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Abstract

We introduce a dynamic statistical model for Skellam distributed random variables.

The Skellam distribution can be obtained by taking differences between two Poisson

distributed random variables. We treat cases where observations are measured over

time and where possible serial correlation is modeled via stochastically time-varying

intensities of the underlying Poisson counts. The likelihood function for our model is

analytically intractable and we evaluate it via a multivariate extension of numerically

accelerated importance sampling techniques. We illustrate the new model by two

empirical studies and verify whether our framework can adequately handle large data

sets. First, we analyze long univariate high-frequency time series of U.S. stock price

changes, which evolve as discrete multiples of a fixed tick size of one dollar cent. In a

second illustration, we analyze the score differences between rival soccer teams using a

large, unbalanced panel of seven seasons of weekly matches in the German Bundesliga.

In both empirical studies, the new model provides interesting and non-trivial dynamics

with a clear interpretation.
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1 Introduction

Various recent contributions have raised renewed interest in the Skellam distribution to

model integer outcomes; see for example Karlis and Ntzoufras (2006), Karlis and Ntzoufras

(2009) and Barndorff-Nielsen et al. (2012). The Skellam distribution can be viewed as a

distribution on positive and negative integers, but can also be constructed from differences

in pairs of Poisson counts; see Skellam (1946). Paired count observations and their differences

appear in many situations and research fields. For example, in low-scoring sports such as

ice-hockey and soccer, the score difference between the teams can be viewed as the difference

between two Poisson counts and thus be modeled by a Skellam distributed random variable.

In medical research, experiments for measuring the effect of treatments and drug intake

lead to paired counts. A famous example is the decayed, missing and filled teeth (DMFT)

index for a region that measures the effect of preventive methods in dental care; see Bohning

et al. (1999) and Karlis and Ntzoufras (2006). The change of the DFMT index over time or

between regions can be modeled by the Skellam distribution. Finally, in financial markets,

price changes from one trade to the next can be modeled by the Skellam distribution, as

prices move on a grid of integer multiples of a fixed ‘tick size’.

The Skellam distribution is characterized by two ‘intensity’ parameters. In earlier studies,

the Skellam distribution is used in a static perspective. When we analyze time series of

differences in counts, we often obtain significant improvements in model fit and forecasting

performance if the parameters of the Skellam distribution are allowed to vary over time.

Time variation in the parameters of the Skellam distribution may capture the developments

of relative team strengths over longer periods of time in sports applications, trends in health

and demography in medical applications, or market circumstances and risk attitudes in

economic and finance applications.

We present a novel dynamic Skellam model with stochastically time-varying intensities.

We formulate the model in terms of a nonlinear non-Gaussian state space process. It is well

documented that the likelihood function for this class of models is analytically intractable.

Therefore we rely on numerical (possibly) simulation based methods. Many non-Gaussian

state space models can be analyzed efficiently by the methods developed in Shephard and

Pitt (1997) and Durbin and Koopman (1997), hereafter referred to as SPDK. A major
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advantage of the SPDK method is the combination of speed and the ability to analyze high

dimensional state space models using an approximating linear Gaussian state space model

for the evaluation of the likelihood integral of the true likelihood via simulation.

An important alternative to SPDK is the efficient importance sampling (EIS) method of

Liesenfeld and Richard (2003) and Richard and Zhang (2007). The EIS method uses a more

accurate (global) approximation of the likelihood integral than the local approximation of

SPDK. Koopman et al. (2013) further extend the global approximating method of Liesenfeld

and Richard (2003) and Richard and Zhang (2007) by solving for the parameters of the

importance sampling distribution using Gauss-Hermite quadrature rather than simulation.

This results in further efficiency improvements in estimating the likelihood. They call their

method numerically accelerated importance sampling (NAIS) and show that it is applicable

for a high dimensional state vector and a univariate signal. Numerical integration techniques

in time series have been proposed earlier by Kitagawa (1987) and Fridman and Harris (1998).

However, their methods are only applicable for models with a low-dimensional state vector.

In this paper we extend the NAIS methodology to a high-dimensional state with a bivariate

signal by adopting bivariate Gauss-Hermite quadrature.

To study the performance of our new model and the resiliency of the associated estimation

methodology based on the bivariate NAIS, we present the results of two empirical studies

based on two large scale applications. Each empirical study reveals its own challenges for

the developed methodology. In our first application, we consider long time series of stock

price changes. These changes are recorded as integer multiples of a fixed tick size of one

dollar cent, suggesting the use of the dynamic Skellam model. Long time series are known to

pose particular efficiency problems for importance sampling estimation methods; see Robert

and Casella (2004, §3.3) and Cappé et al. (2005, §6.1 and 9.1). We find, however, that the

dynamic Skellam model can be efficiently estimated using bivariate NAIS for time series of

more than 23,000 trades. In our second application, we consider score differences of soccer

matches of 29 teams observed over 7 seasons of the German Bundesliga. The resulting panel

data set has many missing values and is clearly high dimensional. In addition, we model the

score difference for each match by a dynamic Skellam distribution with intensity parameters

that vary with the attack and defense strengths of the home and away teams. Given the large

number of teams in the Bundesliga, the state vector in the state space representation of the
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model is also high dimensional. The combination of missing values and high dimensions poses

well-known challenges to the computational feasibility of the estimation methodology. We

show, however, that the dynamic Skellam model for this complex data set can be estimated

successfully using NAIS in a feasible way. Several interesting extensions of the basic model

are also considered.

The remainder of the paper is organized as follows. We present the new dynamic Skellam

model in Section 2 and explain how it can be cast in nonlinear non-Gaussian state space form.

In Section 3 we discuss parameter estimation and state smoothing using a bivariate version of

numerically accelerated importance sampling. Section 4 applies the dynamic Skellam model

to high-frequency U.S. stock price changes to show how our methodology can handle long

time series. Section 5 treats a large unbalanced panel data set of German Bundesliga soccer

matches to show how the method performs for high dimensional data sets, missing values

and high dimensional state vectors. Section 6 concludes.

2 The dynamic Skellam model

2.1 Skellam distribution

The probability mass function (pmf) of a Skellam distributed random variable Y ∈ Z with

parameters λ1, λ2 ∈ R+ is given by

P(Y = y;λ1, λ2) = exp (−λ1 − λ2)
(
λ1/λ2

)y/2
I|y|(2

√
λ1λ2), (1)

where I|y|( · ) is the modified Bessel function of order |y|, see Abramowitz and Stegun (1972)

for more details. Following Skellam (1946), we can derive the Skellam distribution by defining

Y as the difference C1 − C2 of a bivariate Poisson count pair (C1, C2), see also Mardia

(1970). If C1 and C2 are independent Poisson, λ1 and λ2 can be directly interpreted as the

Poisson intensities for C1 and C2, respectively. More background information on the Skellam

distribution and further references are provided by Johnson et al. (1992).

