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ABSTRACT: 
Economies are too high dimensional and wide sense non-
stationary for all features of models to be derived by either prior 
reasoning or data modelling alone. Selecting a viable 
representation intrinsically involves empirical discovery jointly 
with theory evaluation. Automatic methods can formulate very 
general initial specifications with many candidate variables, long 
lag lengths, and non-linearities, while allowing for outliers and 
location shifts at every observation, then select congruent 
parsimonious-encompassing models. Theory-relevant variables 
are retained without selection, while selecting other candidate 
variables. Under the null that the latter are irrelevant, by 
orthogonalizing with respect to the theory variables, estimator 
distributions of the theory-model’s parameters are unaffected by 
selection, even for more variables than observations and for 
endogenous variables. Under the alternative, when the initial 
model nests the local data generating process, an improved 
outcome results from 
selection, allowing rigorous evaluation of any postulated models to 
ascertain their validity. 
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Introduction

Every decision about:
1 a theory formulation;
2 its implementation;
3 its evidential base;
4 its empirical specification; and
5 its evaluation

involves selection.

Absent omniscience,
selection is inevitable, unavoidable and ubiquitous:
issue is not whether to select, but how to select.
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Omniscience is not on offer

Data generation process (DGP)
Economic mechanism plus measurement system.
Economies are high dimensional, interdependent, heterogeneous, and
evolving: a comprehensive specification of all events is impossible.
Aggregation over time, space, commodities, agents, endowments, is
essential—but preclude claims to ‘truth’.

Local DGP (LDGP) is DGP for n variables {xt} under analysis:
joint density Dx(x1 . . .xT |θ).
Acts as DGP, but ‘parameter’ θ may be time varying.

Once {xt} chosen, cannot do better than know Dx(·),
so the LDGP Dx(·) is the target for model selection:
need to relate theory model to that target.
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Basis of approach

Empirical models reflect LDGP, not facsimiles:
designed to satisfy–often implicit–selection criteria.

Only congruence is on offer in economics:
congruent models match LDGP in all measured attributes.

‘True’ models in class of congruent models.
Congruence is testable: necessary conditions for structure.
Encompassing: explain the results of all other models.

Theory only provides an object for modelling:
(A) embed that object in the initial general formulation;
(B) search for the simplest acceptable representation;
(C) evaluate the findings.

How to accomplish that? And what are its properties?
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Empirical model formulation

Seven categories of evidence matter jointly

(i) many candidate explanatory variables;
(ii) dynamic reactions;
(iii) parameter changes and location shifts;
(iv) relationships may be non-linear;
(v) feedbacks, exogeneity, and expectations;
(vi) evaluating congruence;
(vii) encompassing results of rival models.

To successfully determine what matters and how it enters,
all potential determinants must be included:
omitting key variables adversely affects selected models.

As macroeconomic variables are highly intercorrelated,
initially need large equations to capture all these effects.
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Catch 22–and its resolution

Especially forceful issue when data processes are ‘wide sense
non-stationary’: integrated and not time invariant.

Often leads to more variables N than observations T .

‘Catch 22’—if N > T , everything cannot be entered from the outset:
necessitates iterative search algorithms to eliminate irrelevant.

To resolve conundrum, analysis proceeds in nine stages.

[A] Castle, Doornik, and Hendry (2012), Evaluating selection.
[B] Hendry and Krolzig (2005), Bias corrections.
[C] Doornik (2009), Autometrics.
[D] Johansen and Nielsen (2009), Impulse indicator saturation.
[E] Castle and Hendry (2013), Selecting non-linearities.
[F] Hendry and Johansen (2014), Embeding theory.
[G] Hendry and Doornik (2014), Empirical Model Discovery and
Theory Evaluation (forthcoming MIT Press).
[H] Hendry and Santos (2010), Testing super exogeneity.
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Nine stages

