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Abstract 

Our team has been studying the maturation of temperature regulation in very low birth weight (VLBW) 

infants. The purpose of our simulation study was to determine if state space models could capture   

trends that followed a logistic curve in the presence of the high levels of variability and periodicity that 

we see in our empirical data sets. We simulated data that followed a state space process with stochastic 

level and irregular components, but where the slope was a logistic function of time. Fourteen simulation 

conditions varied the extent of level, irregular and cycle variance. Samples were analyzed with three 

types of state space models, two allowing slopes to be stochastic and one where the slope was fixed. 

Models with stochastic slopes provided trends close to the true logistic curve only when level and 

irregular variances were below that which we saw in our empirical data sets. Even when models had 

stochastic slopes, increasing amounts of irregular, level and cycle variance tended to produced trends 

which were straight lines. As compared to models with stochastic slopes, the one with a fixed slope 

performed worse, producing larger deviations of fitted trends from that based on the logistic curve.  
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1. Introduction 

Our team has been studying the maturation of temperature regulation in very low birth (VLBW) infants 

(preterm infants weighing less than 1500 gms at birth) 1, 2. A mature response to hypothermia is said to 

occur when a VLBW infant can exhibit peripheral vasoconstriction, decreasing the peripheral 

temperature below the central temperature to shunt blood towards vital organs. When the infant is in a 

mature thermal state the central temperature should be warmer than the peripheral temperature.  We 

utilized univariate state space models to capture trends in infant temperatures collected every minute 

for the first two weeks of life.2  In these analyses, the dependent variable was central (abdomen) vs. 

peripheral (foot) temperature difference (hereafter referred to as C-P difference) . The independent 

variable was minutes since birth up to approximately two weeks of life.  Our state space models 

consisted of a randomly varying (“stochastic”) level, one or two cycles and a stochastic trend 

component. We expected the fitted trends to monotonically increase, and then level off, as in a logistic 

curve.  The leveling off point would reveal the age at which these infants could maintain a mature 

thermal state keeping the abdomen warmer than the peripheral temperature, and thus maintain a 

positive C-P temperature difference.  After fitting univariate state space models to the data for 26 

infants, the fitted and smoothed trends in the C-P difference values across the first two weeks of life 

often were very slight and most never leveled off at any time during the two week period. See Figure 1. 

The fitted trends did not help us in identifying when the infant had attained the ability to keep the C-P 

difference consistently positive.  There are many possible reasons why these fitted trends failed to 

facilitate our analysis of temperature maturation. One concern was that the state space models could 

not capture a logistic type trend, given the amount of variability and periodicity exhibited in the data. 

Therefore, we designed a set of simulations in which the process generating the data included a slope 

parameter that was a logistic function of time (t). Note that in the context of our research, t refers to the 

age of the infant in minutes since birth. Various amounts of level, irregular and cycle error variance were 
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generated along with the systematically varying slope parameter. The purpose of the simulations was to 

determine if univariate state space models could capture long terms trends that followed a logistic curve 

in the presence of increasing amounts of irregular, level and cycle variance.  The organization of the 

paper is as follows. Section 2 describes how the conditions for the simulations were developed.  In 

Section 3, the range of conditions studied is presented.  The simulation results are presented in Section 

4 and the discussion and conclusions in Section 5. 

2. Development of Simulation Parameters 

The logistic function of the slope parameter.  Some literature on premature infants suggests that 

mature thermoregulation is apparent when  an infant can exhibit a peripheral vasoconstriction response 

to hypothermia when the abdominal temperature exceeds the foot temperature by 2°C and when the C-

P difference remains positive. 3,4 Therefore, if v is a constant, non-time varying slope, then a logistic 

function of v which systematically varies with time can be formulated as:  

f (t,v) = z*e(v*t) /  (x + e (v*t)  ) ,  

 

Appendix A shows that 

 

f(0,v) = z/(x + 1) 

 

f(infinity,v)  = z 

 

Note that the values of f(t,v) when t is 0 or as t approaches infinity are independent of the value of v. 