The mean and variance of Y are given by

E(Y ) = λ1 − λ2, Var(Y ) = λ1 + λ2. (2)
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Moreover,

p(Y = y;λ1, λ2) = p(Y = −y;λ2, λ1),

such that the Skellam distribution is symmetric for λ1 = λ2, right-skewed for λ1 > λ2, and

left-skewed for λ1 < λ2. Just as for the Poisson distribution, we can also construct a zero-

inflated version of the Skellam distribution; see for example Bohning et al. (1999) and Karlis

and Ntzoufras (2009). This transfers probability mass from Y 6= 0 towards Y = 0 if the

latter is over-represented. The zero-inflated Skellam distribution is defined by its pmf

pz(Y = y;λ1, λ2, γ) =

 (1− γ) p(Y = y;λ1, λ2), for y 6= 0,

γ + (1− γ) p(Y = 0;λ1, λ2), for y = 0,
(3)

with γ ∈ [0, 1) an additional unknown and fixed parameter, and p(y;λ1, λ2) as defined in

(1). For γ = 0, we recover the original Skellam distribution. The mean and variance of the

zero-inflated Skellam distribution are

E(Y ) = (1− γ)(λ1 − λ2), Var(Y ) = (1− γ)(λ1 + λ2) + γ(1− γ)(λ1 − λ2)2. (4)

The inflation of probability mass to non-zero values of Y can be achieved in a similar way.

In Figure 1 we present a few examples of Skellam and zero-inflated Skellam distributions.

The figure shows that the distribution is highly peaked at the center for low values of λ1 or

λ2. The effects of λ1 6= λ2 and γ 6= 0 are also clearly visible.

2.2 Dynamic specification of intensities

In the dynamic Skellam model, we replace Y , y, λ1, and λ2 in (1) by their time-varying

counterparts Yt, yt, λ1t, and λ2t, respectively. We denote the dynamic model as

Yt ∼ Skellam(λ1t, λ2t), t = 1, . . . , n, (5)

where n is the length of the time series. We assume that the serial correlation in Yt is

accounted for by the time-variation in the intensities λ1t and λ2t. We first treat the case of

univariate observations and extend our modeling framework to the multivariate case later.
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Figure 1: Skellam and zero-inflated Skellam distributions with density func-
tions (1) and (3), respectively, for different λ1, λ2 and γ coefficients. These
are discrete distributions, the connecting lines are drawn for clarity and
do not indicate continuity. ( )λ1 = λ2 = 1; ( )λ1 = λ2 = 2;
(−−−)λ1 = 3, λ2 = 1; (· · · · · · )λ1 = λ2 = 2, γ = 0.1.

We model the dynamics in λ1t and λ2t by a nonlinear transformation of autoregressive

processes,

λit = si(θt), (6)

θt = ct +Ztαt, (7)

αt+1 = dt + T tαt + ηt, ηt ∼ NID(0,Qt), (8)

for i = 1, 2 and t = 1, . . . , n, where si( · ) : Rp×1 → R+ is a nonlinear scalar function referred

to as a link function, θt ∈ Rp×1 is called the signal vector, αt ∈ Rm×1 is referred to as the

state vector, ct ∈ Rp×1 and dt ∈ Rm×1 are vectors of intercepts, Zt ∈ Rp×m is a matrix

of zeroes, ones and possibly some unknown coefficients, T t ∈ Rm×m is a transition matrix,

and the disturbances ηt are normally and independently distributed with mean zero and

variance matrix Qt ∈ Rm×m. The vectors ct, dt and the matrices Zt, T t and Qt are possibly

time-varying but in a deterministic manner. Typical examples of link functions si( · ) are the

exponential function (to ensure positive support for the intensities) and the scaled logistic

function (to preserve a lower and upper bound for the intensities). When the link function

si( · ) directly requires the state vector αt as argument, we simply set p = m, ct = 0, and
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Zt = Im. The initial conditions for the elements of the state vector α1 depend on their

dynamic properties. The variance matrix Qt is possibly positive semi-definite and hence the

vector ηt may contain zeroes.

The model specified in equations (6)–(8) allows for a wide variety of dynamic patterns for

the intensities λ1t and λ2t, including autoregressive moving average dynamics, time varying

seasonal and cyclical patterns, deterministic and stochastic trends, and their combinations.

Regression and intervention effects can be incorporated as well; see Durbin and Koopman

(2012, Chapter 3) for more details and more illustrations.

The dynamic Skellam model as specified above falls within the class of non-Gaussian

nonlinear state space models

yt ∼ p(yt|θt;ψ), θt = ct +Ztαt, αt+1 ∼ pg(αt+1|αt;ψ), t = 1, . . . , n, (9)

with α1 ∼ pg(α1;ψ), where ψ is an unknown and fixed parameter vector gathering all the

parameters in ct, Zt, dt, T t, and Qt, and possibly in the signal functions si( · ) for i = 1, 2.

The observation density p(yt|θt;ψ) refers to the dynamic (possibly zero inflated) Skellam

distribution from Section 2.1 with parameters λ1t and λ2t, the updating Gaussian state

density pg(αt+1|αt;ψ) refers to the linear Markov process (8), and pg(α1;ψ) represents the

initial condition for α1. We assume that for given realisations of the signal θ′ = (θ′1, . . . ,θ
′
n)

the observations y = (y1, . . . , yn)′ are conditionally independent, and also write θ = c +

Zα with c′ = (c′1, . . . , c
′
n), α = (α′1, . . . ,α

′
n)′, and Z a block-diagonal matrix with blocks

Z1, . . . ,Zn on the leading diagonal. The joint conditional density for all observations and

the marginal density for all states can now be written as

p(y|θ;ψ) =
n∏
t=1

p(yt|θt;ψ), pg(α;ψ) = pg(α1;ψ)
n∏
t=2

pg(αt|αt−1;ψ). (10)

respectively. Given the linear dependence of θ on α, the density pg(θ;ψ) can be constructed

directly from pg(α;ψ).

The state space perspective in equations (9)–(10) for the dynamic Skellam model allows

us to build on a well developed framework for parameter estimation and inference and

state filtering and smoothing in such models; see for example Durbin and Koopman (2012).
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As for other non-Gaussian nonlinear state space models, the main complication for the

dynamic Skellam model is that the likelihood function
∫
p(y|θ;ψ)pg(α;ψ) dα is analytically

intractable. We therefore adopt the method of simulated maximum likelihood estimation

for parameter estimation. In particular, we develop a bivariate extension of the numerically

accelerated importance sampling (NAIS) method of Koopman et al. (2013) and show that

it can efficiently handle long univariate time series (large n) as well as high dimensional

unbalanced panel time series models for Skellam distributed random variables. We first

present the details of our estimation methods in Section 3. Then we proceed with our

empirical applications in Sections 4 and 5.

