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Abstract

Some key econometric concepts and problems of great importance

to Trygve Haavelmo and Ragnar Frisch are discussed within the gen-

eral framework of a cointegrated VAR. The focus is on problems typ-

ical of time-series data such as multicollinearity, spurious correlation

and regression, time dependent residuals, model selection, missing

variables, simultaneity, autonomy and identification. The paper ar-

gues that the more recent development of unit root econometrics has

been instrumental for a solution to the above problems.

∗Valuable comments from Kevin Hoover, Roman Frydman, Søren Johansen and two
anonymous referees are gratefully acknowledged. I also thank Olav Bjerkholt for his in-
sightful comments and for making me aware of unpublished work by T. Haavelmo.
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1 Introduction

Haavelmo’s Nobel prize winning Econometrica monograph "The Probability

Approach to Econometrics" from 1944 is considered to have laid the foun-

dations for modern econometrics. See for example Morgan (1995) and the

survey articles in Aldrich (1989), Hendry, Spanos, and Ericsson (1989), and

Anderson (1992). In today’s econometric world, new concepts, tests and esti-

mators are developed side by side with empirical applications. This was less

so when Haavelmo developed his probability approach. Empirical analyses

which now can be done within seconds would then have required years of

work, if at all possible. Given these obstacles, his vision about econometric

modelling using time series data obtained by "passive observation" is truly

remarkable.

The idea of the paper is to address a number of key econometric con-

cepts in Haavelmo’s work and discuss them in the context of a Cointegrated

VAR (CVAR) model (Johansen, 1996). The focus is on problems typical

of macroeconomic data such as multicollinearity, spurious correlation and

regression, time dependent residuals, normalization, reduced rank, simul-

taneity, autonomy and identification. The paper argues that these problems
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were well understood but not satisfactorily solved and that it is the more

recent development of the theory of nonstationary processes (Phillips,1987,

Johansen, 1988, 1996) that has allowed a major econometric breakthrough in

this respect. In particular unit-root econometrics seems to have been instru-

mental for a solution of the above problems. This was an important reason

for choosing the CVAR, while recognizing that other econometric approaches

may provide equally good solutions. Another reason is that the CVAR can

represent Haavelmo’s vision of a joint probability formulation of the observ-

ables and, hence, of a likelihood based approach (Johansen, 1996). It also

offers a practical and well-worked out methodology for analyzing nonstation-

ary data (Juselius, 2006).

Haavelmo’s work was strongly influenced by Ragnar Frisch and it is diffi -

cult to ignore Frisch when discussing the above problems. Many of the basic

concepts were first formulated by Frisch and later reformulated by Haavelmo

within his probability approach. In the words of Aldrich (1989, p.1): "The

concepts relating to structure were devised by Frisch and they passed into

classical econometrics through Trygve Haavelmo’s Probability Approach in

Econometrics (1944)." The fact that Frisch was not fully convinced that a

joint probability formulation is a solution to the above econometric problems

makes it even more interesting to re-address them today in the probability

framework of a CVAR.

One of Haavelmo’s important contributions is to have provided us with

a coherent framework for addressing methodological problems relevant for
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the analysis of data by passive observations. This has in particular been

important for macroeconomic data. The discussions in this paper are strictly

restricted to such problems.

2 Haavelmo’s probability approach

Consider a time series of p variables, x1,t = f(x2,t, · · · , xp,t), t = 1, .., T, where

all variables, xi,t i = 1, .., p, are stochastic. From the economic theory point

of view, x1,t is the variable of interest and x2,t, · · · , xp,t are the explanatory

variables, some of which might be exogenously given. At each point in time,

t, there is just one realization, x′t = [x1,t, x2,t, · · · , xp,t] of the underlying

stochastic process. The sample of observations is given by:

X =



x1,1 x2,1 · · · xp,1

x1,2 x2,2 · · · xp,2
...

...
...

...

x1,T x2,T · · · xp,T


=



x′1

x′2
...

x′T


Both Haavelmo and Frisch were concerned about the fact that successive

observations of typical macroeconomic variables were highly dependent ren-

dering the ordinary regression model less suitable. Haavelmo’s solution was

to formulate the joint probability, P (X|X0; θ), of the sample point X given

the initial value X0 and then estimate the parameters θ based on maximum

likelihood rather than OLS.
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... it has been argued, e.g., that most economic time series

do not conform well to any probability model, "because the suc-

cessive observations are not independent." But it is not neces-

sary that the observations should be independent and that they

should all follow the same one-dimensional probability law. It

is suffi cient to assume that the whole set of, say n, observations

[where n means T × p above, my addition] may be considered

as one observation of n variables (or a "sample point") following

an n-dimensional joint probability law, the "existence" of which

may be purely hypothetical. Then, one can test hypotheses re-

garding this joint probability law, and draw inference as to its

possible form, by means of one sample point (in n dimensions).

[Haavelmo, 1944, Preface, iii ]

The next section will discuss the conditions under which the VAR model

can be considered a suitable description of such a sample point.

2.1 Deriving a stationary VAR assuming multivariate

normality

We first consider the joint probability of X|X0:

P (X|X0) = P (x1, x2, ..., xT |X0) (1)
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and assume that the multivariate normal distribution is a reasonable approx-

imation to the probability law, P. The joint probability of (X|X0) can be

expressed as the probability of the stacked process Z ′ = [x′1, x
′
2, x
′
3, ..., x

′
T ] ∼

N(M,S). SinceM is Tp×1 and S is Tp×Tp, there are far more parameters

than observations and, without simplifying assumptions, it is not possible to

find unique estimates of M and S. Therefore, we make the assumption that

xt is a stationary process, implying it has a constant mean and constant

covariances over time.