They are dependent only on z and x. Then setting z = 2, and x = 3, f(0,2) = 2/4 = .50, simulating the 

situation where at birth the infant is able to keep the  abdominal temperature above the foot by .50 

centigrade. Also, when z = 2 (regardless of what x or v are), f(infinity, v) will approach 2 since f(infinity,v) 

= z. For all simulations, v was set to .05 and t was an integer varying from 0 to 100 by 1. The value of .05 
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was selected so as t approached 100, the function of v would have enough time to “level off”, as is 

shown in figure 2.  The maximum value of t was set relatively low in order to conserve resources.  

Placement  of f(t,v) in the state equation.  When the expression f(t,v) =  (2*e (.05*t)  /(3 + e (.05*t) )) 

replaces v in the state space model of a local linear trend where variance of v is  0 we have the following  

model for time points one to four 5 : 

Let et be normally distributed with mean 0 and variance σ2 
e  (the irregular component) 

Let ηt be normally distributed with mean 0 and variance σ2 
η   (the level component) 

y1 = u1 + e1      

 u2 = u1 + η1 + f(1,v) 

y2 = u2 + e2, substitute the above for u2 

y2 = u1 + η1 + f(1,v) +  e2     

u3 = u2 + η2 + f(2,v)  

  u3 = u1 + η1 +  f(1,v) + η2 + f(2,v) 

y3 = u3 + e3, substitute the above for u3 

y3 = u1 + η1 +  f(1,v) + η2 + f(2,v)  + e3   

 u4 = u3 + η3 + f(3,v)  

  u4 = u1 + η1 +  f(1,v) + η2 + f(2,v) + η3 + f(3,v) 

 y4 = u4 + e4 , substitute the above for u4 

y4 = u1 + η1 + f(1,v) + η2 + f(2,v) + η3 + f(3,v) +  e4 

Note that for each subsequent time point the expression for ut requires that the expression 2exp(v*t)/(3+ 

exp(v*t))   be  summed  t – 1 times for each value of t. As t increases, the value of ut will become very 

large, and will produce a trend that does not level off.  This problem is eliminated if the first differences  

Δyt+1 are modeled instead of yt. This is shown in Appendix B. Therefore, for all conditions, Yt was 

generated as shown above with an irregular, a stochastic level, a slope parameter set to .05 and which 
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was a logistic function of t  as (2*e (.05*t)  /(3 + e (.05*t) ). Some simulations also had a cycle component 

with error variance as described in the following section. Then for analysis purposes, first differences of 

the series were computed.  

In summary, the time series simulated (and before differencing) without cycles were similar to a local 

linear trend model but with the slope being a logistic function of time5: 

yt = ut + et     ,                                      et      is distributed normally with mean = 0 and variance = σ2
e 

ut+1 = ut + ηt + vt ,                      η t    is distributed normally with mean = 0 and variance = σ2
η 

vt+1 =  2* exp( .05*t)/(3+ exp(.05*t) ) 

The time series with a cyclic component was simulated as below where the periodicity was simulated as 

a sign wave with period of 30 minutes6. This value for the period was selected because it was observed 

in the empirical time series of the C-P difference for many of the 26 infants in the study. 

yt = ut + et   +   ψt  ,                                   et      is distributed normally with mean = 0 and variance = σ2
e 

ut+1 = ut + ηt + vt ,                             η t    is distributed normally with mean = 0 and variance = σ2
η 

vt+1 = 2* exp( .05*t)/(3+ exp(.05*t) ) 

 ψt   =   (.5*cos(.20943951*t)+  

    (.5*sin(.20943951*t) 

    + γt,                    γt   is distributed normally with mean = 0 and variance = σ2
γ 

 

3. Simulation Conditions 

The primary manipulation in this study was the extent to which a given time series exhibited variation 

from sources other than the time varying slope.  Simulation conditions were designed to contain 

increasing amounts of the stochastic level variance as compared to .05 which was the “trend – like” 

portion of the time varying level. The idea was to increase the stochastic level variance in relation to the 

extent to which the level was increasing systematically.  Seven conditions were created where the level 
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variance was .01, .10 1, 5, 10, 50 or 100 times the squared value of the slope parameter. The irregular 

variance was 25% of the level variance.  This particular pattern of level and irregular variances was 

chosen because it roughly corresponds to the results of fitting state space models to our 26 very low 

birth weight infants as shown in Table 1. Note that in Table 1 the irregular variance is at most 25% of the 

level variance. The parameters of the seven simulation conditions are summarized in Table 2. Each of 

the seven conditions shown in Table 2 had a matching condition on which all parameters were repeated 

along with cycles with error variance of 50% of the level variance. Cycles had period of 30. Again, these 

values for the cycle error variance and the period were selected because they were close to the 

characteristics of the cyclic component of the fitted models to the data from our 26 VLWB infants.   

