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1 Introduction

Many countries have experienced dramatic movements in house prices over the past 15-20

years, with large increases during the 1990s and first half of the 2000s followed by price

drops since 2006-2007. This pattern has been especially pronounced in countries such as

Spain, Ireland, Denmark, Italy, the Netherlands, the UK, and the US, see Figure 1. Un-

derstanding these developments is important, not least because the recent international

financial crisis to a large extent originated from the housing markets, e.g. the subprime

mortgages in the US and the overinvestment in housing in many European countries.

In general, changes in house prices must be due to one of two causes (or a combina-

tion of them), either changing ’fundamentals’ or speculative bubbles. In the literature,

rents are usually considered an important part of fundamentals for house prices, see e.g.

Hamilton and Schwab (1985), Meese and Wallace (1994), Himmelberg et al. (2005),

Gallin (2006), Ghysels et al. (2012), Brunnermeier and Julliard (2008), Campbell et al.

(2009), Plazzi et al. (2010), Cochrane (2011), Engsted and Pedersen (2013), and Gelain

and Lansing (2013). For the owner of a house who also lives in the house, rents can be

seen as a proxy for the unobservable housing service flow and thus are the equivalent to

the dividends that an owner of a stock obtains in the equity market.

However, the recent boom-bust developments in real estate markets have generated

a heated discussion of whether speculative bubbles could be a major factor in house

price movements in addition to changing fundamentals. During the boom period several

observers, most notably Shiller (2005), raised the possibility that a bubble was driving

US house prices, while others, e.g. Himmelberg et al (2005), McCarthy and Peach (2004),

and Krainer and Wei (2005), argued that the US housing market was not inflated by a

bubble.

After the end of the boom period a few studies have investigated the bubble hypoth-

esis for the US housing market using formal econometric tests. Phillips and Yu (2011)

basically use the econometric methods from Phillips et al. (2011), which rely on forward

recursive regressions coupled with right-sided unit root tests, to document explosive be-

havior in US house prices. Kivedal (2013) uses the co-explosive vector-autoregressive

(VAR) methodology from Engsted and Nielsen (2012), and he also finds US house prices

to be explosive. Thus, both these recent studies find evidence in support of the bubble

hypothesis for the US.

To our knowledge, however, there has not been any systematic econometric analysis
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of explosiveness in house prices outside the US. In this paper we fill this gap in the

literature. We conduct a thorough econometric analysis of bubbles in housing markets in

the OECD area, using quarterly OECD data for 18 countries from 1970 to 2011. We pay

special attention to the explosive nature of bubbles and use econometric methods that

explicitly allow for explosiveness. First, we apply the univariate date-stamp procedure

of Phillips et al. (2011) to pin down the periods where prices were explosive. Next, we

use Engsted and Nielsen’s (2012) co-explosive VAR framework to test for bubbles while

at the same time allowing prices to be cointegrated with fundamentals.

The appealing feature of the Engsted-Nielsen approach is that it allows prices to

contain both an explosive component - coming from the bubble - and an I(1) compo-

nent coming from the non-stationary part of fundamentals, i.e. prices and fundamentals

may ’cointegrate’ despite the explosive root in prices. This is an important feature of

traditional bubble models that is often neglected in empirical bubble studies although

emphasized in Diba and Grossman (1988) and Engsted (2006). The drawback of the

Engsted-Nielsen approach is that it assumes that the bubble period can be identified á

priori; in principle the method does not allow for bursting or partially bursting bubbles

during the sample period. Thus, the sample period needs to end before or at the peak

of the bubble.

By contrast, the Phillips et al. procedure is explicitly designed to capture bursting

bubbles and to date-stamp the beginning and end of the bubble. Thus, this procedure

can handle a sample period that contains both bubble and non-bubble subperiods. The

drawback of the procedure is that it does not allow for both an explosive root and a unit

root and, hence, it does not allow for the estimation of the cointegrating relationship

between prices and fundamentals.