1] ‘1-cut’ selection for orthogonal designs with N << T ;
establishes ‘good behaviour’ of selection per se: [A].
2] Selection matters, so derive bias corrections for conditional
distributions; improves mean-square errors (MSEs): [B].
3] Compare ‘1-cut’ with Autometrics (applicable to non-orthogonal
models); shows Autometrics outperforms, & can handle N > T : [C].
4] Indicator saturation for multiple shifts and outliers;
now N > T must occur: [D].
5] Selecting non-linearities: [E].
6] Impact of mis-specification testing;
costs of checking congruence small compared to not testing: [A].
7] Role of encompassing in automatic selection;
controls ‘good behavior’ & avoids missing relevant combinations: [G].
8] Empirical model discovery jointly with theory evaluation: [F].
9] Finally, testing exogeneity in selected model: [H].
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Route map

(1) Selecting empirical models

(2) Simulating ‘1-cut’ selection

(3) Automatic model extensions: Autometrics

(4) Detecting and modelling multiple location shifts

(5) Mis-specification testing and encompassing

(6) Empirical model discovery and theory evaluation

(7) Modelling UK real wages over the last 150 years

(8) Conclusions
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From DGP to selected model

Final terminal 
model  

 
 

Specification of 
general model 

Congruency i.e. 
GUM nests LDGP 

Theory of 
Reduction 

DGP 

LDGP 

The economic 
mechanism that 
operates in the 
real world 

DGP for 
locally 
relevant 
variables 

GUM 

SPECIFIC 

Automatic
Gets 

Algorithm 

Explicit model design mimics Theory 
of Reduction in practical setting 

Aim for final selection that maintains congruence of GUM, and
parsimoniously encompasses it, so is ‘best’ representation of LDGP.
Embodied in PcGive & Autometrics: see Doornik and Hendry (2013).
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Which criteria?

Aim for frequency of recovering LDGP starting from GUM same
as starting from LDGP.

Two costs of selection: costs of inference and costs of search.

First inevitable if tests have non-zero null retention and non-unit
rejection frequencies under alternative:
applies even if commence from LDGP.

Avoid for theory parameters by embedding theory without search.

Measure costs of inference by RMSE of selecting or conducting
inference on LDGP.

When a GUM nests the LDGP, additional costs of search:
calculate by increase in RMSEs for relevant variables when starting
from GUM as against LDGP, plus costs for retained irrelevant
variables.
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Gauge and potency

‘gauge’ is null retention frequency of selection statistics.
‘potency ’ is average non-null retention frequency.

β̂k,i is OLS estimate of coefficient on xk,t in GUM for replication i.

β̃k,i is OLS estimate after selection ( β̃k,i = 0 if zk,t not selected).

retention rate: p̃k = 1
M

∑M
i=1 1(β̃k,i 6=0)

, k = 0, . . . ,N,

potency: = 1
n

∑n
k=1 p̃k,

gauge: = 1
N−n+1

(
p̃0 +

∑N
k=n+1 p̃k

)
.

CMSE is conditional MSE:

CMSEk =

∑M
i=1

[
(β̃k,i−βk)

2
·1

(β̃k,i 6=0)

]
∑M
i=1 1(β̃k,i 6=0)

,
(
β2
k if
∑M
i=1 1(β̃k,i 6=0)

= 0
)

GUM includes all N variables (1001 here with intercept):

yt = β0 + β1z1,t + · · ·+ β1000z1000,t + νt (1)
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Simulation outcomes

DGP is given by:
yt = β1z1,t + · · ·+ β10z10,t + εt, (2)

zt ∼ IN1000 [0,Ω] , (3)

εt ∼ IN [0, 1] , (4)

where z′t = (z1,t, · · · , z1000,t), Ω = I1000, T = 2000:
non-centralities of βi are ψi = 1.5+ 0.5i (so 2,...,6.5).

Table : Potency and gauge for 1-cut selection with N = 1000 variables.