Parameters for conditions with cycles are shown in Table 3.  Each simulation consisted of 1,000 samples 

each of size 100. 

Simulated data sets were analyzed with three different univariate state space models: stochastic level 

and stochastic slope (SS), fixed level and stochastic slope (FS) and stochastic level and fixed slope (SF).  

For each of the three models, we computed the difference between the “true” level predicted by the 

logistic function of t with a slope of .05 and the smoothed trend fit by the model (true - smoothed level). 

We used the SAS UCM procedure to generate the fitted trends and resulting smoothed level values.  

Statistical summaries of (true – smoothed level) across the sample of 100 data points for each of the 

three models were the primary dependent variables of interest. These included the mean, median and 

the standard deviation of the 100 values of (true – smoothed level) on each simulation for each of the 

three models. Summary statistics of the distribution of these sample values, across the 1,000 

simulations were also computed.   Statistics summarizing the fit of the trend to the logistic curve  across 

all 100 “time points” are global indicators with the mean measuring bias (over or under the logistic 

curve)  and the standard deviation reflecting variability.  On each simulation we also stored the value of 

(true – smoothed level)   at time points 10, 60 and 90 for conditions without cycles and on 10, 40, 50 ,60 
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and 90 for conditions with cycles.  The logistic curve that we studied has decreasing slope beginning 

near 50. Therefore we thought it particularly important to look at the (true – smoothed level) values in 

this region and compare them to those at the beginning and end of the time series.  

4. Results 

Conditions without cycles  Results indicated increasing standard deviations of (true – smoothed level) as 

conditions went from 1 to 7 as shown in Table 4 and Figure 3.  Of the three models the stochastic level 

and fixed slope consistently exhibited the largest standard deviations, indicating the poorest global fit 

with the logistic curve generating the data.  Details regarding how well the trends fit the logistic curve at 

selected time points are provided in Tables 5 through 7 and Figures 4 through 6.  They show average 

values of (true – smoothed level) by time point for each condition and model. The pattern of fit for both 

the (SS) and the (FS) models are similar. Almost no deviations from the logistic in all three time points 

occur in conditions 1 through 3. However beginning with condition 4, the fitted trends are too high at 

the beginning and the end of the time period and too low in the middle. In other words, the fitted 

trends are not following the curve to level off.   This pattern of deviations is consistent with the fitted 

trend being a straight line.  When considering the condition in which the slope is fixed, a different 

pattern of fit emerges for the conditions 1 through 3.  In these conditions, the fits appear on average to 

be too low at all three time points. Then with larger amounts of variance the bias disappears, and 

instead the fitted trend is too high at either end of the series and too low in the middle as was the case 

with the SS and FS models.   

In summary, for SS and FS models, and conditions 1 through 3, the fitted trends follow the logistic curve 

well. For the SS and FS models there is some (but small) systematic departure from the logistic curve in 

conditions 5,6 and 7  indicating that it is too low at the ends and too high in the middle. The fit of the 
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trends for the SF model was worse than the other two models in all conditions, especially conditions 1 

through 3. In those, the fit was consistently low across time points.   

Conditions with Cycles The average value of the standard deviation of (true – smoothed level) 

deviations by matched conditions (for those with and without cycles) and model are presented in Table 

8.  Interestingly, the addition of cycles only minimally affected these standard deviations when the state 

space model fitted included a stochastic slope. When the model specified a fixed slope the effect of 

cycles under all conditions was to increase the variability in this index.  This is shown in table 8 by the 

ratios of the average standard deviation for the condition with cycles to the same statistic from the 

matching condition without cycles (i.e.,  std of data with cycles/std of data without cycles). For the fixed 

slope conditions these ratios ranged from 5.2 to 8.7. Except for the standard deviations from the SS 

model under condition 1, the other ratios range from 1.0 to 1.5. See also Figure 7. 