Following Hendry and Richard (1983) we decompose the joint probability

into conditional probabilities:

P (x1, x2, x3, ..., xT |X0) = P (x1|X0)P (x2|x1, X0) · · ·P (xT |X0
T−1) (2)

where X0
T−1 = [xT−1, xT−2, ..., x1, X0].We use the notation xt−E(xt|X0

t−1) =

εt where εt isNID(0, V (xt|X0
t−1)) andE(xt|X0

t−1) and V (xt|X0
t−1) are compli-

cated expression of the mean and the covariances of the marginal processes.

Because of the multinormality assumption, the conditional mean is linear,

E(xt|X0
t−1) = µt + Π1,txt−1 + Π2,txt−2 + ... + Πt−1,tx1, but is cumbersome,

partly because it contains too many parameters to be estimable, partly be-

cause its parameters depend on the length of the conditioning set. To sim-

plify, we assume that only the first k matrices Π1,Π2, ...,Πk 6= 0, and the

remaining Πk+1,Πk+2, ... ' 0. If, in addition X0 = [x0, x−1, ..., x−k+1], then

we arrive at the kth order vector autoregressive (VAR) model with constant
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parameters:

xt = µ0 + Π1xt−1 + · · ·+ Πkxt−k + εt, t = 1, ..., T (3)

where εt isNID(0,Ω), x0, x−1, ...x−k+1 are assumed fixed, andΩ ' V (xt|X0
t−1).

Under these assumptions, εt is independent, the OLS estimates of {Π1, ...,Πk, µ0,Ω}

are Maximum Likelihood estimates, and (3) is essentially a reformulation of

the Tp−dimensional sample point. It can be considered a first characteriza-

tion of the unknown data generating process (Hendry and Mizon, 1993).

Two caveats are needed when discussing the usefulness of (3) as a valid

characterization of economic data: (i) It is derived for the particular sample

window [1,T] and there is no guarantee that other sample periods produce

the same linear estimates. This is the question of structural invariance to be

discussed in Section 6. (ii) The assumption of stationarity of xt is seldom

empirically tenable for economic time series. But, as discussed in Section

3, nonstationarity of xt can be accounted for by subjecting the VAR model

(3) to nonlinear reduced rank restrictions on the matrices, Π1, ...,Πk. Thus,

the nonstationary VAR can be considered a submodel of the more general

baseline VAR.
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2.2 Is the multivariate normality assumption plausi-

ble?

Many economists would consider multivariate normality a convenient as-

sumption that one would not expect to find in observed data.1 Not least

Frisch was sceptical about assuming normality:

Frisch’s convictions about the structure of economic reality

paired with ‘passive observations’left him in no doubt that nor-

mality or other reasonable distributions were unlikely to be ful-

filled, as required by standard method of statistical analysis.

[Bjerkholt, 2011, p. 9]

and

Frisch was here and in other projects where he hunted for

alternative approaches, very skeptical about falling back on the

least squares method and perhaps even more about making un-

warranted assumptions about normality [Bjerkholt, 2011, p. 12].

But, even though there is no a priori reason to expect the VAR residuals

to be normally distributed, Haavelmo provided some arguments for such an

assumption:

1Therefore, the VAR model is often derived under much looser conditions using the
Wold representation theorem.
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... if we consider a set of related economic variables, it is,

in general, not possible to express any one of the variables as

an exact function of the other variables only. There will be an

"unexplained rest," and, for statistical purposes, certain stochas-

tic properties must be ascribed to this rest, a priori. Personally

I think that economic theorists have, in general, paid too little

attention to such stochastical formulation of economic theories.

For the necessity of introducing "error terms" in economic rela-

tions is not merely a result of statistical errors of measurement.

It is as much a result of the very nature of economic behavior, its

dependence upon an enormous number of factors, as compared

with those which we can account for, explicitly, in our theories.

We need a stochastical formulation to make simplified relations

elastic enough for applications. [Haavelmo, 1944, p. 1]

When the residuals are considered a catch-all for everything else that is

not included in the empirical model and ’everything else’comprises an ’enor-

mous number of factors’the central limit theorem suggests that normality

could be approximately valid, provided these factors are independent. But,

as there is no a priori reason to expect independence, normality is an assump-

tion that needs to be checked and when checked it is often rejected. Thus,

one could conclude like Frisch, that normality is an assumption which is not

necessarily warranted in the data. But instead of giving up on normality, an-

other possibility, which seems more in line with Haavelmo’s methodological
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thinking, is to control for the causes of non-normality, for example, by condi-

tioning on factors in the environment that have changed. Experience shows

that it is often extraordinary events during the sample period, such as eco-

nomic reforms and political interventions, which are the reason for residual

skewness and excess kurtosis. In Haavelmo’s words:

Purely empirical investigations have taught us that certain

things in the real world happen only very rarely, they are "mir-

acles," while others are "usual events." The probability calculus

has developed out of a desire to have a formal logical apparatus

for dealing with such phenomena of real life. The question is not

whether probabilities exist or not, but whether - if we proceed

as if they existed - we are able to make statements about real

phenomena that are "correct for practical purposes." [Haavelmo,

1944, p. 43]

The "usual events" can often be adequately described by a normal distrib-

ution, whereas the "miracles" tend to fall outside the normal range. Without

the normality assumption one would be inclined to ignore these important

"miracles" which can be highly informative, for example, about the effect

of changes in policy. Failure to properly control for such events is likely to

cause residuals to be autocorrelated and inference to be biased. For example,

a non-modeled shift in the equilibrium mean and/or average growth rates is

likely to cause residual autocorrelation and may (incorrectly) suggest longer
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lags in the VAR. Such extraordinary events also have strong implications for

the model’s forecasting performance. See, for example, Clements and Hendry

(1999).