3 Monte Carlo likelihood and parameter estimation

Before presenting our bivariate extension of the numerically accelerated importance sampling

techniques (NAIS) of Koopman et al. (2013), we first present a short review of Monte Carlo

likelihood evaluation for state space models and the efficient importance sampling (EIS)

technique of Liesenfeld and Richard (2003) and Richard and Zhang (2007) to establish the

necessary notation.

3.1 Likelihood evaluation and importance sampling

We can express the likelihood function for the non-Gaussian nonlinear state space model (9)

as

L(y;ψ) =

∫
p(y,θ;ψ) dθ =

∫
p(y|θ;ψ)pg(θ;ψ) dθ. (11)

An analytical expression is not available for this high dimensional integral. In cases where

the model is linear and Gaussian, the Kalman filter can be used for likelihood evaluation,

signal extraction and forecasting. Here we rely on numerical integration techniques that

need to be both practical and feasible.

It is well established that we can use Monte Carlo simulation methods for the evaluation

of (11); see Ripley (1987) for a general introduction. In particular, in various contributions

in statistics and econometrics it is argued that (11) can be evaluated efficiently using the

method of importance sampling; see, for example, Shephard and Pitt (1997), Durbin and
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Koopman (1997), Liesenfeld and Richard (2003) and Richard and Zhang (2007). For a

feasible implementation of this method we require a Gaussian importance density g(θ|y;ψ∗)

from which the θs are sampled conditional on the observation vector y, where ψ∗ denotes a

fixed parameter vector, containing ψ as well as parameters ψ̃ particular to the importance

density g(y|θ; ψ̃), i.e., ψ∗ = (ψ′, ψ̃
′
)′. Under the assumption that a numerically efficient

device can be developed for sampling θ from g(θ|y;ψ∗), we can express the likelihood

function (11) in terms of the importance density as

L(y;ψ) =

∫
p(y,θ;ψ)

g(θ|y;ψ∗)
g(θ|y;ψ∗) dθ, (12)

with the importance sampling estimate given by

1

S

S∑
k=1

ω(y,θ(k);ψ∗), ω(y,θ;ψ∗) =
p(y,θ;ψ)

g(θ|y;ψ∗)
, θ(k) ∼ g(θ|y;ψ∗), (13)

where the number of simulations S should be sufficiently high and where θ(k) is drawn

independently for k = 1, . . . , S. In this framework we assume that pg(θ;ψ) = g(θ;ψ), which

implies that the marginal stochastic properties of θ in the model are the same as in the

importance sampling distribution. It follows immediately that

ω(y,θ;ψ∗) =
p(y,θ;ψ)

g(θ|y;ψ∗)
=

p(y|θ;ψ)pg(θ;ψ)

g(y|θ; ψ̃)g(θ;ψ)/g(y;ψ∗)
= g(y;ψ∗)

p(y|θ;ψ)

g(y|θ; ψ̃)
, (14)

see for example Durbin and Koopman (2012). The density g(y;ψ∗) can be taken as a scaling

function since it does not depend on θ. The function ω(y,θ;ψ∗) is usually referred to as

the importance sampling weight function. If the variance of ω(y,θ;ψ∗) exists, the estimate

(13) is consistent for any g(y|θ; ψ̃) and a central limit theorem applies; see Geweke (1989)

and Koopman et al. (2009). We may expect that a well-behaved weight function leads to an

efficient importance sampling estimate of the likelihood function.

3.2 Construction of the importance density

The key choice in selecting an importance density g(θ|y;ψ∗) is numerical efficiency. We

follow the predominant choice in the literature and opt for the Gaussian density; we construct
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g( · ) efficiently using standard techniques such as regression analysis and the Kalman filter.

Several proposals for constructing a Gaussian g(θ|y;ψ∗) have been developed. Shephard

and Pitt (1997) and Durbin and Koopman (1997) determine the choice of ψ̃ via a second

order Taylor expansion of density p(y|θ;ψ) around a θ that is equal to the mode of p(θ|y;ψ).

The mode can be found by an iterative method involving the Kalman filter and the related

smoother. Alternatively, in the efficient importance sampling (EIS) method of Liesenfeld

and Richard (2003) and Richard and Zhang (2007), the appropriate Gaussian importance

density is found by solving

arg min
ψ̃t

∫
λ̃2(yt,θt;ψ

∗)ωt(yt,θt;ψ
∗) g(θt|y;ψ∗) dθt, (15)

for each t = 1, . . . , n, with ψ̃
′
= (ψ̃

′
1, . . . , ψ̃

′
n), ψ∗′ = (ψ′, ψ̃

′
), and

λ̃(yt,θt;ψ) := log ωt(yt,θt;ψ
∗) := log p(yt|θt;ψ)− log g(yt|θt; ψ̃t). (16)

The importance density is effectively determined by the minimization of the variance of the

log weight ωt, for each t. Richard and Zhang (2007) evaluate the integral in (15) using

importance sampling and perform its minimization via weighted least squares regression.

In a further development of EIS, Koopman et al. (2013) replace the evaluation of the

integral in (15) by standard Gauss-Hermite quadrature methods. This results in a highly

numerically efficient importance sampling technique, that can be augmented with easy-

to-compute control variates to increase efficiency even further. They label their method

numerically accelerated importance sampling (NAIS). The key to NAIS is the availability

of analytic expressions for the marginal densities g(θt|y;ψ∗) given the Gaussian importance

densities g(y|θ; ψ̃) and a Gaussian marginal density g(θ;ψ) = pg(θ;ψ). Although NAIS

was originally developed for a univariate signal θt ∈ R, the method can easily be extended to

multiple dimensions; see Scharth (2012, Chapter 5) and the discussions in Koopman et al.

(2013). Scharth (2012) proposes Halton sequences and quasi-Monte Carlo integration for

the evaluation of high dimensional integrals. In the case of our dynamic Skellam model,

the signal is only two-dimensional and hence we can still rely on Gauss-Hermite quadrature

methods efficiently. We explore this further below.
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3.3 Bivariate numerically accelerated importance sampling

To facilitate the exposition, we express the Gaussian density as a kernel function in θt, that

is

g(y|θ; ψ̃) =
n∏
t=1

g(yt|θt; ψ̃t), g(yt|θt; ψ̃t) = exp

(
at + b′tθt −

1

2
θ′tCtθt

)
, (17)

with scalar at, 2 × 1 vector bt, a symmetric 2 × 2 matrix Ct, and bivariate θt = (θ1t, θ2t)
′.

To ensure that g(yt|θt; ψ̃t) integrates to one, we set at = − log 2π + 1
2

log |Ct| − 1
2
b′tC

−1
t bt.