As expected then, the average value of (true – smoothed level) across selected time points by condition 

showed very similar patterns to those  revealed by the no cycle conditions when model SS or model FS 

was fit to the data. See Tables 9 and 10 and Figures 8 and 9.  Very different patterns of the average 

value of (true – smoothed level) emerged over these time points by condition when the SF model was 

fit.  In conditions 5, 6 and 7 the average value of (true – smoothed level) is between .4 and .8 at each of 

the selected time points (see Table 11 and Figure 10).  This result however, was due to the presence of a 

very few but extremely large values of (true – smoothed level) for these conditions. For example, two 

were near 54, and another was 16.  Recall that the data were generated with a logistic curve which has a 

value of 2 as t approaches infinity. This must have been due to something in the fitting algorithm 

because the same data was fit with SS and FS models. If this outlier was due to a very large value of y 

being generated then it should have appeared in the other conditions as well.  The median values of 

(true – smoothed level) by time point and condition for the SF model are shown in Table 12 and Figure 
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11. These median values show a very similar pattern to the average values of (true – smoothed level) by 

condition and time point generated without cycles shown in Table 7 and Figure 6.  That pattern is for 

conditions 1 through 3 to generate trends which are slightly but consistently too low. For conditions 4 

through 7, the familiar pattern of a fit which is too high at either ends but too low in the middle is 

approximated.  

In summary the effect of adding cycles to the data was to increase the standard deviations of (true – 

smoothed level) by a small amount for the fitted trends provided by the SS or the FS models and by a 

larger amount for those provided by the model with a fixed slope.  

4. Discussion 

In this section we first discuss the implications of these results for our program of research in 

temperature control. Next we discuss some limitations of this study. Finally we suggest further 

methodological research regarding the analysis of  “noisy” data  similar to  high frequency physiological 

measurements collected in acute care settings.  

Implications for research in temperature control.  Probably the most basic question concerns the 

assumption that the temperature data yielded by the VLBW infants follow a state space process shown 

in the introduction of this paper. There, and in Appendix B, we demonstrated that if it did, the un-

differenced series would produce extremely large values quickly. The range of values yielded by our 

simulated (un-differenced) series could not plausibly be C-P differences obtained from VLBW infants 

since they reached values of 40 to 50.  The differenced series however, does represent a very plausible 

model for these infants. This implies that for our temperature data we should not model the raw C-P 

differences but rather the first differenced series if we believe that maturation of C-P differences follows 

a logistic curve.  It also implies that there are perhaps reformulated versions of state space models 

where the parameters themselves are differenced, rather than the data after the fact.  
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The level, irregular and cycle variances that we have obtained from the analysis of the C-P differences 

from our 26 VLWB infants most closely resemble condition #5 of this study. In those conditions, even 

the models with stochastic slopes yielded some degree of systematic distortion of the logistic trends, 

fitting a linear rather than a curvilinear trend line. This was exaggerated in the presence of cycles. In 

terms of our research we need to determine methods for reducing level, irregular and cycle variance. 

We can think of level variance as very short term changes in the C-P difference. This variation might 

reflect the infant’s responses to procedures where the incubator door is open for some time, or the 

infant’s responses to blood transfusions or even feeding. In an intensive care environment some of 

these sources of variation reflect life supporting clinical practice and therefore will always be present. 

However, we believe that other influences existed that could be controlled, such as temperature probes 

falling off of the child. The results of these simulations show that if one wants to capture systematically 

varying long term trends with state space models, it is important to maintain other sources of variation 

at a low level. Another alternative is to identify those events most likely to be associated with large 

amounts of short term variation in C-P difference and include them as covariates while fitting the trend.  

As one might expect, state space models with a fixed slope showed the most overall distortion in fitted 

trends. However, if theory dictated a logistic type trend, then a univariate state space model with a fixed 

slope might not be an appropriate choice and should probably be avoided.  

Study limitations Our simulations were designed to mimic the maturation of temperature control as 

measured in VLWB infants in an intensive care unit.  We hypothesized that the long term trend in our 

measurement of this underlying phenomenon would resemble a logistic curve. However, there are 

several variations of these curves and we studied only one. There are others we could have included 

such as those with steeper slopes, and those that are shifted so that C-P differences do not start to rise 

until some period after birth. Additionally, in our temperature study, the length of our time series was 
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much longer than 100. In our simulations, the slope of the maturation curve began to decrease half way 

through the series. Maturation curves with slopes that decrease at an earlier point in time (say at one 

tenth of the series length) may be harder or easier to capture with state space models.  

