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Abstract
The foundations of automated general-to-specific (Gets) modelling are reviewed. The algorithms
under consideration are formulated, and the salient differences highlighted. Additional motiva-
tions are provided for the procedural decisions that have been made. We show that estimating
all possible models, while not possible in practice, can be useful in clarifying some outstanding
issues (at the moment this issue is not fully decided yet).

1 Introduction
2do: Introduction

2 Selective historical background
In the last two decades, automatic modelling software has become more popular. Aided
by faster computers, algorithms can be implemented and investigated using Monte
Carlo methods.

Interest in strategies for modelling goes further back. Efroymson (1960) proposed
stepwise regression, which would have been attractive for its computational simplic-
ity (many coding optimizations employed in those days are not really worth the effort
today). Hamaker (1962) discusses the implementation of forward selection and back-
ward elimination, and notes that forward selection can break down when correlations
between variables are high. Beale, Kendall, and Mantel (1967) consider finding the
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best subset of a certain size. Cox and Snell (1974) and Hocking (1976) provide a brief
overview of the early methods of variable selection.

From the offset, there was a debate about the best method for variable selection.
Mantel (1970) argues that backward elimination (or ‘step-down’) should be preferred
over forward selection. One argument put forward in favour of backward elimination
is reduced computational effort, but this is unclear, and now unimportant anyway. The
second is again related to the situation where correlations mask the significance of
a single variable. Beale (1970) counters that the advantage is exaggerated, because,
when backward elimination drops a variable, it can not re-enter anymore at a later
stage. this path dependence can be a problem for stepwise regression as well: if two
almost equally significant variables swap place, a different final model may be found.

The early selection literature was primarily focussed on goodness-of-fit, while
working under severe computational constraints. There seems to be no concern about
the quality of the final model, or any distinction between good and bad models.

Around the same time, the econometric literature was more interested in the devel-
opment of mis-specification (or diagnostic) tests: when inference in a linear regression
model is based on independently normal error terms, those assumptions can and should
be tested as a matter of course. E.g., the influential empirical modelling of consumption
in the UK in Davidson, Hendry, Srba, and Yeo (1978) uses mis-specification testing for
all specifications considered. Such tests became an important aspect of econometric
software, see Hendry (1986) and Ericsson, Campos, and Tran (1990). Relatedly, the
concept of what makes a good model was developed in the work of David Hendry
and colleagues, culminating in the concept of congruence, see e.g. Gilbert (1986) and
Hendry and Nielsen (2007, Ch.20). A model is congruent if:
(1) it is consistent with theory;
(2) its formulation is logically consistent, i.e. the left and right-hand side are coherent;
(3) it is based on valid conditioning;
(4) it has constant parameters;
(5) it satisfies the stochastic assumptions;
(6) and finally, it encompasses rival models.
The first three are largely up to the researcher, and recipes for modelling cannot of-
fer much help.1 Next, parameters should be constant inside the estimation sample,
but ideally also out-of-sample. One approach is to hold back data for this purpose (in
other contexts referred to as the ‘test’ data, after estimation using the ‘training’ set).
However, when data is scarce, such as in macro-economic modelling, it is not clear
if anything is gained from this (see Hendry and Krolzig, 2004a). Also, in time-series
modelling it is often unattractive to hold back the most recent period. Item (5) can
be verified through the mis-specification tests referred to above. Because modelling
starts from the general, with the initial set of variables determined by the researcher,
the general model is one such rival model, assuming it can be estimated. So the se-
lected model should, as a minimal requirement, be a valid reduction of this general
unrestricted model (GUM). Ideally, it is not dominated by another model that can be
selected from the GUM. A rival model obtained from another source may result in an
extension of the information set.

1But note Hendry and Santos (2010).
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A general-to-specific methodology (Gets) was proposed to find a congruent model.
The claim of Gilbert (1986, p.295), that scientific discovery, and by extension Gets,
cannot be automated, is at least partially overturned by later developments: Hoover
and Perez (1999) pioneered an automated version of Gets and studied its properties.
This was subsequently extended by Hendry and Krolzig (1999) and Doornik (2009).

There is a large literature on model selection, partially falling under the label of
statistical learning or data mining, see e.g. Hastie, Tibshirani, and Friedman (2009).
We restrict ourselves to only a few methods that can also be used with continuous data
in a time-series setting.

3 A fundamental difference
Imagine the following situation. A student approaches you with a pressing question: ‘I
have a set of variables G, from which I selected this model M . But I may have made
a mistake. Could you tell me if this is the {stepwise, backward elimination, Lasso,
information criterion, ...} solution?’ Then you have no alternative but to rerun the
procedure from scratch to answer the question. So, while the procedure itself may be
quick, it is quite cumbersome to verify the results. Each entails that there is a unique,
but different, solution.

Now let the student ask the question: is M the Gets model? This question is easily
answered, provided the student gives some additional information:
1. the likelihood of G,
2. the likelihood of M ,
3. diagnostic tests of M .