We suggest to combine the Phillips et al. and Engsted-Nielsen procedures in the

following way. First, the recursive unit root tests are applied to date-stamp the period

where prices are explosive. Next, a co-explosive VAR model for prices and fundamentals

(rents) is estimated on that period. Thereby we pin down the bubble period while at the

same time estimating the effect from rents to prices.

Our main finding is that house prices in many countries were explosive, thus support-

ing the bubble hypothesis. However, in several countries fundamentals also contributed

to the boom. In general there are large cross-country differences in the dynamics of house

prices.

The rest of the paper is organized as follows. In the next section the bubble model
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is described. Section 3 describes the econometric methodologies. That section also

contains a comparison of our approach with earlier bubble tests. In section 4 we present

the empirical results using data from the OECD countries. Section 5 concludes.

2 The bubble model

We start by considering the standard model for asset price determination for an infor-

mationally efficient market with homogeneous and rational agents. Let Pt denote the

house price and Xt denote the service flow, i.e. the housing rents, both at time t. Given

a constant and positive expected one period return, 0 < R ∈ R 1, the model is given by

Pt =
1

1 +R
Et (Pt+1 +Xt+1) . (1)

The expectation operator, Et, is conditioned on information available at time t, that is

current and past prices and service flows, {Ps, Xs}s≤t.

The general solution to the model is identified as the present value of future service

flows, see e.g. Cochrane (2008). When we do not impose a transversality condition on

the present value of house prices in the infinite future2 and let Bt denote the rational

bubble component of the price process, then the model has the solution

Pt =
∞∑
s=0

EtXt+s

(1 +R)s
+ bBt,

where b ∈ R. To avoid arbitrage, c.f. Diba and Grossman (1988) , Bt should satisfy the

homogeneous expectation equation

Bt =
1

1 +R
Bt+1 + ξt+1, (2)

where Etξt+1 = 0. Note that the restriction R > 0 implies that any rational bubble must

have an explosive nature.

In general the ’spread’ defined as St ≡ Pt −Xt/R by Campell and Shiller (1987), is

a cointegrating relation that eliminates the common stochastic trend between prices and

service flows. To see this, we utilize the general solution to the model, by inserting for

1We will follow the bubble literature and assume a constant expected return, even though many asset
price models relax this assumption.

2The condition limT→∞(1 +R)−TEt[Pt+T ] = 0 would rule out bubbles a priori.
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Pt and get

St =
1 +R

R

∞∑
s=1

Et (∆1Xt+s)

(1 +R)s
+ bBt. (3)

Here we see that the stochastic behaviour of prices depends only on Xt and Bt. Hence,

if ∆1Xt is a stationary process, then St will be the cointegrating relation between prices

and service flows. Note that St can still exhibit non-stationary behaviour due to the

explosive bubble component.

Now, we can rewrite equation (1) in order to facilitate the econometric tests of later

sections. First we define

Mt ≡ Pt +Xt − (1 +R)Pt−1 (4)

and note that from equation (1) we have Et−1Mt = 0. Therefore Mt is a martingale

difference sequence. To express this martingale difference in terms of non-integrated

components we add and subtract RPt and identify the spread

Mt = (1 +R)∆1Pt −RSt. (5)

Alternatively this can be expressed in terms of the service flow growth3

Mt = ∆1+RSt + (1 +R−1)∆1Xt. (6)

Here, ∆1+R ≡ (1 − (1 + R)L). If Xt is I(1), then St must be stationary to ensure that

that Mt is a martingale difference. Hence, ∆1+R is sufficient to eliminate the potential

explosiveness in prices and St must indeed be the cointegrating relation that removes the

stochastic trend of prices and service flows.

3 The econometric methodology

3.1 The Phillips et al. procedure

Our econometric approach begins by date-stamping periods in which prices have experi-

enced explosive behaviour. This procedure follows Phillips and Yu (2011) who conduct

3Add and subtract 1+R
R ∆1Dt to Mt
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recursive right-sided augmented Dickey-Fuller (ADF) tests for explosiveness.