From a more technical perspective, the cycles that we generated were fixed with amplitude of  1  (.5 + 

.5)2  , and frequency = (.20944), period = 30.   Random error was built into the cycle by adding an 

independent component on each time point t.  An alternative formulation of cycles is to have the 

amplitude of the cycle at time point t be related to that of the cycle at time point t -1. 5,7  It was unclear 

to us which formulation would be most appropriate to mimic maturation in temperature. However, it is 

possible that the results of our simulations may have differed with this alternative formulation of cycle.  

Future research  In this study we focused on capturing logistic long term trends via state space models. 

However, we also suspect that short term variations in both cycles and level are important to model in 

the acute care setting for VLBW infants. We suspect that systematic trends in level and cycle variance 

may reflect maturation, or the ability of the neonate to respond to wide variations in the environment.  

This would by the case in our temperature study if in the first few hours following birth that exposure to 

extreme temperatures elicited small C-P variance reflecting the ambient temperature. Then as the infant 

matured there might be periods of high variability in C-P measures as the neural ability to control 

temperature develops. Finally, in the mature infant C-P variance would decrease to a steady amount. 

The existence of these changes in C-P variance may obscure the emergence of the long term trends in 

the C-P difference.  Other time series models which capture systematic variations in level and/or cycle 

variance should be carefully considered.  It might be possible to model level and cycle variances, remove 

systematic trends in them, then apply the “filtered” series to state space models to study longer term 

trends in levels less affected by bursts of variability.  
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Appendix A 

Development of the logistic function of the slope parameter for the simulations 

Below we present a logistic function of t (time);  f(t,v). This logistic function f(t,v) has two other 

parameters z and x. We show that when z = 2, v = 2 and x = 3 then when t = zero, the value of f(0,2) 

is .50 and when t approaches infinity the value of f(infinity,2) is 2.  

a. f(t,v) = z*exp(v*t)/(x + exp(v*t)) ,  

i. Where t = time  

ii. exp(b) = e to the vth power 

b. Let t = 0, then 

i. f(0,v) = z*exp(v*0)/(x + exp(v*0)) 

ii. f(0,v) = z*exp(0)/(x + exp(0)) 

iii. f(0,v) = z(1)/(x + 1)  

c. Let t = infinity 

i. f(infinity,v) = z *e(v*infinity)/(x + exp(v*infinity)) 

ii. f(infinity,v) = z *      e(*infinity)/(x + exp(infinity)) 

iii. f(infinity,v) = z *      e(*infinity)/(x + exp(infinity)) 

iv. f(infinity,v) = z *      (infinity)/(x + (infinity)) 

v. f(infinity,v) = z *     ( infinity)/ (infinity) 

vi. f(infinity,v) = z *      1 

vii. f(infinity,v) = z  

d. let v = 2, z = 2, x = 3 

i. From (b) above 

1. f(0,2) = 2/(3 + 1) 

2. f(0,2) = 2/4 

3. f(0,2 ) = .5 

ii. From c above 

1. f(infinity,2) = z 

2. f(infinity,2) = 2 
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Appendix B 

The state space model for a stochastic level and fixed slope which is a logistic function of time 

Review of the state space model when level is stochastic and slope fixed5 

Yt = ut + et 

ut+1 = ut + ηt + vt 

Where ut is an unobserved level with variance at time t of ηt 

vt   is the unobserved slope, or the change in level from time t to time t + 1. 

ηt  is normally distributed  with mean of 0 and variance σ2
η 

et   is normally distributed  with mean of 0 and variance σ2
e  

y1 = u1 + e1         

 where e1 is drawn from a normal distribution with mean of 0 and variance of σ2
e  

u2 = u1 + η1 + v1      (level and second time point = level at first time point plus error plus trend) 

v2 = v1      (trend component at all time points is the same) 

y2 = u2 + e2         

But u2 = u1 + η1 + v1       

Then  

y2 = u1 + η1 + v1    + e2         

 u 3 = u2 + η2 + v2 

 u3 = u1 + η1  + v1 + η1 + v1 

 u3 = u1 + η1  + η2  +   2* v1  

y3 = u3 + e3         

But u3 = u1 + η1  + η2   +  2* v1  

Then y3 = u1 + η1  +  η2 +  2* v1  + e3      

 u 4 = u3 + η3 + v3 

 u 4 = u1 + η1 + η2 + η3 + v1  + v2  + v3 
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 u 4 = u1 + η1 + η2 + η3 + 3*v1   