If this checks out fine, the model can be accepted as satisfactory. This is based on items
(4)–(6) of congruence. We could have paid some more attention to constancy and valid
conditioning. There could be other models that we prefer (there is not necessarily a
unique Gets model), or we may wish to suggests improvements to G. Despite this, the
question was quite readily answered.

The importance of this distinction does not seem to be sufficiently appreciated in
the literature. By classifying models as acceptable and non-acceptable, we limit what
we are looking for in a model selection procedure. By requesting that the GUM G
satisfies the criteria, we ensure that there is a solution. While finding all Gets models
is generally too costly, finding several to choose from is quite feasible.

When stepwise regression, backward elimination, and Lasso (Efron, Hastie, John-
stone, and Tibshirani, 2004) each yield a different model, what does that entail? Is one
better than the other, or are they all equally good? We can run horse races (e.g. the
forecasting comparison in Kock and Teräsvirta, 2014), but these results tend not to
generalize to other settings or time periods. The notion of congruence can, of course
be applied here too: we can even be lucky that all found models are acceptible to us. If
not, there is no obvious route to recovery. We return to this issue below. Another ap-
proach is to ignore all this, choose one method, and proceed with the selected model.2

However, the results can be quite fragile, making it difficult to convince others of the
value of the model (unless the choosen method happens to be en vogue).

2One further approach is not to select at all.
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It is not suggested that G should consist of anything and anything ever thought of,
say a dump of all the information on the internet. A researcher should restrict herself
to a relevant, and potentially useful information set. This can be a subject of much de-
bate, but, once determined, automatic model selection methods can save much research
time. Even stepwise regression requires formulation of G: the candidate set has to be
determined before pressing a button on the computer. As a consequence, we belief that
we study of automated model selection is a well-defined problem, and the tools are sta-
tistical analysis and Monte Carlo experimentation. Appeals to metaphysical principles,
as in McAleer (2005), serve only to obfuscate.

4 Data mining: good or bad?
The economics discipline is unique in that the term ‘data mining’ tends to be used to
in a pejorative manner. As Hoover (2013, p.53) points out, outside economics, when
people mine for something, they try to harvest a valuable material (gold, coal, etc.).
In computer science, data mining is considered by some to be a novel activity: the
preface, written in 2001, of Hastie, Tibshirani, and Friedman (2009) defines the new
field of data mining as extracting patterns and trends from vast amounts of data. The
distinguishing feature here is the search in large databases.

Sargan (2001a, p.159), writing in 1973, adopts the definition of data mining as
‘A model which has been fitted to data over some sample period is found to have a
significantly worse error variance than it should when used to predict in a later period.’

Lovell (1983, p.1), in his paper entitled ‘Data Mining’, describes it as follows:
‘When a data miner uncovers t-statistics that appear significant at the 0.05 level by
running a large number of alternative regressions on the same body of data, the prob-
ability of a Type I error of rejecting the null hypothesis when it is true is much greater
than the claimed 5%.’

Sargan’s notion is that of overfitting. This is not a logical consequence of model
selection: if we are so conservative that we almost always select the empty model, there
will not be any overfitting. However, it is an issue we need to be aware of, particularly
if model selection is based on some form of maximization of in-sample fit.

Lovell (1983)’s statement is stronger, but we shall show that it (1) depends on the
hypothesis being considered, (2) depends on test procedure that is used, and, (3) when
it is considered an issue, can be avoided.

To clarify the issue, we specify the example of Lovell (1983, Section II) as a Monte
Carlo experiment. The data generation process (DGP) is given by

yt =
∑K
i=1 βixi,t + εt, εt ∼ IN [0, 1] , t = 1, ..., T,

xt = (x1,t, ..., xK,t)
′, xt ∼ INK [0, IK ] .

(1)

The general unrestricted model (GUM) consists of the K variables and an intercept:

yt = γF0 +
∑10
i=1 γixi,t + ut ut ∼ IN

[
0, σ2

u

]
. (2)

The superscript F on γ0 indicates that the intercept is forced in all models (although
omitting the intercept throughout would not have a material impact).
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The test of H0 : γ0 = ... = γK = 0 in (2), under the assumption that the null
hypothesis is true, i.e. all the βi are zero, has the standard central F distribution. Simi-
larly, the test for γi = 0 when it is true has the expected central Student-t distribution.

Geary (1967) analyzes the simplified case, where the regressors are orthogonal, so
X′X is a diagonal matrix, X′ = (x1...xT ). Moreover, σ2 is known, so the t-values are
independent draws from N[0, 1] when the true coefficients are zero. This is the setting
for the remainder of thissection. It is easily seen that, when using a p-value of α and
corresponding critical value cα, the probability that all absolute t-statistics are less than
cα is given by (1 − α)K . In other words, when K = 20 and α = 0.05, one will find
one variable significant on average using a critical value of two, independently of the
sample size.