α gauge potency theory power
1% 1.01% 81% 81%
0.1% 0.10% 69% 68%

Gauges not significantly different from nominal sizes α:
selection is not ‘oversized’ even with 1000 variables
Potencies close to average theory powers of 0.811 and 0.684.
Close match between theory and evidence even when selecting
just 10 relevant regressors from 1000 variables.
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1-cut selection for N=1000 at 1%, 0.1%
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Theory 
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Retention rates for relevant variables match theory,
yet model reduced by about 990 variables on average.
Bias corrections when |t| > cα improve further.
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Simulation MSEs

Remarkable decrease in MSEs of retained irrelevant variables
when bias correction–despite not knowing which are irrelevant and
which relevant variables. For N = 1000 and n = 10 in (??):

Table : Average CMSEs, times 100, for retained relevant and irrelevant
variables (excluding β0), with and without bias correction.

α 1% 0.1% 1% 0.1%

average CMSE over average CMSE over
990 irrelevant variables 10 relevant variables

uncorrected β̃ 0.84 1.23 1.0 1.4˜̃
β after correction 0.38 0.60 1.2 1.3

Greatly reduces MSEs of irrelevant variables in both
unconditional and conditional distributions.

Coefficients of retained variables with |t| 6 cα are not bias
corrected–insignificant estimates set to zero.
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Bias correcting conditional distributions at 5%
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Extensions outside standard information

Extensions determine how well LDGP is approximated

Create three extensions automatically:
(i) lag formulation to implement sequential factorization;
(ii) functional form transformations for non-linearity;
(iii) indicator saturation (IIS/SIS) for parameter non-constancy.

(i) Create s lags xt . . .xt−s to formulate general linear model:

yt = β0 +

s∑
i=1

λiyt−i +

r∑
i=1

s∑
j=0

βi,jzi,t−j + εt (5)

xt = (yt, zt) could also be modelled as a system:

xt = γ +

s∑
j=1

Γjxt−j + εt (6)

We focus on single equations, but systems can be handled.

David F. Hendry (INET Oxford) Empirical Model Discovery November 2013 18 / 49



Automatic non-linear extensions

(ii) Approximate non-linearity by functions of principal components
wt of the zt: Castle and Hendry (2010).
Let zt ∼ Dn [µ,Ω], where Ω = HΛH′ with H′H = In.
Then w∗t = H′zt⇒ w∗t ∼ Dn [H′µ,Λ].

Empirically Ω̂ = T−1
∑T
t=1(zt − z)(zt − z)′ = ĤΛ̂Ĥ′

so that wt = Ĥ′(zt − z).
Implemented by squares, cubics and exponential functions:
u1,i,t = w

2
i,t; u2,i,t = w

3
i,t; u3,i,t = wi,te

−|wi,t|.
When Ω is non-diagonal, each wi,t is a linear combination of every
zi,t, so w2

i,t involves squares and cross-products of every zi,t etc.
Number of potential regressors for cubic polynomials is:

MK = K (K+ 1) (K+ 5) /6.
Explosion in number of terms as K increases:

K 1 5 10 20 30 40
MK 3 55 285 1539 5455 12300

Quickly reach hugeMK: but only 3K if use uk,i,t,k = 1, 2, 3.
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Detecting multiple shifts

‘Portmanteau’ approach to detect location shifts anywhere in sample
while also selecting over many candidate variables, lags etc.

Impulse-indicator saturation

IIS creates complete set of indicator variables:{
1{j=t}

}
= 1 when j = t, and 0 otherwise for j = 1, . . . , T .

Add all T indicators to set of candidate variables when T observations.

Feasible ‘split-sample’ algorithm:
Hendry, Johansen, and Santos (2008).

