 0.926 
Omitting lagged Δunt -- 0.967 -- 0.975 -- 0.959 

 
Notes: “Naïve Model” entries are rolling window one-step-ahead post-sample MSFE values for the naïve model; the other results are 
all displayed as a ratio to the corresponding naive model MSFE. The column heading “P. Judg.” in each case stands for “Partially 
Judgmental.”   

 
Table 7b 

Model Forecasting Results for ct 
{Post-sample MSFE ratio versus Naive Model} 

 Post-Sample Period  
 1993M1 to 2013M5 1993M1 to 2007M12 2008M1 to2013M5 
 P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics 
Naïve Model 0.142 0.141  
Full information set 1.057 1.195 0.993 1.115 1.231 1.413 
Omitting lagged yt 1.025 -- 0.947 -- 1.237 -- 
Omitting lagged πt 0.942 1.010 0.948 0.968 0.927 1.124 
Omitting lagged Δunt 1.047 1.150 0.983 1.040 1.224 1.450 

 
Notes: “Naïve Model” entries are rolling window one-step-ahead post-sample MSFE values for the naïve model; the other results are 
all displayed as a ratio to the corresponding naive model MSFE.  The column heading “P. Judg.” in each case stands for “Partially 
Judgmental.”   
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Table 7c  
Model Forecasting Results for πt 

{Post-sample MSFE ratio versus naive model} 
 Post-Sample Period  
 1993M1 to 2013M5 1993M1 to 2007M12 2008M1 to2013M5 
 P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics 
Naïve Model 0.151226 0.113339 0.256145 
Full information set 0.651 0.703 0.677 0.743 0.618 0.655 
Omitting lagged yt 0.655 0.683 0.673 0.715 0.634 0.644 
Omitting lagged ct 0.642 0.694 0.666 0.720 0.612 0.661 
Omitting lagged Δunt -- 0.689 -- 0.721 -- 0.649 

 
Notes: “Naïve Model” entries are rolling window one-step-ahead post-sample MSFE values for the naïve model; the other results are 
all displayed as a ratio to the corresponding naive model MSFE.  The column heading “P. Judg.” in each case stands for “Partially 
Judgmental.”   

 
Table 7d  

Model Forecasting Results for Δunt 
{Post-sample MSFE ratio versus naive model} 

 Post-Sample Period  
 1993M1 to 2013M5 1993M1 to 2007M12 2008M1 to 2013M5 
 P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics 
Naïve Model 0.024 0.017 0.045 
Full information set 0.836 0.916 1.006 1.097 0.657 0.726 
Omitting lagged ct 0.875 0.936 1.018 1.020 0.724 0.847 
Omitting lagged πt -- -- -- -- -- -- 
Omitting lagged Δunt -- -- -- -- -- -- 

 
Notes: “Naïve Model” entries are rolling window one-step-ahead post-sample MSFE values for the naïve model; the other results are 
all displayed as a ratio to the corresponding naive model MSFE.  The column heading “P. Judg.” in each case stands for “Partially 
Judgmental.”   
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Table 8a  
Post-Sample Granger Causality Test Result Summary 
(Using Full Post-Sample Period 1993M1 to 2013M5) 

 
 Granger-Caused Variable 
 yt ct πt Δunt 
 P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics
lagged yt -- -- -7.438 

(0.975) 
-- 1.691* 

(0.069) 
-7.052 
(0.997) 

-- -- 

lagged ct 15.849*** 
(0.000) 

0.509 
(0.116) 

-- -- -3.340 
(0.808) 

-3.373 
(0.957) 

11.270***
(0.000) 

5.284** 
(0.021) 

lagged πt -1.822 
(0.558) 

-5.319 
(0.752) 

-26.621 
(0.998) 

-37.910 
(1.000) 

-- -- -- -- 

lagged Δunt -- -5.457 
(0.988) 

-2.269 
(0.524) 

-9.208 
(0.954) 

-- -5.039 
(0.991) 

-- -- 

 
Notes: McCracken’s MSE-F test statistics are reported and their bootstrapped p-values are reported in parentheses. ***, ** and * 
indicate that the null hypothesis of no Granger causality can be rejected at the significance levels of 1%, 5% and 10%, respectively. 
The column heading “P. Judg.” in each case stands for “Partially Judgmental.”    
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Table 8b  
Post-Sample Granger Causality Test Result Summary 

(Using Pre-Crisis Post-Sample Period 1993M1 to 2007M12) 
 

 Granger-Caused Variable 
 yt ct πt Δunt 
 P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics 
lagged yt -- -- -8.347 

(0.987) 
-- -1.230 

(0.627) 
-6.708 
(0.999) 

-- -- 

lagged ct 8.989*** 
(0.000) 

-1.635 
(0.434) 

-- -- -2.957 
(0.890) 

-5.496 
(0.997) 

2.001** 
(0.041) 

-12.605 
(0.997) 

lagged πt -2.510 
(0.804) 

-1.543 
(0.335) 

-8.249 
(0.945) 

-23.734 
(0.998) 

-- -- -- -- 

lagged Δunt -- -7.344 
(0.999) 

-1.949 
(0.673) 

-12.111 
(0.998) 

-- -5.178 
(0.997) 

-- -- 

 
Notes: McCracken’s MSE-F test statistics are reported and their bootstrapped p-values are reported in parentheses. ***, ** and * 
indicate that the null hypothesis of no Granger causality can be rejected at the significance levels of 1%, 5% and 10%, respectively. 
The column heading “P. Judg.” in each case stands for “Partially Judgmental.”    



37 
 

Table 8c  
Post-Sample Granger Causality Test Result Summary 

(Using Crisis-Cum-Aftermath Post-Sample Period 2008M1~2013M5) 
 

 Granger-Caused Variable 
 yt ct πt Δunt 
 P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics
lagged yt -- -- 0.320 

(0.142) 
-- 1.647* 

(0.055) 
-1.015 
(0.736) 

-- -- 

lagged ct 5.151*** 
(0.000) 

0.923* 
(0.091) 

-- -- -0.642 
(0.544) 

0.619 
(0.119) 

6.649***
(0.002) 

10.882*** 
(0.000) 

lagged πt -0.066 
(0.372) 

-2.339 
(0.809) 

-16.063 
(0.999) 

-13.264 
(0.996) 

-- -- -- -- 

lagged Δunt -- -0.139 
(0.343) 

-0.377 
(0.376) 

1.720 
(0.113) 

-- -0.596 
(0.557) 

-- -- 

 
Notes: McCracken’s MSE-F test statistics are reported and their bootstrapped p-values are reported in parentheses. ***, ** and * 
indicate that the null hypothesis of no Granger causality can be rejected at the significance levels of 1%, 5% and 10%, respectively. 
The column heading “P. Judg.” in each case stands for “Partially Judgmental.”   
 
 
 