We gather the five remaining parameters in bt and Ct into the vector ψ̃t. NAIS obtains

the importance sampling parameters ψ̃t iteratively, starting from an initial guess ψ̃
(0)

t , and

updating it sequentially to ψ̃
(k)

t for k = 1, 2, . . ., until convergence. Given ψ̃
(k)

t , the next

parameter vector ψ̃
(k+1)

t for the importance densities solves the EIS criterion

arg min
ψ̃

(k+1)
t

∫ ∫
λ̃2(yt,θt;ψ

∗(k+1))ωt(yt,θt;ψ
∗(k))g(θt|y;ψ∗(k)) dθ1t dθ2t, (18)

where ψ∗(k) contains ψ and ψ̃
(k)

. The key to the implementation of NAIS is the availability

of an analytical expression for the smoothing density g(θt|y;ψ∗(k)). In our case of Gaussian

importance sampling distributions, we have

g(θt|y;ψ∗(k)) = N(θ̂
(k)

t ,V
(k)
t ) =

1

2π|V (k)
t |1/2

exp

(
−1

2
(θt − θ̂

(k)

t )′(V
(k)
t )−1(θt − θ̂

(k)

t )

)
,

(19)

where θ̂
(k)

t and V
(k)
t are obtained from the Kalman filter and smoother, for given ψ∗ = ψ∗(k),

applied to the linear Gaussian model xt = θt + ut with disturbance ut ∼ N(0,C−1t ) and

pseudo-observation xt = C−1t bt, for t = 1, . . . , n. It is straightforward to verify that the

observation density
∏n

t=1 g(xt|θt; ψ̃t) is equivalent to g(y|θ; ψ̃) in (17).

We numerically implement the minimization in (18) by the Gauss-Hermite quadrature

method; see, for example, Monahan (2001). For this purpose we define

ϕ(yt,θt; ψ̃
(k+1)

t ,ψ∗(k)) = λ̃2(yt,θt;ψ
∗(k+1))ωt(yt,θt;ψ

∗(k)), (20)

and we select a set of abscissae {zi}Mi=1 with associated Gauss-Hermite weights h(zi), for
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i = 1, . . .M . The numerical implementation of the minimization (18) becomes

arg min
ψ̃

(k+1)
t

M∑
i=1

M∑
j=1

wij · ϕ(yt, z̃
(k)
ij,t; ψ̃

(k+1)

t ,ψ∗(k)), (21)

with weight wij = h(zi)h(zj) exp(1
2
z2i ) exp(1

2
z2j ) and z̃

(k)
ij,t = θ̂t+F

(k)
t zij, where the 2×2 square

root matrix F
(k)
t is the result of the decomposition V

(k)
t = F

(k)
t F

(k)
t

′
and zij = (zi , zj)

′

for i, j = 1, . . . ,M . In this implementation we have used the fact that g(z̃
(k)
ij,t|y;ψ∗(k)) ∝

exp(−1
2
z′ijzij); see Koopman et al. (2013) and Scharth (2012, Chapter 5). The decomposition

of V
(k)
t is needed because the joint set of M2 abscissae zij, for i, j = 1, . . . ,M , is associated

with the bivariate standard normal distribution.

We can express the minimization problem (21) as a standard weighted least squares

computation applied to M2 observations for the regression equation

log p(yt|z̃(k)ij,t) = constant + κ′z̃
(k)
ij,t −

1

2
ξ′vech(z̃

(k)
ij,tz̃

(k)
ij,t
′) + error, (22)

where κ and ξ are regression coefficient vectors and the regression weights are given by

wij · ωt(yt, z̃(k)ij,t;ψ
∗(k)) · g(z̃

(k)
ij,t|y;ψ∗(k)), and where vech( · ) stacks elements of the upper

triangular part of a symmetric matrix into a vector. The resulting weighted least squares

estimates for κ and ξ yield the new values for b
(k+1)
t and vech(C

(k+1)
t ), respectively. Hence,

new values for ψ̃
(k+1)

t are obtained for each t = 1, . . . , n. Using these new estimates, we can

determine a new g(θt|y;ψ∗(k+1)) in (19) by constructing a new time series xt and applying

the Kalman filter and smoother to the linear Gaussian model given below (19). In this last

step we obtain new values for θ̂
(k+1)

t and V
(k+1)
t , which we require in (19).

This procedure is iterated until convergence. Typically, we only need a small (< 10)

number of iterations for the applications in this paper. For the case of a univariate signal,

Richard and Zhang (2007) and Koopman et al. (2013) argue that an unweighted least squares

regression can be performed without significant loss of efficiency. In our bivariate case,

however, we have found that the omission of the weights resulted in an efficiency loss of

about 10%. Therefore, we include the weights for the computation of ψ̃
(k+1)

. Finally, we

emphasize that the regression computations can be carried out in parallel over t, leading to

a highly efficient implementation.
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4 Analysis of high-frequency Skellam returns

High-frequency (intra-day) analysis of prices changes in financial markets has received much

attention in the recent literature; see, amongst others, Andersen (2000) and Tsay (2005).

Analyzing the dynamics of prices at high frequencies is important for providing insights into

market (in)stabilities in view of today’s algorithmic, computer-based trading strategies and

for developing appropriate regulations and fee structures for algorithmic traders, if needed;

see, for example, Hendershott et al. (2011), Kervel (2012) and Chaboud et al. (2013).

We study the high-frequency dynamics of U.S. stock price changes listed at the New York

Stock Exchange (NYSE) using our new dynamic Skellam model. The Skellam distribution

is appropriate because at very high frequencies stock prices evolve as integer multiples of a

fixed tick size. The tick size is defined as the smallest permitted price increment for a traded

financial instrument. At the NYSE, the tick size is 1 dollar cent ($0.01), but the tick size

may vary across exchanges. Alzaid and Omair (2010) analyze data from the Saudi Stock

Exchange at a one-minute frequency using a static (rather than dynamic) Skellam model.

Barndorff-Nielsen et al. (2012) study Lévy processes with static Skellam marks as the basis

of price processes for high-frequency data.

The dimension of high-frequency data sets can easily become very large; it is no exception

that more than 20, 000 trades occur per day for a liquid stock. We therefore have a setting

which is extremely suited for testing the resiliency of our dynamic Skellam model and the

corresponding NAIS based estimation methodology for these long samples.