Thus, the reason for assuming multivariate normality, is not because we

necessarily believe economic data follow the multivariate normality rule, but

because it allows us to check that all systematics have been included in the

model. It is a safeguard against relying on conclusions from a model which

is basically misspecified (Hoover et al., 2009, Hoover, 2012) and ensures that

our estimates are full information maximum likelihood.

Today it is straightforward to control for the effect of "miracles" by ad-

equate use of various dummies (see the illustrative example in Section 4.2).

Numerous tests for parameter constancy and structural change have been

implemented in user-friendly software packages (see for example, Doornik

and Hendry, 2006, Hansen and Johansen, 1999 and Dennis et al. 2006) and

can be used to detect such "miracles". Experience shows that multivariate

normality is seldom supported unless all major changes in the environment

have been corrected for. As Section 4.2 shows, this is also crucial for para-

meter constancy. Frisch’s scepticism about the usefulness of the normality

assumption might have been a result of problems with parameter noncon-

stancy without proper tools to cope with them.
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3 Correlation, confluence and cointegration

Both Frisch and Haavelmo were concerned about the fact that correlation and

regression analysis of trending data tend to produce nonsense results, a fact

already demonstrated by Yule (1926). One solution was to use trend-adjusted

variables to reduce strong multicollinearity, but this was not suffi cient. For

instance, Frisch and Waugh (1933) showed (by applying the Gaussian algo-

rithm for solving the normal equations) that the estimated coeffi cients are

identical in regression models with trend-adjusted data or with a linear trend

included as a regressor variable. Thus, accounting for a linear trend does not

solve the inherent problem of multicollinearity between economic variables.

Today we know that the multicollinearity problem is not just due to deter-

ministic but also stochastic trends in the data.

To solve the multicollinearity problem, Frisch developed confluence analy-

sis in the 1930s as a tool for unravelling (identifying) different linear relation-

ships that might hold between a set of (trend-adjusted) variables. The major

tool for discovering confluent relations among the variables was called ’bunch

maps’. In Haavelmo’s lecture notes on confluence analysis, he emphasizes

that

the main purpose of bunch maps was to discover possible multi-

collinearity in the linear relation to be studied, and that it was

necessary to settle this question before any attempt to find "best"

estimates. ... It is intended to prevent the adoption of a model of
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estimation which might lead to meaningless results". [Haavelmo

and Staehle, 1941, p.28].

The bunch maps is essentially a sophisticated analysis of empirical cor-

relation coeffi cients. But when data are difference stationary, rather than

(trend)-stationary, the empirical correlation coeffi cient is a misleading esti-

mate of the true association between two variables (Phillips, 1986 and Jo-

hansen, 2012). This is because the average value of a unit root variable is an

inconsistent estimate of its mean. Since unit root econometrics is a more re-

cent development, this problem could obviously not have been addressed by

Frisch and Haavelmo. Nonetheless, hidden unit roots in the variables may

very well have affected the empirical performance of bunch maps. Today

we know that multicollinearity, whether due to stochastic or deterministic

trends, can be easily solved by formulating the VARmodel in error-correction

form:

∆xt = µ0 + Πxt−1 + Γ1∆xt−1 + εt, t = 1, ..., T (4)

εt ∼ NID(0,Ω).

The hypothesis that xt ∼ I(1) is formulated as a reduced rank condition

Π = αβ′ (5)

where α and β are p × r matrices (r < p) and the r relations, β′xt, define
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stationary linear relationships between p nonstationary variables. The ad-

vantage of the error correction formulation compared to the VAR in levels is

that by transforming the trending variables, xt, into stationary differences,

∆xt, and stationary cointegration relations, β
′xt, the multicollinearity prob-

lem which was of such great concern to Frisch and Haavelmo is more or less

solved. This is because:

1. Multicollinearity between the x variables does not lead to imprecise

estimates of the cointegration relations, β′xt. This is because two vari-

ables are cointegrated only if they share a common stochastic trend

defined as the cumulation of all permanent shocks that have pushed

the variables out of equilibrium. While, for example, cointegration

between two unrelated random walks will be rejected with high prob-

ability, they may have a correlation coeffi cient close to one in small

samples (see Johansen, 2012). Also, the cointegration coeffi cients are

"canonical" in the sense of being invariant to increasing the information

set, or to changing the direction of minimalization.

2. The removal of trends either by differencing or by cointegration is likely

to make the multicollinearity between∆xt and β
′xt small enough not to

be a problem. When xt ∼ I(1), ∆xt and β
′xt are stationary, standard

inference on (α,Γ1,Σ) applies for given β.