y4 = u4 + e4        

y4 = u1 + η1 + η2 + η3 + 3*v1   + e4        

Note that the fixed slope v1  is multiplied by t-1 in the state equation for the yt . In this way, the long 

term trend for Y is fixed and linear, since the values of ηt   have expected value of 0. When we 

substitute f(t,v) for v, this property remains with the value of f(t,v) entering into the state equation for 

yt a total of t – 1 times.  This produces a distortion of the logistic “curve” in that the values of y as t 

increases do not in fact level off and as t approaches infinity f(infinity,t) does not approach a constant.  

Let f(t)   = exp(v*t)/(1 + exp(v*t)), where v is constant from one time point to the next. 

y1 = u1 + et      

 u2 = u1 + η1 + f(v,1) 

 f(v,1) = exp( v*1)/(1 + exp(v*1))      

 u2 = u1 + η1 + exp( v*1)/(1 + exp(v*1))      

y2 = u2 + e2     

y2 =  u1 + η1 + exp( v*1)/(1 + exp(v*1))     + e2     

 u3 = u2 + η2 + f(v,2) 

 u3 = u1 + η1 + exp( v*1)/(1 + exp(v*1))      + η2 + f(v,2) 

 u3 = u1 + η1 + exp( v*1)/(1 + exp(v*1))      + η2 +   exp( v*2)/(1 + exp(v*2))       

 u3 = u1 + η1 + + η2  +  exp( v*1)/(1 + exp(v*1))      +   exp( v*2)/(1 + exp(v*2))       

y3 = u3 + e3    

y3 =  u1 + η1 + + η2  +  exp( v*1)/(1 + exp(v*1))      +   exp( v*2)/(1 + exp(v*2))     + e3    

In general,  

yt = ut + et 

ut + 1  =   Σ ηi     +  Σ f(v,i)  , I = t – 1, t = 2 to T (where T is the total number of time points in the series) 

The state space model for the differenced time series however, has only 1 value of f(v,t) contributing 

to each differenced value of yt+1 - yt for t going from 2 to T.  Continuing with the same example for 

f(v,t), we show this for the state equation for y3-y2. 
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y3 – y2   

= ( u1 + η1 +  η2  +  exp( v*1)/(1 + exp(v*1))      +   exp( v*2)/(1 + exp(v*2))     + e3   ) -  

(  u1 + η1 + exp( v*1)/(1 + exp(v*1))     + e2    ) 

= η2 + exp( v*2)/(1 + exp(v*2))     + e3 – e2 
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Tables 

 

Table 1. Variance components of fitted state space models to C-P differences captured by minute on 

very low birth weight infants. 1 

  Variance Component 

Infant 
Sample 
size Level Irregular Irregular/Level Cycle Cycle/Level 

t002 17722 0.0303 0.0059 0.1947 0.0133 0.4378 

t004 12356 0.0273 0.0007 0.0256 0.0153 0.5607 

t009 20370 0.0194 0.0050 0.2577 0.0196 1.0120 

t011 20325 0.0141 0.0033 0.2340 0.0142 1.0038 

t012 20425 0.0256 0.0058 0.2266 0.0135 0.5288 

t017 20525 0.0292 0.0049 0.1678 0.0072 0.2449 

t020 20658 0.0214 0.0023 0.1075 0.0070 0.3249 

t026 40629 0.0203 0.0016 0.0788 0.0014 0.0705 

t029 40348 0.0292 0.0073 0.2500 0.0105 0.3595 

Mean   0.0241 0.0041 0.1697 0.0113 0.4702 
1 Each model contained a fixed level, a stochastic slope and one or more cycles.  