Rather than aggregating the data to one-minute or five-minute intervals, we analyze

stock price changes on a trade-by-trade basis within a single working day. Let τt denote the

calendar time stamp for the tth trade (in hundredth of a second), and define yt as the stock

price change between τt−1 and τt. We define the dynamic Skellam model as

yt|θt ∼ Skellam(λ1t, λ2t), λit = exp(θit), i = 1, 2,

θt+1 = θ̄ + φθt + εt, εt ∼ NID (0,Qε) , θt = (θ1,t, θ2,t)
′,

where θ̄ is a 2×1 vector of constants, φ a 2×2 is a diagonal matrix with elements φ1 and φ2

and εt is normally and independently distributed with mean zero and variance matrix Qε.
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Table 1: Descriptive statistics, sample May 18, 2010. The table reports data characteristics of tick changes
for eight selected stocks traded on NYSE during May 18, 2010, between 9:35am and 4:00pm. We report the
“opening price” at 9:35 am (OP), the number of trades (#Trades), the percentage of zero price changes in
the time series (%0), the sample mean (Mean) and variance (Var.), and the largest up tick (Max) and down
tick (Min).

Code Company Sector OP #Trades %0 Mean Var. Max Min

JPM JPMorgan Chase Financials 40.21 23,359 55.26 -0.005 1.336 7 -8
IBM IBM IT 131.41 15,505 29.57 -0.007 6.896 16 -18
CAT Caterpillar Inc. Industrials 65.09 11,516 31.17 -0.015 4.282 12 -12
VZ Verizon Com. Telecom. 28.81 8,278 74.05 -0.004 0.336 3 -3
KO Coca-Cola Company Consumer 53.51 7,190 53.74 -0.004 1.001 6 -6
PFE Pfizer Inc. Health Care 16.10 7,141 79.96 -0.003 0.229 3 -3
LMT Lockheed Martin Aerospace 82.20 4,929 30.13 -0.024 4.386 10 -15
RDSa Royal Dutch Shell A Oil & Gas 54.35 3,727 33.97 -0.038 3.532 9 -9

4.1 Data

We obtain the data from the Thomson Reuters Tick History Database. We download the

prices for eight different stocks traded on the New York Stock Exchange (NYSE) on May

18, 2010. The stocks come from a range of different industries and have different trading

intensity levels. We provide descriptive statistics of the data in Table 1. It is clear that even

though we restrict our attention to one day, the time series dimension of these eight series

is considerable, with the number of trades ranging from a minimum of 3,727 to a maximum

of 23,359. We notice that the mean price change is negative for all stocks; it implies that all

stocks lost value on this particular day.

A number of data features is worth noting. First, most of our stocks have many trades

without a price change. The percentage ranges from 29% for IBM to 80% for Pfizer Inc. We

therefore consider the zero inflated dynamic Skellam model for these series.

Second, given data availability, we analyze tick-by-tick data without the “odd-lot”. The

odd-lot are trades with volumes less than 100 and are not recorded on the consolidated tape;

see the discussion in O’Hara et al. (2012).

Third, tick data require pre-processing. A review of high frequency data cleaning proce-

dures is, for example, provided by Falkenberry (2002). We apply the data cleaning algorithm

proposed by Brownlees and Gallo (2006) with some adjustments as described in Barndorff-

Nielsen et al. (2008). Before we start the data cleaning algorithm, we apply a rudimentary

filter with the following steps:
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(1) The NYSE is open from 9:30 am to 4:00 pm. We follow the standard practice of

discarding the trades in the first 5 minutes of trading. Hence we only consider the

trades from 9:35 am to 4:00 pm.

(2) All entries with transaction prices which are missing or equal to zero are removed.

(3) If multiple transactions have the same time stamp, we use the volume weighted average

of the transaction prices and round it to the nearest tick size.

Table 1 further shows that the variances and price ranges (Max − Min) vary across the

different stocks. For example, Verizon and Pfizer Inc. show very little volatility with a price

change range of 6 ticks, while IBM is much more volatile with a range as high as 34 ticks.

4.2 Estimation results

We estimate the autoregressive constant θ̄ = (θ̄, θ̄)′ which we assume to be equal for both

signals, the autoregressive parameters on the diagonal of φ, the variances on the diagonal of

Qε and γ as introduced in equation (3). This gives us the following parameter vector,

ψ =
(
θ̄, φ1, φ2, σ

2
1ε, σ

2
2ε, γ

)
. (23)

We maximize the likelihood function (11) in logs and as computed via the NAIS algorithm

numerically using a quasi-Newton optimization scheme based on the numerically evaluated

score function. The Gauss-Hermite polynomial in NAIS is based on M2 = 100 abscissae

points. The actual computation of the likelihood integral is based on S = 100 simulations

from the importance sampling density. To ensure a smooth likelihood function, its evaluation

for each possible value of the parameter vector is started with the same seed of the random

number generator.

The maximum likelihood estimates of parameter vector ψ in (23) are presented in Table

2, together with some related statistics, for each selected stock. We discuss a couple of

noteworthy features from Table 2.

First, the variance of the importance sampling weights is very small for such long time

series. The longest series consists of 23,359 observations which implies that we have 46,718

latent factors (given that the state dimension is two). We are confident that our proposed
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Table 2: Estimates of parameter vector ψ: high-frequency Skellam returns. The table presents the maximum
likelihood estimates of the parameter vector ψ and some related statistics. The parameter estimates are
based on likelihood evaluations with M = 10 and S = 100. All estimates are significant at the 99% confidence
level. The sample mean (Mean ω) and sample variance (Var ω) of the S = 100 generated importance weights
used for the evaluation of the maximized likelihood estimate are reported.

Company θ̄ × 103 φ1 φ2 σ1ε σ2ε γ Mean ω Var ω

JPMorgan Chase -0.2166 0.9980 0.9980 0.0193 0.0199 0.3255 1.1502 0.4008
IBM 1.0471 0.9992 0.9992 0.0086 0.0086 0.1734 1.0525 0.1204
Caterpillar Inc. 1.5970 0.9980 0.9980 0.0123 0.0130 0.1464 1.0777 0.1827
Verizon Com. -3.5298 0.9981 0.9980 0.0172 0.0153 0.0480 1.0240 0.0511
Coca-Cola Company -0.7299 0.9988 0.9987 0.0195 0.0206 0.1641 1.0389 0.0836
Pfizer Inc. -3.1338 0.9986 0.9985 0.0042 0.0207 0.0012 1.0150 0.0311
Lockheed Martin 0.8542 0.9991 0.9991 0.0137 0.0141 0.1357 1.0340 0.0753
Royal Dutch Shell A 0.9452 0.9985 0.9985 0.0121 0.0120 0.1647 1.0135 0.0285

methodology can handle even longer time series given the low variances of the considered

series.

Second, although the maximum likelihood estimates of φ1 and φ2 as well as σ2
1ε and σ2

2ε

are often very close to each other, they cannot be set equal ex-ante. For example, for the

case of Pfizer Inc the estimates of σ2
1ε and σ2

2ε are clearly different.