Thus, it is the explicit separation between short-run and long-run effects

made possible by cointegration that makes all the difference between the
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CVAR type of models and the Haavelmo-Cowles Commission models. As a

matter of fact, the interest in confluence analysis (and bunch maps) subsided

after the breakthroughs of the Cowles Commission. Hendry and Morgan

(1989) gives a number of reasons why this was the case and argues that

the more recent advances in cointegration has solved some of the problems

associated with identifying structural economic relationships in the data.

4 Structural models, the environment, and

the CVAR

Haavelmo discussed the meaning of a structural relation in an unpublished

paper prepared for the ESEM-16 meeting in 19542:

It has little meaning to talk about economic relations that

exist without some notion of "environment" in which the rela-

tion may be expected to hold good. The totality of properties of

the experimental conditions under which a particular economic

relation is valid is often called the structure of the economy con-

sidered, and the relation itself is called a structural relation. Thus

2Herman Wold chaired the program committee with Haavelmo, Tinbergen et al. as
members. The main theme of the ESEM meeting had been decided to be “The possibilities
and limitations of econometric models; recursive versus structural systems”(Econometrica
22(1), 139). In the tentative program Haavelmo is not listed as presenter of a paper, only
for opening comments on the second day for which the theme was given as “General
discussion on the possibilities and limitations of econometric models.”This may explain
the shortness of the paper (6 pp and a 2-page Appendix) and why he never made an effort
to publish it. [Personal communication with Olav Bjerkholt.]
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a structural economic relation is not actually a particular kind of

economic relation, but rather any economic relation associated

with and valid for a specified real economic structure that could

conceivably be reproduced experimentally.[Haavelmo, 1954, p. 2]

In the Appendix of the paper he used a simple model describing the

demand for a commodity, yt, as a function of its price, pt, to illustrate his

ideas3. The postulated true relationship is first introduced together with a

design of experiment based on which the unknown parameter of interest, β1,

could be estimated:

yt = β1pt + β0 + ut (6)

where (i) pt can be deliberately fixed for experimental purposes, (ii) for

every fixed value of pt, ut is an unobservable random variable with a known

distribution which does not depend on the value of pt, (iii) u′ts are indepen-

dent in repeated trials, (iv) E(yt) = β1pt + β0, (v) β1 and β0 are unknown

parameters.

He then discussed a situation where instead of an experimental set-up,

there are only time-series data available which were not collected in accor-

dance with the designed experiment postulated above:

3To facilitate the comparison with the CVAR model, I have changed Haavelmo’s (1954)
notation as follows: In Haavelmo’s equation (A), I have changed α to β1, in (a)-(b) I have
changed w1,t to ε1,t, w2,t to ε2,t, wt to ε3,t, and β to b. I have also explicitly added a
constant β0 to (6) which is only implicitly assumed in Haavelmo.
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yt = β1pt + β0 + hε3,t + ε1,t (7)

pt = bpt−1 + kε3,t + ε2,t (8)

where (i) ε1,t, ε2,t and ε3,t are assumed to be mutually and serially indepen-

dent random variables, (ii) β1 is the same unknown parameter as in (6), and

(iii) b, h, k are unknown constants. Haavelmo notes that in this case pt is

also a random variable and, unless h or k, or both are zero, Eyt 6= (β1pt+β0),

due to the simultaneous effect of ε3,t on both yt and pt.

4.1 Translating Haavelmo’s model to a CVAR

The CVAR model is based on the assumption that some of its characteristic

roots are unit roots. Even though for obvious reasons nonstationarity was not

discussed by Haavelmo, a CVAR translation of Haavelmo’s model requires

the variables to be nonstationary. By assuming that b = 1 in (8), pt and,

hence, also yt becomes unit root nonstationary:

pt = k

t∑
t=1

ε3,i +
t∑
t=1

ε2,i +X0, t = 1, ..., T (9)

where X0 is a catch-all for initial components. The Haavelmo model contains

three stochastic shocks but only two variables. As the CVAR is supposed
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to account for all sources of stochastic variation, we define zt =
∑
ε3,t and:

∆xt = αβ′xt−1 + µ0 + ut, ut ∼ NID(0,Ω) (10)

where x′t = [yt, pt, zt] , u
′
t = [u1,t, u2,t, u3,t] , and µ0 = αβ0, consistent with the

assumption that there are no deterministic trends in the variables. To allow

for the current effects in the equations (7) and (8), (10) is premultiplied by

a matrix A0:

A0∆xt = a1β̃
′
x̃t−1 + εt, εt ∼ NID(0,Σ) (11)

where x̃′t = [yt, pt, zt, 1] , β̃
′

= [β1, β2, β3, β0], ε
′
t = [ε1,t, ε2,t, ε3,t] = A0ut, and

Σ is a diagonal matrix. The following coeffi cients of the matrices A0 and a1

reproduce Haavelmo’s model:


1 −α −h

0 1 −k

0 0 1




∆yt

∆pt

∆zt

 =


−1

0

0

 [yt−1 − β1pt−1 + β0] +


ε1,t

ε2,t

ε3,t

 (12)

t = 1, ..., T

The system has one cointegration relation corresponding to the true rela-

tion (6). It has two exogenous variables, pt and zt, of which the former is
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weakly exogenous because α2 = 0 and the latter is strongly exogenous be-

cause A0,31 = A0,32 = α3 = 0. The first equation in the system corresponds

to (7), the second to (8) with b = 1, whereas the third is just an auxiliary

equation defining ∆zt = ε3,t. Thus, the distinction between endogenous and

exogenous variables which plays a prominent role in Haavelmo’s work is fully

compatible with the CVAR formulation. Furthermore, the assumption that

pt is exogenous with respect to yt is easily testable by the two zero restrictions

in the equation for pt in (12), as is the assumption of lag length and error

independence. Thus the CVAR formulation allows us to check the empirical

adequacy of the assumptions made and, if needed, make the model more

flexible. As discussed in Hoover and Juselius (2012), (12) can be thought of

as a "design of experiment for passive observations".