 

Table 2. Simulation conditions without cycles 

  

  

 

Variance of level / (slope)
2  

    where slope = .05 

  

.0100 .1000 1.0000 5.0000 10.0000 50 100 

Condition 

Number 

1 2 3 4 5 6 7 

Variance  of 

level 

.000025 .00025 .0025 .0125 .0250 .1250 .250 

Measurement  

error  

(25% of level 

variance) 

 

.00000625 .0000625 .000625 .003125 .00625 .0312 .0625 
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Table 3. Simulation design for conditions with cycles 

  

  

 

Variance of level / (slope)
2  

    where slope = .05 

  

.0100 .1000 1.0000 5.0000 10.0000 50 100 

Condition 

number 1 

1c 2c 3c 4c 5c 6c 7c 

Variance  of 

level 

.000025 .00025 .0025 .0125 .0250 .1250 .2500 

Measurement  

error  

(25% of level 

variance) 

 

.000006

25 

.0000625 .000625 .003125 .00625 .0312 .0625 

Cycle variance  

=50% of level 

variance 

.000012

5 

.000125 .00125 .00625 .0125 .0625 .125 

1  The “c” with these numbers indicates that the condition includes a cycle with error variance. 
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Table 4.  Average standard deviation of (true – smoothed level) across 1,000  

 simulations by condition and model. 

  state space model1 

condition SS FS SF 

1 0.0017 0.0017 0.0106 

2 0.0042 0.0042 0.0128 

3 0.0108 0.0108 0.0196 

4 0.0209 0.0208 0.0312 

5 0.0264 0.0262 0.0385 

6 0.0587 0.0580 0.0736 

7 0.0813 0.0804 0.0950 
1 SS = stochastic level and stochastic slope, FS = fixed level and stochastic slope, 

 SF = stochastic level and fixed slope. 

 

Table 5  Average value of (true – smoothed level) by time point and condition for  

SS  models 

Condition time point 

 
10 60 90 

1 -0.00034 0.00001 0.00008 

2 -0.00191 0.00015 0.00040 

3 -0.00502 0.00084 -0.00002 

4 -0.00844 0.00384 -0.00349 

5 -0.01187 0.00737 -0.00640 

6 -0.02979 0.02717 -0.02935 

7 -0.04560 0.04239 -0.04371 

 

Table 6  Average value of (true – smoothed level) by time point and condition   

For FS models 

Condition time point 

 
t = 10 t = 60 t = 90 

1 -0.0003 0.0000 0.0001 

2 -0.0019 0.0001 0.0004 

3 -0.0050 0.0008 0.0000 

4 -0.0085 0.0039 -0.0035 

5 -0.0113 0.0074 -0.0066 

6 -0.0297 0.0272 -0.0294 

7 -0.0459 0.0433 -0.0441 
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Table 7  Average value of (true – smoothed level) by time point and condition for  

SF  models 

condition time point 

 
t = 10 t = 60 t = 90 

1 0.0231 0.0115 0.0030 

2 0.0227 0.0111 0.0032 

3 0.0208 0.0138 0.0034 

4 0.0149 0.0190 -0.0013 

5 0.0093 0.0237 -0.0063 

6 -0.0223 0.0528 -0.0409 

7 -0.0426 0.0715 -0.0601 
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Table  8 Mean standard deviations of (true – smoothed level) by condition model and the presence or 

absence of cycles in the generated data. 1 

  state space model 

condition SS FS SF 

1 0.0017 0.0017 0.0122 

1c 0.0224 0.0021 0.1066 

ratio of 1c to 1 13.1882 1.2294 8.7051 

2 0.0042 0.0042 0.0137 

2c 0.0049 0.0049 0.1078 

ratio of 2c to 2 1.1571 1.1571 7.8428 

3 0.0108 0.0108 0.0201 

3c 0.0133 0.0160 0.1278 

ratio of 3c to 3 1.2352 1.4778 6.3550 

4 0.0209 0.0208 0.0334 

4c 0.0218 0.0217 0.2000 

ratio of 4c to 4 1.0416 1.0409 5.9841 

5 0.0264 0.0262 0.0509 

5c 0.0318 0.0290 0.2656 

ratio of 5c to 5 1.2034 1.1057 5.2197 

6 0.0587 0.0580 0.0971 

6c 0.0638 0.0629 0.5686 

ratio of 6c to 6 1.0862 1.0845 5.8550 

7 0.0813 0.0804 0.1198 

7c 0.0896 0.0889 0.8003 

ratio of 7c to 7 1.1020 1.1052 6.6805 
1   The “c” after the number indicates that in that condition cycles were simulated. Conditions with cycles 

were exactly the same as those without cycles except for the addition of the cycle.  
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Table 9  Average of (true – smoothed level) by time point and condition (with cycles )  for  