This is done by estimating the following econometric model for prices, Pt

Pt = µp + δPt−1 +
J∑
j=1

φj∆Pt−j + εt, εt ∼ NID(0, σ2
ε), (7)

where µp, δ, φj ∈ R. For each regression we determine the lag-length, J , by the lowest

number of lags that sufficiently removes autocorrelation from the error term, εt, evaluated

by Portmanteau tests at the 5% critical value. The null hypothesis of a unit root,

H0 : δ = 1, is tested against the right-sided alternative, H1 : δ > 1. Let w0 ∈ [0, 1]

denote some lower fraction of the sample and for a total sample of T price observations

let τ0 = bw0T c denote the corresponding sample size4. From here we recursively add

another observation and re-estimate (7) for sample sizes τ = bwT c when w0 ≤ w ≤ 1.

For every estimation we calculate the ADF t-statistic, which we denote ADFw. To

date stamp the bubble period we hold the time series of ADFw statistics against the

appropriate right-tailed critical values from the standard Dickey-Fuller distribution. By

denoting the collapse of the bubble by τc we use a last occurrence strategy, which differs

slightly from the procedure in Phillips et al (2011).

τc = sups≥w0

{
s : ADFs > cvadfβT (s)

}
Following Phillips et al (2011) we set the critical values by cvadfβT (s) = log(log(sT ))/100.

We do not pursue the identification of the emergence of bubble periods as our model

explains only bubbles that has been present for the infinite past.

As a robustness check, we also do date stamping based on a forward rolling window

such that the sample size ww = w0 for all estimations.

3.2 The Engsted-Nielsen procedure

The co-explosive testing procedure applied in e.g. Engsted and Nielsen (2012) is compa-

rable to e.g. Campbell and Shiller (1987) and Johansen and Swensen (1999). We consider

4We use b·c to denote integer values of its argument
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the vector Vt = (Pt, Xt)
′ and assume that it follows the k’th order vector autoregression

M : Vt = µv +
k∑
j=1

AjVt−j + εt, ε ∼ NID2(0,Ω), (8)

where Aj ∈ R2×2 and µv ∈ R2

Following Nielsen (2010) this vector autoregression can be reparameterized in the

error correction form

∆1∆ρVt = µv + Π1∆ρVt−1 + Πρ∆1Vt−1 +
k−2∑
j=1

Φj∆1∆ρVt−j + εt. (9)

Here we use the notation that ∆ρ = (1− ρL) and we have Π1,Πρ,Φj ∈ R2×2 and ρ ∈ R.

The VECM representation is linked to the VAR representations through the standard

error correction form, that follows, from Grangers representation theorem

∆1Vt = µv + ΠVt−1 +
k−2∑
j=1

Γj∆1Vt−j + εt. (10)

and the following set of identities.

Π1 =
Π

1− ρ
, Πρ = −ρ

(
Ip + Π1 +

k−1∑
j=1

ρ−j
k∑

l=j+1

Al

)
, Φj = −

k−1∑
l=j+1

ρj−l
k∑

i=l+1

Ai. (11)

where Π,Γj ∈ R2×2.

In order to analyse the presence of rational bubbles we make the assumption that Vt

has one unit root and an explosive root, ρ > 1. Hence, we have the following reduced rank

restrictions Π1 = α1β
′
1 and Πρ = αρβ

′
ρ, where α1, β1, αρ, βρ ∈ R2. Here β1 has the common

interpretation of a cointegrating relation of Vt equivalent to the one identified by the

spread, St. Therefore we have the model implied restriction β1 = (1,−1/R)′. Secondly,

βρ is interpreted as a co-explosive vector that counteracts explosiveness. Therefore non-

explosiveness of rents, Xt can be tested by the restriction βρ = (0, 1)′.