Include first half of indicators, record significant on 1-cut:
‘dummying out’ first T/2 observations when estimating parameters.
Omit first half of indicators, include other half, record again.
Combine retained sub-sample indicators, & select significant.
αT indicators selected on average at significance level α.
Chow (1960) test is sub-sample IIS over T − k+ 1 to T .
Salkever (1976) tests parameter constancy by impulse indicators.
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Dynamic generalizations

Johansen and Nielsen (2009) extend IIS to both stationary and
unit-root autoregressions

When distribution is symmetric, adding T impulse indicators to a
regression with n variables, coefficient β (not selected) and second
moment Σ:

T 1/2(β̃ − β)
D→ Nn

[
0,σ2εΣ

−1Ωα
]

Efficiency of IIS estimator β̃ with respect to OLS β̂ measured by Ωα
depends on cα and distribution, but close to (1− α)−1In.

Must lose efficiency under null; small loss αT of 1 observation at
α = 1/T if T = 100, despite T extra candidates.

Potential for major gain under alternatives of breaks and/or data
contamination: but can be done jointly with all other selections.
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Extension to step-indicator saturation (SIS)

Add a complete set of step indicators S1 =
{
1{t6j}, j = 1, . . . , T

}
,

where 1{t6j} = 1 for observations up to j, and zero otherwise. Step
indicators cumulate impulse indicators up to each next observation.

IIS: Impulses SIS: Steps
1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
. . .



1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


SIS has correct null retention frequency in constant conditional models
for a nominal test size of α, and a higher probability than IIS of finding
location shifts.
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Illustrating ‘split-half’ SIS for a single location shift

Add half indicators and select ones significant at 1%.
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Illustrating ‘split-half’ SIS for a single location shift

Drop, add other half indicators and again select at 1%.
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Illustrating ‘split-half’ SIS for a single location shift

Combine retained indicators and re-select at 1%.
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Initially retains last step as mean shifts down, then finds location
shift, so eliminates redundant indicator: just one step needed.
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Specification of GUM

Formulation decisions of which r variables zt;
their maximum lag lengths (s);
squares, cubics + exponentials in wt, after orthogonalizing zt;
location shifts (any number, anywhere) by IIS and/or SIS.
Leads to general unrestricted model (GUM):

yt =

r∑
i=1

s∑
j=0

βi,jzi,t−j +

r∑
i=1

s∑
j=0

κi,jw
2
i,t−j +

r∑
i=1

s∑
j=0

ψi,jw
3
i,t−j

+

r∑
i=1

s∑
j=0

γi,jwi,t−je
−|wi,t−j| +

s∑
j=1

λjyt−j

+

T∑
i=1

δi1{i=t} +

T−1∑
i=1

φi1{i6t} + εt (7)

K = 4r(s+ 1) + s+ T potential regressors (possibly (2T − 1)
indicators): bound to have N > T–exogeneity considered later.
David F. Hendry (INET Oxford) Empirical Model Discovery November 2013 25 / 49



Route map

(1) Selecting empirical models

(2) Simulating ‘1-cut’ selection

(3) Automatic model extensions: Autometrics

(4) Detecting and modelling multiple location shifts

(5) Mis-specification testing and encompassing

(6) Empirical model discovery and theory evaluation

(7) Modelling UK real wages over the last 150 years

(8) Conclusions

David F. Hendry (INET Oxford) Empirical Model Discovery November 2013 26 / 49



Selection effects on tests

Little impact of selection on test statistics.
Small change in quantiles above nominal significance level:
but increasing impact as quantile decreases.
Bound to occur:
models with significant heteroscedasticity not selected.

Not a ‘distortion’ of sampling properties: decision is taken for GUM.
Conditional on that, no change should occur.

Next Figure reports QQ plots of actual against reference distributions
under the null for the main mis-specification tests in DGP, GUM and
selected model.
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Selection effects on test distributions
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Integrated data

Autometrics conducts inferences for I(0)
Most selection tests remain valid:
see Sims, Stock, and Watson (1990)
Only tests for a unit root need non-standard critical values

Implementing system cointegration in Autometrics

Most diagnostic tests also valid for integrated series:
see Wooldridge (1999)

Heteroscedasticity tests an exception:
powers of variables then behave oddly
see Caceres (2007)
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Encompassing plays a key role

Variables removed only when new model is a valid reduction of GUM.