The moving average representation of (12) is given by:


yt

pt

zt

 =


β1 kβ1

1 k

0 1


 ∑t

i=1 ε2,i∑t
i=1 ε3,i

+ C∗(L)εt + X̃0, t = 1, ..., T

where C∗(L)εt is a lag polynomial of stationary components describing im-

pulse response functions of shocks to the system and X̃0 contains the initial

values, x0,x−1, of the process and the initial value of the short-run dynam-

ics C∗ (L) ε0. The estimate of β1 is super consistent (Phillips and Durlauf,

1986, and Stock, 1987) and not biased by the appearance of the common

shock, ε3,t, in (7) and (8), i.e. E(β̂1) = β1. The two common stochastic
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trends,
∑t

i=1 ε2,i and
∑t

i=1 ε3,i, are cancelled in the relation yt − β1pt and

E(yt−β1pt+β0) = 0. While yt and pt are likely to be strongly multicollinear

(measured by the empirical correlation coeffi cient), this is not a problem in

(12) where all components in ∆xt and β
′xt are nontrending.

4.2 Changes in the environment

The question whether a cointegration relation is likely to remain constant

when there are changes in the environment is crucial for its structural in-

terpretability. In Haavelmo, Chapter II, about the "degree of permanence

of economic laws" Haavelmo raised the question "whether or not we might

hope to find elements of invariance in economic life, upon which to establish

permanent ’laws’":

When we use the terms "constant relationships", or "unstable,

changing relationships", we obviously refer to the behavior of

some real economic phenomena, as compared with some behavior

that we expect from theoretical considerations. The notion of

constancy or permanence of a relationship is, therefore, not one

of pure theory. It is a property of real phenomena as we look upon

them from the point of view of a particular theory. [Haavelmo,

1944, p. 13]

As an illustration, let us assume that the environment changes at time t1

in Haavelmo’s model, for example as a result of a political reform that leads
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to an unanticipated shift in the level of yt, but not in pt. As a consequence

there is an extraordinary change in ∆yt and a shift in the equilibrium mean

of the relation between yt and pt. To account for these changes the CVAR

is respecified as:

∆xt = αβ′xt−1+µ0+Φ1Ds,t1 +Φ2Dp,t1 +ut, ut ∼ NID(0,Ω), t = 1, ..., T

where Ds,t1 = 1 for t = t1, ..., T, 0 otherwise, Dp,t1 = 1 for t = t1, 0 otherwise,

and Φ1 = αβ01 implies that the mean E(β′xt) = β0+β01 after t1. The CVAR

with current effects becomes:

A0∆xt = a1β̃
′
x̃t−1 + Φ2Dp,t1 + εt, εt ∼ NID(0,Σ)

where x̃′t−1 = [yt, pt, zt, 1, Ds,t1 ] , β̃
′

= [β1, β2, β3, β0, β01]. Haavelmo’s model

can now be represented by:


1 −α −h

0 1 −k

0 0 1




∆yt

∆pt

∆zt

 =


−1

0

0

 [yt−1 − β1pt−1 − β0 − β01Ds,t1 ]+Φ2Dp,t1+


ε1,t

ε2,t

ε3,t

 ,
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and the corresponding moving average representation is


yt

pt

zt

 =


β1 kβ1

1 k

0 1


 ∑t

i=1 ε2,i∑t
i=1 ε3,i

+


β0 β01

0 0

0 0


 1

Ds,t

+

C∗(L)(εt + Φ2Dp,t1) +X0, t = 1, ..., T

By accounting for the unanticipated effect of the reform with the impulse

dummy and the shift in the equilibrium mean with a step dummy, the esti-

mate of the parameter of interest, β1, is unaffected by the change in environ-

ment, E(β̂1) = β1 and E(β̃
′
x̃t−1) = 0. Also, the residuals continue to obey the

multivariate normality rule, illustrating the discussion in Section 2.2. That

such changes in the environment played an important role in Haavelmo’s

methodological thinking is evident from:

Very often our theories are such that we think certain directly

observable series would give adequate experimental results for a

verification, provided other things did not change. What bearing

may such theories have upon reality, if we simply neglect the in-

fluences of these "other things"? This, again, is connected with

the following problem: Are we interested in describing what ac-

tually does happen, or are we interested in what would happen

if we could keep "other things" unchanged? In the first case we

construct theories for which we hope Nature itself will take care
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of the necessary ceteris paribus conditions, knowing, e.g., that

this has been approximately so in the past. In the second case

we try to take care of the ceteris paribus conditions ourselves, by

statistical devices of clearing the data from influences not taken

account of in the theory (e.g., by multiple-correlation analysis).

[Haavelmo, 1944, p. 16-17]

5 Simultaneous equations and identification

The problem of identifying simultaneous economic relationships, for exam-

ple a demand relation from a supply relation, was first addressed by R.A.