Third, the estimates of γ reveal that the Skellam returns for our selected stocks have an

overrepresentation of zeroes with respect to the Skellam distribution. Amongst our selected

stocks, the density mass for the JP Morgan Chase stock has been moved to zero most

severely. All estimates of γ are highly significant, at the 99% confidence level, except for the

Verizon Com and Pfizer Inc stock. We notice that although these stocks have the largest

percentage of zero trades, their return series varied between 3 ticks up and 3 ticks down

during this day. This small price range resulted in relatively low intensities λ1 and λ2 and

therefore no transfer of probability mass towards zero was needed.

4.3 Performance of NAIS

The estimation and signal extraction results partly rely on the bivariate importance sampling

method NAIS. We first scrutinize the sample mean and variance of the S = 100 generated

weights used for computing the maximized log likelihood value; they are reported in Table 2.

To verify formally whether the Monte Carlo error is sufficiently small, we investigate whether

a central limit theorem (CLT) applies to the importance sampling estimate of the likelihood
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Table 3: Log likelihood values for a range of choices of M and S. The table presents the absolute differences
in the log likelihood values, which are evaluated with different values for the number of abscissae M and the
number of importance sampling simulations S, with respect to LL∗ = −45, 215.935 which is the maximized
log likelihood value evaluated with M = 30 and S = 10, 000. The log likelihoods are computed for the
Caterpillar Inc. series and for the model with the parameter estimates reported in Table 2, that is ψ =
(0.001597, 0.9980, 0.9980, 0.0123, 0.0130, 0.1464).

S\M 6 8 10 12 14 16 18 20 30

20 0.007 0.011 0.012 0.012 0.012 0.012 0.012 0.011 0.012
50 0.010 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006
100 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
200 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
500 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
1000 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
10000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 LL∗

function. Geweke (1989) argues that when the variance of the importance density exists,

the CLT applies. We cannot determine the variance of the importance density analytically.

Therefore, we use the t-test procedure from Koopman et al. (2009) by generating 100,000

realizations from the importance density and estimating the shape parameter of a generalized

Pareto distribution by maximum likelihood based on the largest 100 realizations. For all

stocks, the t-test statistics are negative and hence they provide strong evidence that a CLT

can be applied safely. We conclude that all estimation results are reliable.

To verify the reliability of our results further, we consider the Caterpillar stock in more

detail. The benchmark estimation results reported in Table 3 use M = 10 and S = 100.

To verify how much the actual maximized log likelihood changes for different values of M

and S, we report the absolute numerical differences with respect to the log likelihood value

LL∗ that is computed with M = 30 and S = 10, 000 and which we regard as the “true”

maximized log likelihood value. We report the value |LLm,s−LL∗| where LLm,s is the log

likelihood value computed for M = m and S = s. All reported values are small, except if

particularly S becomes very low. We therefore regard M = 10 and S = 100 as a reasonable

choice. For the other stocks, we obtain similar results. Also, all parameter estimates remain

stable if we use different values of M and S.
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4.4 Signal extraction

Figure 2 presents the estimates of the volatility
√
λ1,t + λ2,t together with its two standard

error confidence interval. The signal extraction methods of Durbin and Koopman (2000)

are implemented using the same importance density that is used for the evaluation of the

maximized log likelihood values in Table 2 and that is based on M = 10 and S = 100.

The estimates of the intra-day volatility from the Skellam returns differ substantially

between stocks. Verizon, Pfizer, Lockheed Martin, and Royal Dutch Shell have rather smooth

volatility processes within the day. For Caterpillar and IBM, the intra-day volatility process

is less persistent and varies more throughout the day. The valatility of JPMorgan Chase

shows most more noise around a slowly moving trend. In all cases we can observe that

changes in the volatility pattern are reflected accurately by the ranges in which the returns

vary locally.

5 Analyzing soccer scores

As our second application, we consider score differences for soccer matches in the German

Bundesliga. The number of goals per match in a soccer game is typically low, such that

the score balance can easily be viewed as a difference of two Poisson count variables, see

Section 2. Let C1,ijt and C2,ijt denote the number of goals scored by the home team i and

the visiting team j in week t, respectively, in a match of team i versus j. Our dependent

variable is the score balance yij,t = C1,ijt − C2,ijt, which determines whether the match is

won or lost, or ends in a tie. We assume yij,t has a Skellam distribution.

Our data consists of weekly match results for 7 seasons of the German Bundesliga for

the period from 2006/07 to 2012/13. The number of teams active in the Bundesliga during

one season is 18. Each week, 9 matches are played and the total season consists of 34 weeks.

Due to team promotions and relegations, we have J = 29 teams in total that have played

in the Bundesliga for at least one season during the sample period. The total sample thus

consists of an unbalanced panel over 238 weeks for 29 teams and 2142 team pairs (i, j).

Since we model the match outcomes in the Bundesliga over a prolonged period, team

performance and the ability to score goals may vary over the sample, possibly due to changes
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Figure 2: Extracted volatility with confidence intervals. We present the extracted volatility
√
λ1,t + λ2,t

with 95% confidence intervals of the tick returns of the investigated stocks. The dots are the tick returns
with the magnitude of the tick indicated by the y-axis on the left. The magnitude of the volatility is denoted
by the right y-axis. The number of trades are on the x-axis.
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in the composition and management of the teams. We can handle this directly using our

dynamic Skellam model. The current data set allows us to investigate the performance of

our model and the associated NAIS estimation methodology for large unbalanced panels

with many missing observations. Our state space modeling framework turns out to be well

suited for the analysis of such data.

We extend our dynamic Skellam model to a panel setting and specify the model as

yij,t ∼ Skellam(λ1,ijt, λ2,ijt), i 6= j, i, j = 1, . . . , J, t = 1, . . . , n,

where λ1,ij,t and λ2,ij,t are the intensities of scoring goals for the home and away teams,

respectively, during a match played in week t. Team i is likely to win on its home ground

from team j if λ1,ij,t > λ2,ij,t. We assume that these intensities depend on the attack (µit

and µjt) and defense (βit and βjt) strengths of both teams in week t. We assume a fixed

time-invariant home ground advantage ζ for all teams and model the scoring intensities as

λ1,ij,t = exp(θ1,ij,t) = exp
(
ζ + µit − βjt

)
, λ2,ij,t = exp(θ2,ij,t) = exp

(
µjt − βit

)
. (24)

This parsimonious modeling framework for league match results using attack and defense

strengths is based on Maher (1982) and provides our benchmark model. The generalization

towards a dynamic bivariate Poisson model is developed by Koopman and Lit (2014), build-

ing on the work of Dixon and Coles (1997) and Rue and Salvesen (2000). The home ground

advantage assumes that a team scores, on average, more goals in a home game than in an

away game; see Pollard (2008) for a review.