Reduction fails if selection does not parsimoniously encompass
GUM at cα: see Hendry (1995), §14.6.

If fails, variable retained despite insignificance on t-test, as in Doornik
(2008).

Autometrics without encompassing loses both gauge and
potency.

Autometrics with encompassing is well behaved:
gauge is close to nominal rejection frequency α.
potency is close to theory maximum of 1-off t-test.
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Retaining economic theory insights

Approach is not atheoretic.

But much observed data variability in economics is due to
features absent from most economic theories:
which empirical models must handle.

Embed initial economic analysis y = f(z) in GUM,
to be retained without selection,
but does not guarantee parameters will be significant.

Extension of LDGP candidates, xt, in GUM allows theory formulation
as special case, yet protects against contaminating influences (like
outliers) absent from theory.

‘Extras’ can be selected at tight significance levels.

Globally, learning must be simple to general;
but locally, need not be.

General approach explained in Castle, Doornik, and Hendry (2011).
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Theory exactly correct

Correct n valid conditioning variables, zt, constant parameters β:

yt = β′zt + εt (8)

where εt ∼ IN[0,σ2ε], independently of zt. Then:

β̂ = β+

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztεt ∼ Nn

β,σ2ε
(
T∑
t=1

ztz
′
t

)−1
 (9)

Next, zt retained during model selection over second set of k
irrelevant candidate variables, wt, with coefficients γ = 0 when
(k+ n) << T , so GUM is:

yt = β′zt + γ′wt + νt (10)
Orthogonalize zt and wt by:

wt = Γ̂zt + ut (11)
Then as γ = 0:

yt = β′zt + γ′wt + νt = β′zt + γ′ut + νt (12)

Coefficient of zt unaltered.
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Distributions of forced estimates

Consequently:(
β̃ − β

γ̃

)
=

( ∑T
t=1 ztz

′
t

∑T
t=1 ztu

′
t∑T

t=1 utz
′
t

∑T
t=1 utu

′
t

)−1( ∑T
t=1 ztνt∑T
t=1 utνt

)

∼ Nn+k

( 0
0

)
,σ2
ε


(
T∑
t=1

ztz
′
t

)−1

0

0

(
T∑
t=1

utu
′
t

)−1


 (13)

as
∑T
t=1 ztu

′
t = 0, so distribution of β̃ in (13) identical to that of β̂ in

(9), unaffected by model selection.

Only costs of selection are:
(a) chance retentions of some ut from selection, controlled by very
tight significance levels (α 6 min[0.001, 1/(N+ T)]; and
(b) impact on estimated distribution of β̃ through σ̃2ε,
offset by bias correcting.
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More candidate variables than observations

If also have relevant variables to be retained, and N > T ,
orthogonalize them with respect to the rest.

As N > T , divide in more sub-blocks, setting α = 1/N.

Model retains desired sub-set of n variables at every stage, and only
selects over putative irrelevant variables at stringent significance level:
under the null, has no impact on estimated coefficients of
relevant variables, or their distributions.

Almost costless to check large numbers of candidate variables:
huge benefits if initial specification incorrect, but enlarged GUM
nests LDGP.