Lehfeldt in 1914, followed by a number of other scholars. See Hendry and

Morgan (1995) for a survey and discussion. Haavelmo’s important contribu-

tion was to address the statistical implications of such simultaneous equations

when the variables and the relations are stochastically determined.

if we consider a set of related economic variables, it is, in gen-

eral, not possible to express any one of the variables as an exact

function of the other variables only. There will be an"unexplained

rest," and, for statistical purposes, certain stochastical properties

must be ascribed to this rest . . . We need a stochastical formula-

tion to make simplified relations elastic enough for applications.

[Haavelmo, 1943, p.1]
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A related issue was how to estimate the parameters of interest in a simul-

taneous equation system. Haavelmo pointed out that regressing one endoge-

nous variable on exogenous and other endogenous variables would in general

give rise to a simultaneity bias in the parameters of interest:

if one assumes that the economic variables considered satisfy, si-

multaneously, several stochastic relations, it is usually not a sat-

isfactory method to try to determine each of the equations sep-

arately from the data, without regard to the restrictions which

the other equations might impose upon the same variables. That

this is so is almost self-evident, for in order to prescribe a mean-

ingful method of fitting an equation to the data, it is necessary

to define the stochastical properties of all the variables involved.

[Haavelmo, 1943, p.2]

To be able to estimate the parameters of a simultaneous equations system,

the problem of identification has first to be solved. Johansen (1994) and Jo-

hansen and Juselius (1994) discuss three different concepts: (1) generic iden-

tification which is related to the specification of a simultaneous model and

is necessary for model parameters to be uniquely determined, (2) economic

identification which requires that the model has identified the economic pa-

rameters of interest and, finally, (3) empirical identification which requires

that generic identification is not lost by setting a statistically insignificant

coeffi cient to zero. The discussion below will center around the first two
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concepts and how they can be understood when data are nonstationary.

5.1 Identification when data are nonstationary

A typical Haavelmo - Cowles Commission simultaneous equations model was

defined by endogenous variables being a function of other endogenous vari-

ables, exogenous variables and lagged variables and identified by imposing a

suffi cient number of (exclusion) restrictions on the parameters. Contrary to

the traditional Haavelmo model, the CVAR does not distinguish between en-

dogenous and exogenous variables: all stochastic variables are modelled and

exogeneity of a variable is tested as a zero row restriction on the α matrix

and not assumed from the outset. The separation between the r pulling and

the p−r pushing forces, implies that the CVAR is inherently consistent with

p−r exogenous trends, α′⊥
∑t

i=1 εi, where α
′
⊥ is a p−r×p matrix orthogonal

to α. Unless the p − r vectors in α⊥ are unit vectors, the exogenous trends

do not correspond directly to any of the p variables. Instead the exogenous

trends are cumulations of latent "structural shocks" to the system, such as a

demand and a supply shock, estimated as a linear combination of the CVAR

residuals.

The dichotomy of pulling and pushing forces allows us to address identifi-

cation in four dimensions: the identification of (1) the long-run cointegration

structure, (2) the short-run adjustment structure, (3) the exogenous driving

shocks, and (4) the dynamics of the impulse responses. See Juselius (2006)

for a detailed discussion. Only the first two will be discussed here as they

25



are most closely related to the identification problem of a traditional system

of simultaneous equations.

To illustrate the relationship between long-run and short-run identifica-

tion, the ’reduced form’(4) subject to (5) is pre-multiplied by the current

effects matrix A0:

A0∆xt = A1∆xt−1 + a1β
′xt−1 + vt, vt ∼ NID(0,Σ). (13)

where A1 = A0Γ1, a1 = A0α, µ0,a = A0µ0, vt = A0εt, Σ = A0ΩA
′
0. It

appears that β is the same in the "reduced form" and the "contemporaneous

form" and can, therefore, be estimated based on either form. The fact that

the estimate of β is super consistent, while the estimate of the short-run

adjustment parameters are
√
T consistent, allows the identification to be

performed in two steps: (1) the identification of the long-run parameters,

β, and (2) the identification of the short-run structure conditional on the

identified β (Johansen, 1995).

Generic identification of the r (simultaneous) long-run relations requires

at least r(r−1) restrictions, and the short-run adjustment equations at least

p(p−1) restrictions. In both cases the restrictions have to satisfy the identifi-

cation rank conditions derived for the CVAR model by Johansen (1995) and

Johansen and Juselius (1994).4 Thus, the reduced rank restrictions Π = αβ′

are helpful for identification as they allow a separation of long-run from

4Similar rank conditions was already established for the traditional simultaneous equa-
tion system by Koopmans, Rubin and Leipnik (1950) and Wald (1950).
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short-run effects.

The identification of the long-run structure, β′xt, is similar to the tradi-

tional simultaneous equations, describing relationships among endogenous,

exogenous, and lagged variables, except that no lags are involved in β′xt.

Identification of the short-run adjustment structure is basically about how

to identify causal links in the data by imposing restrictions on the contem-

poraneous matrix A0, given lagged changes of the process, ∆xt−1, and lagged

equilibrium errors, β̂
′
xt−1, where β̂ is an estimated long-run structure. Eco-

nomic identification of the short-run structure generally requires the residuals

to be uncorrelated. Large off-diagonal elements of the covariance matrix Ω

arise when the current changes of the system variables are strongly corre-

lated, or when the residuals are simultaneously being affected by omitted

variables. As an illustration of the former case, the residual covariance ma-

trix is a nondiagonal matrix in the reduced form of Haavelmo’s model (10),

whereas it is a diagonal matrix in the structural form (12).