 SS models. 

condition t = 10 t = 40 t = 50 t = 60 t = 90 

1c 0.0279 0.0284 -0.0104 -0.0178 -0.0178 

2c -0.0025 0.0008 0.0001 0.0004 -0.0005 

3c -0.0011 0.0072 0.0020 -0.0005 -0.0056 

4c -0.0057 0.0096 0.0104 0.0074 -0.0109 

5c 0.0028 0.0224 0.0195 0.0145 -0.0123 

6c -0.0030 0.0494 0.0519 0.0439 -0.0359 

7c -0.0221 0.0716 0.0806 0.0686 -0.0567 

 

Table 10  Average of (true – smoothed level) by time point and condition for FS models 

condition t = 10 t = 40 t = 50 t = 60 t = 90 

1c -0.0016 -0.0009 0.0002 0.0010 0.0009 

2c -0.0025 0.0008 0.0001 0.0004 -0.0005 

3c 0.0031 0.0112 0.0005 -0.0032 -0.0080 

4c -0.0059 0.0094 0.0105 0.0075 -0.0107 

5c -0.0071 0.0136 0.0164 0.0127 -0.0169 

6c -0.0128 0.0415 0.0489 0.0414 -0.0414 

7c -0.0332 0.0627 0.0742 0.0632 -0.0636 

 

 

Table 11  Average of (true – smoothed level) by time point and condition for SF models. 

condition t = 10 t = 40 t = 50 t = 60 t = 90 

1c 0.0174 0.0149 0.0219 0.0110 0.0050 

2c 0.0181 0.0166 0.0229 0.0101 0.0022 

3c 0.0190 0.0235 0.0258 0.0104 -0.0039 

4c 0.0169 0.0381 0.0327 0.0163 -0.0183 

5c 0.4635 0.5030 0.4813 0.4636 0.4085 

6c 0.4854 0.6207 0.6178 0.6000 0.4387 

7c 0.5325 0.7155 0.7247 0.7054 0.4938 
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Table 12  Median value of (true – smoothed level) by time point and condition for SF  models 

condition t = 10 t = 40 t = 50 t = 60 t = 90 

1c 0.0174 0.0148 0.0218 0.0110 0.0053 

2c 0.0181 0.0167 0.0228 0.0104 0.0016 

3c 0.0189 0.0236 0.0257 0.0106 -0.0038 

4c 0.0150 0.0374 0.0338 0.0190 -0.0188 

5c 0.0173 0.0572 0.0402 0.0242 -0.0321 

6c -0.0146 0.1064 0.1051 0.0890 -0.0691 

7c -0.0420 0.1348 0.1490 0.1255 -0.0895 
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Figures 

 

Figure 1.  Actual C-P differences (red) and fitted state space trends (black 

by minute since birth for three VLBW infants.  
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Figure 2.  The value of y by t where y is the value of the logistic curve simulated: 

    2*e (.05*t)  /(3 + e (.05*t) ). 
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Figure 3. The mean value of the standard deviation of (true – smoothed level) by condition 

                 And model. 
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Figure  4.  The mean value of (true-smoothed level) by time point and condition for SS models. 
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Figure  5. The mean value of (true-smoothed level) by time point and condition for FS models. 
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Figure  6. The mean value of (true-smoothed level) by time point and condition for SF models. 
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Figure 7. The ratio of the mean standard deviation of (true – smoothed level) from simulations with 

cycles to matched pairs without  cycles by condition and model 

 

 

 

 

 

 

 

 

 

 

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

1 2 3 4 5 6 7

R
at

io
 

Condition 

stoch level stoch slope

fixed level stoch slope

stoch level fixed slope



32 
 

 

 

 

Figure  8. The mean value of (true-smoothed level) by time point and condition (with cycles) for SS 

models. 
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Figure  9. The mean value of (true-smoothed level) by time point and condition (with cycles) for FS 

models. 
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Figure  10. The mean value of (true-smoothed level) by time point and condition (with cycles) for SF 

models 
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Figure 11.  Median value of (true – smoothed level) by time point and condition (with cycles) for SF 

models. 
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