Have answers to every ‘seminar question’ before they are asked!
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Hoover–Perez experiments

T = 139, 3 relevant and 37 irrelevant variables: all %
HP step-wise Lasso: BIC Autometrics

HP7 HP8 HP7 HP8 HP7 HP8 HP7 HP8
1% nominal size

Gauge 3.0∗ 0.9∗ 0.9 3.1 19.5 35.1 1.6 1.6
Potency 94.0 99.9 100.0 53.3 94.4 86.3 99.2 100.0

DGP found 24.6 78.0 71.6 22.0 0.1 0.0 68.3 68.8
∗ Only counting significant terms (tiebreaker was best-fitting model)

T = 139, 3 relevant and 141 irrelevant variables
step-wise Autometrics

HP7 HP8 HP7 HP8
0.1% nominal size

Gauge 0.1 0.7 0.3 0.1
Potency 99.7 40.3 97.4 100.0
DGP found 87.4 9.0 82.9 90.2

Large increase in probability of locating DGP relative to α = 0.01
not monotonic in α–so should not select by ‘goodness of fit’
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Approximating small relevant effects by PCs

To capture potential omissions of individually insignificant relevant
effects, add wt, or principal components, w1,t, of unselected zt.
Could also reflect common trends modelled by latent factors.
Effective when factor structure of zt matches relation between yt and
zt in LDGP: then by representing individually-insignificant effects in zt
by w1,t, can achieve substantive reductions in RMSEs relative to just
estimating the LDGP.

α = 0.01 [A] [B] [C] [D] [E] [F]
n = 10; ψi = 1; ρ = 0.9, σ = 1

mean σ̂ 1.00 1.01 1.01 1.05 1.04 1.04
mean Bias -0.02 72.0 61.0 -0.02 -0.02 -0.02
mean RMSE 0.32 0.75 0.68 0.32 0.08 0.06

(A) estimating DGP; (B) selection from DGP by Autometrics;
(C) bias correction of (B); (D) estimation of factor model;
(E) 1-cut selection from factor model; (F) bias correction of (E).
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Route map

(1) Selecting empirical models

(2) Simulating ‘1-cut’ selection

(3) Automatic model extensions: Autometrics

(4) Detecting and modelling multiple location shifts

(5) Mis-specification testing and encompassing

(6) Empirical model discovery and theory evaluation

(7) Modelling UK real wages over the last 150 years

(8) Conclusions

David F. Hendry (INET Oxford) Empirical Model Discovery November 2013 38 / 49



Modelling UK real wages over the last 150 years

Example of empirical model discovery in action.
1 Examine roles of many regressors, dynamics, non-linearities, and

shifts for integrated data (nominal wages rose by 68,000%).
2 Important wage-price spiral interactions.
3 Non-linear unemployment reaction.
4 Location shifts and outliers tackled by SIS.
5 Test exogeneity of all contemporaneous regressors.
6 Extended data set to forecast real wages over ‘Great Recession’.

All aspects must be modelled jointly for a coherent economic
explanation, including all substantively relevant variables, their
dynamics, shifts, and non-linearities.
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Wages, prices, productivity and unemployment
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SIS and regime shifts

∆(w−p)t 
SIS outcome 
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SIS reveals location shifts unconditionally:
two major shifts in ∆(w− p)t and ∆(y− l)t, but different magnitudes
at different times; huge outliers do not align.
Location shifts in Ur,t and ∆pt also do not match.
David F. Hendry (INET Oxford) Empirical Model Discovery November 2013 41 / 49



Non-linearity chosen functions

Non-linearity test significant at p = 0.006 with F(36, 91) = 1.95.

Two elements stood out:

non-linear real-wage reaction to inflation represented by:

ft∆pt =
−1

1+ 1000(∆pt)2
∆pt.

(Ur,t − 0.05)2 was an important additional non-linearity.

Selection at α = 0.001 for the step indicators, retaining all economic
variables (see Hendry and Johansen, 2014),
then selected over those at α = 0.01.