Now, a combination of these restrictions along with those imposed by the VAR model

and the martingale difference equation (??) imply the following set of all restrictions (see
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Engsted and Nielsen (2012) for details)

ι′α1 = −1, β1 = (1,−1/R)′, ρ = 1 +R, ι′µv = 0 (12)

ι′αρ = −(1 +R)2/R, βρ = (0, 1)′, ι′Φj = 0

where ι′ = (1, 1).

3.2.1 The cointegration restriction

The starting point in the estimation procedure is to estimate the unrestricted model,

M, found in equation (8). Here we compute the characteristic roots of the companion

matrix, and if the largest root is larger than unity, ρ̂0 > 1, this serves as an indication

of explosiveness. Hereafter, we apply the sequential rank test of Johansen (1995). This

corresponds to the hypothesis

H1 : (Π1, µv) = α1(β
′
1, ζ1), Πρ = αρβ

′
ρ (13)

where ζ1 ∈ R is a constant that is restricted to the cointegrating space. If we use M1 to

denote M when restricted by H1 then

M1 : ∆1∆ρVt = µv + α1β
′
1∆ρVt−1 + αρβ

′
ρ∆1Vt−1 +

k−2∑
j=1

Φj∆1∆ρVt−j + εt. (14)

and we calculate the updated characteristic root, ρ̂1. If this characteristic root is found

to be strictly lager than unity we proceed through the subsequent steps of the estimation

procedure.

3.2.2 The non-explosiveness of rents

Under the assumption of H1 we will next test the hypothesis of non-explosive rents, that

is imposing the restriction

HX : βρ = (0, 1)′

This additional hypothesis restricts the model to

M1X : ∆1∆ρVt = µv + α1β
′
1∆ρVt−1 + αρ∆1Xt−1 +

k−2∑
j=1

Φj∆1∆ρVt−j + εt.
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The likelihood of this model is determined by a numerical profile argument. Specifically,

we apply a grid search over a range of values for ρ. The likelihoods are then determined by

reduced rank regressions of ∆1∆ρVt on ∆ρVt−1, where we correct for lagged rent growth,

∆1Xt−1, and differences, ∆1∆ρVt−j. The Likelihood-ratio test of HX under the model

M1 is asymptotically χ2(k − 1) (see Engsted and Nielsen (2012)), where p denotes the

lag length of the unrestricted VAR model.

3.2.3 The restriction on the spread

Suppose that H1 and HX are both not rejected. In this case we can set up the restriction

on the spread by

HS : β1 = (1,−1/R)′, ρ = 1 +R.

This restriction implies that the model takes the form

M1XS : ∆1∆ρVt = µv + α1∆ρSt−1 + αρ∆1Xt−1 +
k−2∑
j=1

Φj∆1∆ρVt−j + εt.

where the spread is inserted for St = Pt − 1
ρ−1Xt. The maximization of the likelihood is

done along the same numerical lines as in the previous step, whereby we obtain ρ̂1XS.

C.f. Engsted and Nielsen (2012) we see that the likelihood ratio test statistic of HS in

M1X is asymptotically χ2(1).

3.2.4 The efficient market hypothesis

Previous papers have devoted some attention to the empirical test of the martingale dif-

ference in equation (??), also known as the classical Efficient Market Hypothesis (EMH).

We will abstract from this, as it seems unlikely that the housing market should be effi-

cient, given the huge transaction cost (e.g. on average 6% of property values are paid in

realtor fees in the US), the degree of asymmetric information, and geographical hetero-

geneity. Furthermore, when tested, there is not a single market in our sample in which

we do not reject the EMH.
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3.3 Comparison with earlier bubble tests

West (1987) developed an often cited specification test for rational stochastic bubbles.

The test compares two sets of estimates of the underlying asset pricing model. The first

set of estimates is consistent both with and without a bubble, while the second set is

only consistent in the absence of a bubble. Equality of the two sets of estimates is then

tested using a Hausman (1978) type specification test. The null hypothesis is no bubble,

while the presence of a bubble should lead to rejection of the hypothesis. A problem with

this procedure (noted by West himself in West (1985)) is that the test is not consistent.