5.2 Irreducible cointegration and coflux relations

An identified cointegration structure consists of r irreducible cointegration

relations, where irreducibility implies that stationarity is lost if one of the

variables is omitted from the relation (Davidson, 1998). Hence, they contain

exactly the right number of variables needed to make the relation stationary,

no less, no more. There is, however, no reason to expect the number of irre-

ducible relations to be same as the number of postulated economic relations.
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The consequence is that a cointegration relation does not necessarily corre-

spond to a hypothetical economic relation. To illustrate this we assume that

the relation of economic interest is a Phillips curve with a Phelpsian natural

rate (Phelps 1994, Juselius and Juselius, 2013):

∆pt = −b1ut + u∗t (14)

where ∆pt is the inflation rate, ut is the unemployment rate, u∗t is the natural

rate as a function of the real interest rate, rt:

u∗t = b2rt + b0. (15)

The sign of the coeffi cients bi define a priori expected effects, the three

variables are collected by passive observation,and all of them are stochas-

tic. A CVAR model for x′t = [∆pt,ut, rt] is given below where for simplicity

we disregard the transitory effects Γ1 and focus exclusively on the long-run

component αβ′.

For rank one, implying two stochastic exogenous trends, we get:


∆pt

∆ut

∆rt

 =


α1

α2

α3

 [β′1xt] +


µ1

µ2

µ3

+


ε1,t

ε2,t

ε3,t

 .

where β′1xt = β1∆pt + β2ut + β3rt.With just one cointegration relation, nor-
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malizing on∆pt is suffi cient for generic identification5. If, in addition, β2 = b1

and β3 = −b2 then there is a one to one correspondence between the coin-

tegration relation and the Phillips curve (14) with a Phelpsian natural rate

(15), that is we have achieved economic identification. In this case inflation

and unemployment are not cointegrated, nor is the real interest rate sta-

tionary. Furthermore, if α1 < 0 then ∆pt is equilibrium correcting, and if

α2 = α3 = 0, then ut and rt are exogenous.

For rank two implying one stochastic exogenous trend, we get:


∆pt

∆ut

∆rt

 =


α11 α12

α21 α22

α31 α32


 β′1xt

β′2xt

+


µ1

µ2

µ3

+


ε1,t

ε2,t

ε3,t

 .

With two cointegration relations, generic identification requires at least one

restriction on each relation in addition to normalization. Let the identified

relations be β′1xt = β11∆pt + β12ut and β
′
2xt = β23rt where β11 = 1, β12 = b1

and β23 = 1, implying one overidentifying restriction on each relation. In

this case, inflation and unemployment are cointegrated and the real interest

rate is stationary. The economic relation (14) can be recovered by combining

the two cointegration relations:

α11β
′
1xt + α12β

′
2xt = α11 {∆pt + b1ut + α12/α11rt} . (16)

5While normalization can be on any of the variables xi without changing the relative
values βi/βj , an economically meaningful normalization requires that the corresponding
αi is significant.
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To label (16) a Phillips curve relation usually requires that inflation is signif-

icantly equilibrium correcting to the relation and the condition for economic

identification is that α11 < 0 and α12/α11 = −b2.

The example illustrates that economic identification is generally incom-

plete without combining irreducible cointegration relations with the short-

run adjustment coeffi cients. This is different from a traditional simultaneous

equation model associating a number of endogenous variables with a num-

ber of exogenous variables and lagged endogenous and exogeous variables.

Identification is then mostly achieved by exclusion restrictions and causality

is implicitly assumed by normalizing on a postulated endogenous variable

in each equation. One may say that the adjustment coeffi cients α in the

CVAR play a similar role for identification as the lagged variables in the

simultaneous equations model.

The above example points to strong parallels between cointegration and

Frisch confluence analysis (Frisch, 1934). Both represents statistical methods

developed as a means to uncover structure among correlated variables. In

particular, the correspondence between an irreducible cointegration relation

and what Frisch called a coflux equation is rather striking:

An equation which is irreducible with respect to the set of func-

tions which forms the actual solution of the complete system we

shall call a "coflux" equation. ... The notion of coflux relations is

fundamental when we ask what sorts of equations it is possible to

determine from the knowledge of the time shapes that are actu-
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ally produced. The answer is obviously that all coflux equations

and no other equations are discoverable from the time shapes of

the functions that form the actual solutions. [Frisch, 1938, p.14]

Coflux equations were important because they could be estimated (in

the deterministic case, solved for) from the data - "they were discoverable

through passive observations." In modern terms, coflux equations are the

ones that are identified. But, while coflux equations are estimable, they are

not necessarily the most interesting equations (Aldrich,1989, p. 24).

The same can also be said about cointegration relations. Because any

linear combination of r cointegration relations is also a stationary relation

there are usually many ways of identifying a structure of irreducible relations.

For example, if x1,t− x2,t and x2,t− x3,t are stationary, then x1,t− x3,t is also

stationary and the long-run structure (β′1xt, β
′
2xt) can be identified by either

(x1,t − x2,t, x2,t − x3,t) or (x1,t − x2,t, x1,t − x3,t) and one of the sets may not

be economically interesting.

To summarize, a generically identified structure of r irreducible cointegra-

tion relations, β′xt, can be thought of as building blocks that can be used to

construct meaningful economic relations with the help of the α coeffi cients.
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6 Structural invariance, autonomy, and coin-

tegration

In trying to establish relations with high degree of autonomy we

take into consideration various changes in the economic structure

which might upset our relations, we try to dig down to such re-

lationships as actually might be expected to have a great deal of

invariance with respect to certain changes in structure that are

"reasonable" [Haavelmo, 1944, p.28].