We collect the home ground advantage coefficient and the time-varying attack and defense

strengths for each team in the state vector αt in (8), that is

αt = (ζ, µ1t, . . . , µJt, β1t, . . . , βJt)
′ . (25)

We note that the state vector αt has 59 elements in our analysis for the Bundesliga. For

each week t with Kt scheduled matches, we collect the log intensity pairs in the signal vector

θt = (θ1,i1j1,t, θ2,i1j1,t, . . . , θ1,iKtjKt ,t
, θ2,iKtjKt ,t

)′.
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When all teams play in week t, Kt = 9 and θt has 18 entries with a result out of a total of 29

(total number of teams) and has 11 missing entries. The vector θt can be constructed from

(7) using the state vector αt in (25) with ct = 0 and Zt an appropriate selection matrix as

implied by (24).

The attack and defense strengths for each team evolve separately over time as

µi,t = (1− φµ)µ̄i + φµµi,t−1 + εµ,it,

βi,t = (1− φβ)β̄i + φββi,t−1 + εβ,it,

 εµ,it

εβ,it

 ∼ NID

0,

 σ2
µ 0

0 σ2
β

 ,

for i = 1, . . . , J , and where the εit are mutually independent over i and t. Although each

team has its own unique attack and defense strength, the persistence coefficients φµ and φβ

and the innovation variances σ2
µ and σ2

β are common to all teams. This again results in a

highly parsimonious model. The fixed means µ̄i and β̄i are part of the initial state vector α1

and can be estimated as part of the signal extraction of the state vectors using importance

sampling methods; see Durbin and Koopman (2012, Chapter 11). We retain 4 parameters

ψ = (φµ, φβ, σ
2
µ, σ

2
β)′, which we estimate using the techniques outlined in Section 3.

5.1 Estimation results

To verify the effect of different values of S and M on the estimation results, we present the

estimation results for ψ in Table 4 using S = 50, 200, 1000 and M = 10, 20. The values of

the maximized log likelihood function are also presented. All reported estimates differ only

slightly for different values of S and M . In particular, the differences are negligible compared

to the estimated standard errors. We conclude that reasonable choices for S and M have no

major impact on the results.

Table 4 shows that the attack and defense strengths on a weekly basis are highly persistent

and smooth. This is to be expected: the attack or defense strength of a particular team

does not change dramatically from one week to another. When we consider the persistence

year-by-year (34 weeks), the corresponding persistence coefficients are 0.995834 = 0.87 and

0.991234 = 0.74 for the defense and attack strength, respectively. These values clearly point

to stationary dynamics. Interestingly, the attack strength evolves more persistently over

time than the defense strength.
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Table 4: Estimates of parameter vector ψ: Bundesliga team strengths. The table presents the Monte Carlo
estimates of the five model coefficients, where ζ is estimated as part of the state vector. The remaining
parameters are estimated using non-linear numerical optimization. The estimates are given for different
values of M and S (in columns). The standard errors of the estimates are presented in italics below. The
last row contains the maximized estimated log likelihood values.

S = 50 S = 200 S = 1, 000
M = 10 M = 20 M = 10 M = 20 M = 10 M = 20

φµ 0.9958 0.9958 0.9958 0.9958 0.9958 0.9958
0.0019 0.0019 0.0018 0.0018 0.0019 0.0019

φβ 0.9911 0.9911 0.9911 0.9911 0.9912 0.9912
0.0048 0.0050 0.0050 0.0046 0.0050 0.0050

σ2µ × 104 8.649 8.653 8.607 8.615 8.658 8.654

3.950 3.833 3.807 3.711 3.892 3.859

σ2β × 104 5.738 5.744 5.698 5.704 5.685 5.672

3.706 3.851 3.849 3.542 3.865 3.814

ζ 0.2617 0.2617 0.2617 0.2617 0.2617 0.2617
0.0262 0.0262 0.0262 0.0262 0.0262 0.0262

LL -8137.50 -8137.50 -8137.54 -8137.54 -8137.51 -8137.51

5.2 Model extensions

The benchmark Skellam dynamic panel model for match results as described above can be

extended in many different ways. In this section, we explore a number of such extensions

and provide further results. We introduce the extensions briefly and then comment on the

empirical findings for the German Bundesliga data. A compilation of the various extensions

is presented in Table 5. All results are computed for S = 100 and M = 10.

Away ground disadvantage

Apart from the fixed effect ζ for home ground advantage in the scoring intensity of the home

team, we can also introduce a fixed effect ζa for the disadvantage of scoring by the away

team: λ2,ij,t = ζa + µjt − βit. We find ζa = 0.088 with a standard error of 0.075, such that

this effect is not statistically significant in our study. Also, the positive sign of the estimate

suggests an advantage rather than a disadvantage of scoring by the away team.
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Zero inflated model

If we compare the observed number of draws yij,t = 0 in our data set with the expected

number of draws based on the empirical estimates in Table 4, we find that the benchmark

model underestimates the number of draws. We therefore consider a zero-inflated version of

the model using (3) and add an extra parameter γ that accounts for the possible transfer of

probability mass towards zero. Although the expected number of draws based on this model

is closer to the observed number of draws, the estimate for γ is not statistically significant.

Heterogeneous panel

The benchmark model assumes that the dynamic properties of the attack and defense pro-

cesses are the same for all teams, i.e., the coefficients φµ, φβ, σ2
µ and σ2

β do not depend on

i. It is possible that these processes behave differently over time for the different teams. A

first attempt to relax this constraint is to have different properties for the more constant

performing teams. For the definition of a constant performing team we look at the final

tables of the four most recent years before the start of our dataset, the period from 2002/03

to 2005/06. We make two groups. In the first group labeled group I we have the teams that

finished four years in a row in the top half, i.e. best 9 out of 18 teams. Group I consists

of {Dortmund, Hamburg, Bayern Munich, Werder Bremen, Schalke 04, Stuttgart}. The

second group labeled group II holds all other teams. The four additional parameters are

placed in ψ. This heterogeneous panel specification leads to a much better in-sample fit

with a likelihood ratio test value of 14.74 for 4 additional parameters. The estimates for this

model are

φµ,I = 0.9986, φβ,I = 0.9958, σ2
µ,I × 104 = 6.35, σ2

β,I × 104 = 5.22, ζ = 0.263,

φµ,II = 0.9737, φβ,II = 0.9852, σ2
µ,II × 104 = 30.9, σ2

β,II × 104 = 8.00.

We conclude that the traditionally better performing teams have more persistent attack and

defense strength processes.
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Home stadium capacity

Home ground advantage may depend on the stadium capacity of the home team. A larger

stadium that can contain a larger crowd may have a larger impact on the performance of the

two teams and perhaps the referee; see the discussion in Pollard (2008). The team specific

home ground advantage is added as a regression effect to the home team scoring intensity,

that is

λ1,ij,t = exp(ζ + ζxxi + µit − βjt),

where xi is the stadium capacity of team i (measured in multiples of 10,000) and ζx is the

regression coefficient that is placed in the parameter vector ψ. This model specification does

not lead to a significant improvement of the log likelihood value.