Under the alternative hypothesis that a bubble is present, the probability that the test

will reject the null does not go to unity asymptotically. This is a direct consequence of the

explosiveness of prices under the alternative. The Engsted and Nielsen (2012) procedure

that we apply in this paper does not face this problem because in this procedure the null

hypothesis explicitly involves a bubble.

Diba and Grossman (1988) proposed to test for rational bubbles by using Bhargava’s

(1986) von Neumann-like statistic to test the null hypothesis of a unit root in prices

against the explosive alternative. They also tested for cointegration between prices and

fundamentals arguing that with a constant discount factor cointegration precludes bub-

bles while no cointegration would be consistent with the presence of a bubble. By using

Bhargava’s (1986) test for explosiveness the Diba and Grossman methodology assumes

that the variables are at most a first-order autoregressive process, and the discount fac-

tor cannot be estimated but must be specified a priori. The Engsted and Nielsen (2012)

procedure extends Diba and Grossman’s procedure by specifying a general VAR for the

variables that allows for an explosive root in addition to a possible common stochastic

I(1) trend (i.e. cointegration) between prices and fundamentals. In addition, the pro-

cedure allows estimation of the discount factor instead of prefixing it a priori as in the

Diba-Grossman procedure.

Using a linear VAR for prices and fundamentals requires that the discount factor is

constant. Most previous bubble studies in fact assume that the discount factor is con-

stant. In the empirical finance literature this assumption is controversial since returns

are often found to be predictable (see e.g. Cochrane (2008)). However, Engsted et al.

(2012) show that a rational bubble may make returns appear predictable even when ex-

pected returns (and thereby the discount factor) is constant. In addition, even if expected

returns are time-varying, Craine (1993) and Timmermann (1995) show that unless ex-

pected returns are highly persistent, the cointegrating relationship between prices and
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fundamentals implied by the constant discount factor present value model will also hold

approximately when the discount factor is time-varying.5

Evans (1991) showed in a simulation study that in a finite sample unit root and

cointegration based tests will often not identify the explosive component of periodically

collapsing rational bubbles (see also Hall et al. (1999)). Thus, the Engsted and Nielsen

(2012) framework may not work well in that situation. By contrast, the Phillips et al.

(2011) recursive procedure is explicitly designed to account for the periodically collapsing

nature of the Evans type bubbles. However, as we mentioned in the Introduction, the

Phillips et al. procedure does not allow for the estimation of the cointegrating relationship

between prices and fundamentals because it does not allow both a unit root and an

explosive root.

In fact, based on Diba and Grossman (1988) many earlier empirical bubble studies

have claimed that cointegration between prices and fundamentals rules out bubbles. For

example, Phillips et al. (2011, p.206) state: ”In the presence of bubbles, pt [price] is

always explosive and hence cannot co-move or be cointegrated with dt [fundamental] if

dt is itself not explosive. Therefore, an empirical finding of cointegration between pt

and dt may be taken as evidence against the presence of bubbles.” This statement is at

best incomplete. In fact, as shown above the stochastic I(1) trend in dt will be part of

pt also in the presence of an explosive bubble, and the multivariate cointegrated VAR

analysis based on reduced rank regressions will capture this feature. However, it is true

that univariate regression based cointegration analysis will not be able to accomodate

the common I(1) trend in pt and dt if pt also involves an explosive trend because the

regression residuals will always be non-stationary in that case.

Combining the Phillips et al. (2011) and Engsted and Nielsen (2012) procedures, as

we have suggested in the present paper, makes it possible to take the best from both

approaches thereby making it possible to date-stamp the bubble period and estimating

both the explosive root and the common I(1) trend between prices and fundamentals

within that period.