No diagnostsic tests significant with σ̂ = 1.04% and RMSFE=1.05%
over 2005–2011.
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Final model

Final selection

∆ (w− p)t = 0.021
(0.003)

+ 0.35
(0.042)

∆ (y− l)t + 0.12
(0.034)

∆2 (y− l)t−1 − 0.13
(0.029)

∆2pt−1

− 0.18
(0.028)

(w− p− y+ l− µ̂)t−2 − 0.18
(0.034)

(Ur,t − 0.05)

+ 2.7
(0.68)

(Ur,t − 0.05)2 − 0.13
(0.045)

∆2Ur,t + 0.71
(0.12)

(ft∆pt) − 0.15
(0.011)

S1939

+ 0.18
(0.015)

S1940 − 0.06
(0.011)

S1941 − 0.024
(0.008)

(S2011 − S1946)∆ur,t (14)

− 0.036
(0.011)

11916 + 0.027
(0.006)

(11942 + 11943 − 11944 − 11945) − 0.044
(0.011)

11977

R2 = 0.82; σ̂ = 1.04%; SIC = −5.85; T = 1864− 2004;

χ2nd (2) = 2.26; Far (2, 123) = 0.39; Farch (1, 139) = 0.49;

Fhet (20, 116) = 0.82; Freset (2, 124) = 2.28; Fchow (7, 125) = 0.95.

ur,t = log(Ur,t) and µ̂ is the sample mean of (w− p− y+ l).
(e.g.) S1939 is step indicator: 1 till 1939 and 0 after, etc.
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Interpretation

Short-run impact of changes in productivity is ≈ 0.6

Strong equilibrium correction of −0.18 from (w− p− y+ l− µ̂)

Coefficient of ft∆pt highly significant, but < 1

Non-linearity in unemployment is −0.42Ur,t(1− 6.1Ur,t):
negative till unemployment rate exceeds ≈ 15%, then
positive–only consistent with involuntary unemployment
Step indicators needed to explain higher growth rate of real
wages post war (1.9% p.a., versus 0.8% p.a. pre-1945), even
though ∆(y− l) is included and has similar behaviour:
spike in 1940 was a permanent location shift
Interactions of variables with step shifts matter as well
Both steps and impulses mainly for wars
(14) encompasses previous models
All mis-specification tests insignificant & constant over 2005–2011
Super exogeneity of (y− l)t, ∆pt & Ur,t in (14) accepted.
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Selected model graphical statistics
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Non-linear inflation catch-up
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Testing exogeneity

SIS used to test exogeneity of the conditioning variables,
extending Hendry and Santos (2010).
Under null of super exogeneity, parameters in conditional model
should be invariant to shifts in marginal models:
so indicators in latter should not enter former.

VAR in w− p, y− l, ∆p and Ur with SIS at α = 0.005; retained
indicators in the 3 marginal models tested for significance in (14).

Super exogeneity tests

Variable null distribution SIS test on (14)
(y− l)t F(2, 123) 0.77
∆pt F(7, 118) 1.87
Ur,t F(14, 111) 1.37
Joint F(20, 105) 1.41

No evidence against super exogeneity of (y− l)t, ∆pt & Ur,t in (14).
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Route map

(1) Selecting empirical models

(2) Simulating ‘1-cut’ selection

(3) Automatic model extensions: Autometrics

(4) Detecting and modelling multiple location shifts

(5) Mis-specification testing and encompassing

(6) Empirical model discovery and theory evaluation

(7) Modelling UK real wages over the last 150 years

(8) Conclusions
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Overall conclusions

Little difficulty in eliminating almost all irrelevant variables from
the GUM (a small cost of search): HP8 when N = 145 > T = 139.
Avoids huge costs from under-specified models.
When the LDGP retained by Autometrics if commenced from it, then a
close approximation is generally selected when starting from a GUM
which nests that LDGP.
Theory formulations can be embedded in the GUM, to be retained
without selection, with no impact on estimator distributions, despite
selecting over N > T variables.
Model selection by Autometrics with tight significance levels and
bias correction is a successful approach which allows many
variables, lags, non-linearities and multiple shifts to be tackled
jointly while retaining theory insights.
All the steps are in place for empirical model discovery jointly
with theory evaluation.
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