Correlated attack and defense strengths

The attack and defense strengths of teams are typically related; both should be good for a

successful team. We therefore consider the innovations of the autoregressive processes for

attack and defense strength to be correlated, that is εµ,it

εβ,it

 ∼ NID

0,

 σ2
µ ρσµσβ

ρσµσβ σ2
β

 , −1 < ρ < 1, i = 1, . . . , J,

where ρ is the correlation coefficient which is common to all teams. The estimate of ρ is 0.97

while the other estimates are given by

φµ,I = 0.9987, φβ,I = 0.9942, σ2
µ,I × 104 = 5.12, σ2

β,I × 104 = 4.40, ζ = 0.267,

φµ,II = 0.9263, φβ,II = 0.9894, σ2
µ,II × 104 = 92.6, σ2

β,II × 104 = 3.84.

The likelihood ratio test for one extra coefficient is 5.96, which is statistically significant at

the 5% level.

Synthesis

Table 5 reviews our empirical findings for the Bundesliga. For each model extension the

estimated log likelihood function is maximized and the Akaike information criterion (AIC)
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Table 5: Model comparison. We present the fit improvements of different model specifications discussed
in Section 5.2. Each row represents an extension of the model. The sign X is used to indicate whether
the model extension is adopted in the final model. The number of parameters (#ψ), the log likelihood
(LL) value, the likelihood ratio (LR) test and the Akaike information criterion (AIC) are reported for each
extension. In case the model extension only concerns a single parameter, the null hypothesis and the t-test
are reported as well. The LR test with ∗ and ∗∗ indicates significance at the 5% and 1% significance level
respectively.

Model specification #ψ LL LR test H0 t-test AIC

Basic model 4 -8137.51 7.6027
Away ground disadvantage 5 -8136.87 1.28 ζa = 0 1.17 7.6030
Zero inflated model 5 -8136.89 1.24 γ = 0 1.17 7.6030
Heterogeneous panel X 8 -8130.14 14.74∗∗ 7.5996
Home stadium capacity 9 -8130.92 −1.56 ζx = 0 1.23 7.6012
Correlated attack and defense X 9 -8127.16 5.96∗ 7.5977

is computed to facilitate model comparison. We conclude that team heterogeneity in the

dynamics, and correlation between attack and defense strengths are two important extensions

for soccer match outcomes in our Bundesliga data set.

5.3 Signal extraction

We present the estimated attack and defense strengths in Figure 3 using the bivariate NAIS

methodology as described in Section 4.4. The smooth and persistent processes for the attack

and defense strengths of the overall stronger teams in group I are clearly visible. The teams

in group II have not played in the Bundesliga for all seasons in our sample. A number of

those teams have only played during one season. It emphasizes that our estimation procedure

can handle such a large and unbalanced panel of teams without much problems, despite the

intricacies of the Skellam distribution and the high dimensional state and signal vector.

The correlation between the attack and defense strengths for each team is also clearly

visible. The teams of Dortmund and Bayern Munich have increased their attack strength

consistently from season to season which is also true for their defense strength. On the other

hand, the attack strength of Werder Bremen has deteriorated over time, which only partly

applies to its defense strength.
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Figure 3: Attack and defense strengths of teams in the Bundesliga. The two panels of graphs present respec-
tively the extracted attack and defense strengths for all teams in the Bundesliga from the season 2006/07
towards 2012/13, together with confidence intervals based on one standard error. The more persistent attack
and defense strength processes of the group I teams are clearly visible. Group I = {Dortmund, Hamburg,
Bayern Munich, Werder Bremen, Schalke 04, Stuttgart}. Group II is formed by the remaining teams.
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6 Conclusions

In this paper we introduced a general dynamic model for Skellam distributed counts. We

made the two intensity parameters of the Skellam distribution time-varying and showed how

to formulate the resulting model as a non-Gaussian state space model. We then performed

a likelihood-based analysis of the model using importance sampling methods. In particular,

we showed how to estimate the parameters and states of the dynamic Skellam model using

a bivariate extension of the numerically accelerated importance sampling (NAIS) method

of Koopman et al. (2013). In contrast to the higher dimensional generalization of NAIS

based on Halton sequences in Scharth (2012, Chapter 5), we were still able to use bivariate

Gauss-Hermite numerical integration techniques to compute the appropriate integrals.

Based on two different illustrations, we demonstrated the versatility of our dynamic

Skellam analysis. In our first application, we studied price changes (denoted as the number

of discrete ticks) for 8 stocks listed on the New York Stock Exchange. The number of trades

considered for these stocks ranged from almost 4,000 to more than 23,000. The dynamic

Skellam distribution turned out to be extremely useful to model the dynamic volatility of

stocks based on discrete price changes based on high-frequency tick data. In our second

application, we showed that our analysis can handle a large panel of differences of scores

by matches played in the German Bundesliga. We showed that the dynamic Skellam model

in its state space formulation can handle large sections of missing data. We also showed

how the model can be extended to include regression effects, heterogeneous dynamics in the

panel, and extensions of the Skellam distribution that assign different probability mass to a

small number of discrete outcomes. A key example of the latter is the dynamic zero inflated

Skellam model.

We conclude that the new dynamic Skellam model is robust and computationally feasible

for both long univariate time series and large unbalanced panels. The models may even rely

on high dimensional state vectors. Our flexible modeling framework for time series may

provide a useful benchmark for empirical applications based on integer outcomes that can

take both positive and negative values.

27



References

Abramowitz, M. and I. A. Stegun (1972). Handbook of mathematical functions. New York:
Dover publications.

Alzaid, A. and M. A. Omair (2010). On the Poisson difference distribution inference and
applications. Bulletin of the Malaysian Mathematical Sciences Society 33(1), 17–45.

Andersen, T. G. (2000). Some reflections on analysis of high-frequency data. J. Business
and Economic Statist. 18(2), 146–153.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2008). Realised kernels
in practice: Trades and quotes. Econometrics Journal 4, 1–33.

Barndorff-Nielsen, O. E., D. G. Pollard, and N. Shephard (2012). Integer-valued levy pro-
cesses and low latency financial econometrics. Quantitative Finance 12(4), 587–605.

Bohning, D., E. Dietz, P. Schlattmann, L. Mendonca, and U. Kirchner (1999). The zero
inflated Poisson model and the decayed, missing and filled teeth index in dental epidemi-
ology. J. Royal Statistical Society A 162(2), 195–209.

Brownlees, C. T. and G. M. Gallo (2006). Financial econometric analysis at ultra-high
frequency: Data handling concerns. Computational Statistics & Data Analysis 51, 2232–
2245.
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