5Craine (1993) shows that with a time-varying (but stationary) discount factor the ratio between
prices and fundamentals will be stationary under no bubbles. Thus, testing for explosiveness of this
ratio is robust to the assumption about the discount factor. However, no other testable restrictions
follow from Craine’s approach.
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4 Empirical results

4.1 The Data

The described method is applied to a large dataset consisting of 21 OECD countries.

That is Australia, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland,

France, the United Kingdom, Greece, Ireland, Israel, Italy, Japan, Korea, the Nether-

lands, Norway, New Zealand, Sweden, and the United States. The dataset has previously

been used in Engsted and Pedersen (2013). The dataset contains real and nominal prices

along with the price-rent ratio for housing markets and are reported from national sta-

tistical sources. The series are provided on a quarterly basis and the average over the

observations in 2005 are indexed to 100. Most of the series contain observations from

1970Q1 to 2011Q4 except for 8 countries that have later starting points. That is Aus-

tralia (1972Q3), Belgium (1976Q2), Spain (1971Q1), Greece (1997Q1), Israel (1998Q1),

Korea (1990Q1), Norway (1979Q1), Sweden (1980Q1). Due to the short sample sizes we

discard Greece, Israel and Korea from our analysis, leaving us with 18 OECD countries.

For every country we use the real house prices, Pt, and the price-rent ratio, to back

out the real rent series, Xt. This implies that the average rent values for 2005 observation

are indexed to 1, due to the indexation of the price-rent ratio. Figure 1 and figure 2 show

plots of the price and rent series respectively. Likewise we show first differences of prices

and rents in figure 3 and figure 4.

For most countries house prices grow modestly from the beginning of the 1970s and

until the mid 1990s. From this point on the prices seem to experience explosive behaviour,

which is the motivation for applying the co-explosive vector autoregression framework to

this particular dataset. However, some countries behave very different from the majority.

These countries include Germany and Japan who both have experienced somewhat de-

clining house prices since the beginning of the 1990s. Furthermore, a group of countries

have shown dramatic increases and subsequent declines in house prices around 1990 or

earlier in the sample. That is e.g. what we see in Switzerland, Finland and Japan. As

seen in Figure 2 the explosive behaviour of prices is also a visible feature of the first dif-

ferences of prices, which supports the use of the co-explosive framework. This pattern is

particularly visible for Denmark, Spain, France and the United States. After 2007 most

housing markets have seen stabilizing or drastically decreasing prices. The exceptions

are Norway and Germany where prices have increased a lot over the post-crisis years
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The pattern for rents is much more stable than what is seen in the prices. Except

for a few sudden increases in Swiss, German, and Swedish rents, these do not seem to

have explosive behaviour, which is essential for our analysis. Instead the series seem to

follow two patterns, either they have a U-shape, which is particularly evident in countries

like Spain and Ireland, or they are moderately trending, like what is seen in the United

Kingdom and Japan. From the first differences, it is also clear that the rent series do not

behave explosively.

4.2 The Results

Table 1 contains results from our estimations. For each of the 18 OECD countries we test

three samples, where the first is the entire sample, then we test the sample selected by

the forward recursive (FW) Phillips et al. (2011) test and lastly we use the Phillips et al.

test to a rolling window (Win). In the cases of Germany, Finland, Italy, and Japan the

forward recursive strategy does not identify a bubble period, in which case we neglect this

selection. In the cases of Belgium, Canada, and Norway the forward recursive strategy

identifies the entire samples as the bubble period.

We commence the estimation by estimating a bivariate vector auto-regression for Vt =

(Pt, Xt)
′. We investigate the characteristics of the residuals and determine the optimal

lag length, k ≥ 2, of the model by ensuring that there is no residual autocorrelation in

the model6. From the unrestricted model, we compute the characteristic roots of the

companion matrix and in the third column of table 1, under ρ̂0, we report modulus of

the roots. We notice two cases, either ρ̂0 is close to unity suggesting that the system

contains at least one stochastic trend, or the characteristic root is strictly larger than

unity. The last case is considered as preliminary evidence of explosiveness in the system.