Can we use cointegration to dig down to such invariant relationships?

Cointegration possess certain invariance properties that can be exploited

when searching for structure. For example, the cointegration property is

invariant to extensions of the information set. If cointegration is found be-

tween a set of variables in small CVARmodel, the same cointegration relation

will be found in a CVAR model with a larger set of variables. Adding new

variables to the CVAR model is, however, likely to increase the cointegration

rank and, hence, new cointegration relations would have to be identified. The

invariance property of a cointegration relation does not, however, extend to

the short-run adjustment coeffi cients. For example, a variable found to be

exogenous in a smaller model may no longer be so in a larger model. Also

allowing for simultaneous effects among the endogenous variables is likely

to change α and Γ1 in (4). While this suggests that economic identification

should be based on a fairly complete CVAR model, experience shows that
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identification of the long-run structure tends to become increasingly diffi cult

as the number of variables increases. Fortunately, the invariance property of

a cointegration relation, allows us to gradually expand the CVAR by building

on previously found cointegration relations when adding variables the model.

Such a procedure allows us to systematically exploit the effect of the ceteris

paribus assumption in the theory model on the empirical conclusions. For

an illustration, see Juselius (2006).

But even though cointegration analysis is a powerful method for uncov-

ering genuine relationships among variables, it is basically a statistical regu-

larity that may break down if conditions change. Therefore, cointegration is

no guarantee for structural invariance in the sense that its coeffi cients might

change when other parts of the structure change.6 Consider for example,

the rank two case of the Phillips curve of the previous section where the

inflation-unemployment and the real interest relations were both stationary.

Assume now that economic conditions change in a way that introduces a new

stochastic trend causing the cointegration relations to become nonstationary.

An economist estimating a standard Phillips curve between inflation and un-

employment without accounting for the effect of the real interest rate would

now conclude that the Phillips curve has broken down. But the basic feature

of the Phillips curve, β12 = b1, could still be unchanged in the combined rela-

tion (16). In Haavelmo’s words: "The construction of systems of autonomous

relations is, therefore, a matter of intuition and factual knowledge; it is an

6This is closely related to the concept of super exogeneity in Engle et al. (1983).
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art" (Haavelmo, 1944, p.29).

Another example is the Danish money demand relation which was shown

to have been constant from 1975 to 2003 except for a shift in the equi-

librium mean in connection with a major financial deregulation in 1983

(Juselius 2006). The question is whether the relation would be stable un-

der other hypothetical reforms that change the economic structure. Would

Haavelmo/Frisch have considered it a structural (autonomous) relation de-

spite the equilibrium mean shift? Haavelmo seemed to have had a fairly

pragmatic view on this issue:

It has little meaning to talk about economic relations that exist

without some notion of "environment" in which the relation may

be expected to hold good. The totality of properties of the ex-

perimental conditions under which a particular economic relation

is valid, is often called the structure of the economy considered,

and the relation itself is called a structural relation [Haavelmo,

1954, p.2].

Still it is easy to share Frisch conclusion that autonomy and structural

invariance are theoretical concepts which are empirically elusive.

The question of what connection there is between the relations we

work with in theory and those we get by fitting curves to actual

statistical data is a very delicate one. I think it has never been

exhaustively and satisfactorily discussed. [Frisch, 1938]
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7 A concluding discussion

The idea of this paper was to demonstrate that many econometric problems

which were discussed by Haavelmo and his contemporaries have been given

a practical solution within the general framework of a well specified CVAR

model. It was chosen because it can be derived from a joint probability model

for all observables, and therefore can represent Haavelmo’s probability ap-

proach to economics. By exploiting the unit root feature, typical of many

economic variables, the CVAR model was shown to solve the problem of

(1) time dependent residuals by conditioning on suffi ciently many lags and

controlling for a changing environment when needed, (2) spurious correla-

tion and regression results, (3) multicollinearity, (4) normalization, and (5)

reduced rank.

The paper also argues that the unit root property of economic data al-

lows us to address identification, simultaneity, and structural invariance in

a much richer context than was possible for Frisch and Haavelmo and their

contemporaries. Whether the CVAR model can be assumed to produce au-

tonomous or structurally invariant results depends on whether the economist

is able to "unravel the relationships of interest from the ones which were a

characteristic of the data set, but of no interest to the economist (Hendry and

Morgan, 1989)". It also depends on whether the sample period represents

a reasonably constant environment or, when this is not the case, whether

such changes can be controlled for. The frequent finding that the normal-
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ity assumption and parameter constancy are acceptable only ex post after

we have allowed for shifts in the equilibrium mean (or shifts in the growth

rates) due to extraordinary institutional events implies that the CVAR is not

likely to produce unbiased forecast errors over periods potentially subject to

structural changes and location shifts in the probability distribution (Castle

et al. 2010). This caveat is of course not specifically relevant for the CVAR,

but applies generally to empirical models. It is likely to have important

implications for the choice of theoretical models that can be claimed to be

empirically relevant.

As a final conclusion, likelihood based cointegration seems to be able

to combine the basic ideas of Frisch’s confluence analysis with Haavelmo’s

probability approach into a rich methodological approach for making infer-

ence based on passive observations.
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