This explosive behaviour is mainly featured in the sub samples identified by the Phillips

et al. tests. Countries with no preliminary evidence of explosiveness cover Switzerland,

Germany, Finland, the United Kingdom, Italy, and the Netherlands.

Next, we determine the cointegration rank by Johansen’s rank test including a re-

stricted constant. In many cases we are not able to reject the null of zero rank against the

alternative of r = 1, implying that prices and rents have no common stochastic trend, but

are both non-stationary and unrelated in their levels. In none but one of the cases where

we reject r = 0 we can reject the hypothesis of r ≤ 1. In these cases prices and rents

6At the moment all samples have k = 2, in general this ensures no-autocorrelation. But for some
samples this is not satisfied
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are cointegrated, which is required for further testing of the theoretic model. Belgium

differs by being the only country where we can reject r ≤ 1, meaning that the companion

matrix has full rank and that the vector autoregression is well defined in levels. Even

though the test is valid in the explosive case, Cushham (2003) finds that serial correlation

seriously deteriorates the size of the Johansen test, which might be the case if the model

is subject to moving average components. This does seem to be the case in some of the

estimations.

We report the unrestricted cointegration relation, denoted β′. There are huge differ-

ences in the estimates, not only across countries, but also intra country for the different

sample sizes. In many cases the sign of the cointegration relation is ’wrong’ in the sense

that either equilibrium prices or dividends should be negative. However, there is no sub

sample in which we can reject the hypotheses that β1 = (1, 0)′ or β1 = (0, 1)′. Further-

more, there is no clear interpretation of the coefficients in β1 as in Engsted and Nielsen

(2012) as our rent series are implicitly indexed to unity in 2005.

From the restricted model M1 imposing a unit root, r = 1, we determine the largest

characteristic root and its modulus, which is reported as ρ̂1 in table 1. In many cases we

find that the largest characteristic root is equal to unity, even in the cases that indicated

explosive behaviour in the unrestricted vector auto-regression. In these cases we do not

proceed with the formal tests of non-explosive dividends and the spread-restriction.

If the data still behave explosively after imposing the cointegration, then we proceed

by first testing the HX hypothesis. That is whether βρ = (0, 1)′ and hence that dividends

are non-explosive. Given this restriction, we report the largest characteristic root of M1X

under ρ̂1X . By a likelihood ratio test this hypothesis is tested, noting that the test is

χ2(1) distributed. We find that in the cases of Spain, France, the United Kingdom, and

the United States, we can reject this hypothesis at the 5% level, but in 9 countries this

is not rejected.

Finally, we would like to consider whether the spread condition is a reasonable restric-

tion by imposing HS : β1 = (1,−1/R)′ along with the relation between the one period

return and the explosive root, ρ = 1+R. However, the indexation of prices and rents has

an implications for the size of the one period return, R, in the spread S : t = Pt− 1/Rxt.

However, the explosive root in the price process, ρ, is independent of this indexation

and hence, we cannot formally test the spread restriction given our data. From previous

investigations of the likelihood function in the dimension of β1, which appears to be very

flat, we do not expect that we, given non-indexed data, would be able to reject the spread

14



condition. This is supported as the indexation implies a 4% annual return on housing

which seem to be in the reasonable range.

Overall, there is only one sub sample in which we can identify an explosive root,

cointegration of prices and rents and where we do not reject the non-explosiveness of

rent. That is Irish sample selected by the fixed window Phillips et al. test.

In general we find that the Phillips et al. test with the rolling window is better to date

stamp the bubbles, in the sense that we find an explosive characteristic root of the M1

model more often than with the forward recursion. This follows partially as the forward

recursion has a tendency to include a few observations from the post-peak period of the

samples, which seriously affects the co-explosive framework.

5 Concluding remarks
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A Empirical findings

A.1 Data
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Figure 1: Plots of prices for the 18 OECD countries.
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Figure 2: Plots of rent for the 18 OECD countries.
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Figure 3: Plots of first differences of prices.
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