The procedure investigated in Lovell (1983, Section II) is that of selecting the two
most significant variables from the candidate set of size K. The null hypothesis that no
variables matter is rejected when any of the selected variables are significant, i.e non-
rejection occurs when both coefficients are deemed insignificant. In the simplified
orthogonal setting, this amounts to estimating (2) and selecting those two variables
with the highest t-values (they need not be significant). If any of these is significant,
the null hypothesis is rejected. If we denote the ordered t-values as:

|t(K)| ≥ |t(K−1)| ≥ ... ≥ |t(1)|,

and the corresponding variables as x(K), x(K−1), ..., then the procedure is:

P1 : Estimate (2)
Reject H0 : γ0 = ... = γK = 0 if |t(K)| > c∗α.

We would expect that every modeller, data miner or not, would know that c∗α should
not be taken from the normal or t-distribution: we are working now with order statis-
tics.

As an example we take K = 10 variables to select from, and set c∗α = 1.96
(i.e. adopting a standard normal distribution). Then for procedure P1, the probabil-
ity to reject H0 when it is true equals one minus the probability of finding no regressor
significant, which is 1 − 0.9510 = 0.4. Geary (1967, Table 1) shows that we should
have used 2.8 as the critical value. In other words, we should have used a 99.5%
quantile from the normal distribution to obtain a size of 5% for test P1:

(1− 0.05) ≈ (1− 0.005)10.

How can we reconcile the value 0.4 with a claimed ‘true significance level’ of 0.226
in Table 1 of Lovell? The answer is that we cannot. The same table shows the ‘true
significance level’ for K = 2 to be 5%. But the footnote shows that it is derived as a
tautology, namely the value of α̂ that solves:3

(1− α)2 = (1− α̂)2.
3The entries for K > 2 are the answers to the following question: which α̂ would give us the same

rejection frequency as that found when using α for K = 2?
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The actual probability to reject H0 using normality for each t-statistic (without selec-
tion), also given in the Lovell’s Table 1, equals 1 − 0.952 = 0.1. It is not the claimed
5%. The selection is actually a red herring here: in the simplified setup it does not mat-
ter if we select or not. However, the number of variable matters, because K determines
the distribution of the order statistic used in P1. Only for K = 1 can we use a 5%
critical value of 1.96.

One could argue that this is just a cosmetic issue: the problem could have been
avoided had the setup been restricted to selecting only one regressor. On the other
hand, a researcher wishing to test H0 should not do it using P1, but indeed look at the
F -test of all coefficients in (2).

Another method of testing H0 is to require both coefficients to be significant:

P2 : Estimate (2)
Reject H0 : γ0 = ... = γK = 0 if |t(K−1)| > c∗α.

Geary (1967, Table 1) gives a 5% critical of 2.07 for K = 10, which is not far from
1.96. For smaller K the procedure is undersized, but, again, the distribution depends
on K.

Now consider the following model selection procedure:

P3 : Estimate (2)
Estimate all possible submodels, keeping only those with Z2(k) ≤ cα
Keep only those models in the selected pool that are ‘minimal’
If all models are rejected, return the GUM
Reject H0 : γ0...γK = 0 if one or more non-empty model is selected.

This needs some further explanation. In the second step we estimate 2K−1 models, and
reject those that that are significant at 5% in an F -test on all coefficients (ignoring the
intercept, which is always forced in the models). The test statistic is denoted Z2(k).
We may also use a likelihood-ratio test and a χ2(k) distribution. The third step is a
logical step: all redundant models are removed from the models that survive the tests,
leaving one or more final model. Here a model is redundant if a subset of it is also a
model in the surviving pool.

P3 can be analyzed under the null that all variables are irrelevant. The test of the
empty model is rejected with probability α. If that is the case either the GUM or some
sub model(s) survive, andH0 is rejected. Otherwise, the empty model is accepted (with
probability 1 − α). In that case, all other models are redundant, because every model
nests the empty model. Here we have a procedure that estimates all possible models,
which surely qualifies as a ‘large number of alternative regressions on the same body
of data’. However, the size of the joint test on all coefficients is actually α.

There is one issue though that remains: it is mathematically impossible in the setup
that we considered to control both the size of H0 : γ0 = ... = γK = 0 at α = 5% and
that ofH∗0 : γi = 0 at α∗ = 5%. If we adopt the former, then, because of orthogonality
and known σ, we find that α∗ is defined through:

(1− α∗)K = 1− α.
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As already noted above, for K = 10, α = 5% corresponds to α∗ = 0.5%, and
α∗ = 5% corresponds to α = 40%.

Because H0 is intrinsically of less interest, we prefer a method that controls α∗. A
model selection method that controls neither seems undesirable. This defines our aims
when allowing for correlated regressors.

Table 2 reports a small Monte Carlo experiment, to show that estimation of σ, and
independence rather than orthogonality, does not change the results obtained in this
section. The DGP is (1) with β1 = ...βK = 0; x1,t, ..., xK,t provides the candidate
regressor set, so the GUM is (2). The selection methods that are used are S1 and S3,
the model selection versions of P1 and P3, as well as stepwise regression and backward
elimination. S1 is simply selecting significant regressors:

S1 : Estimate (2)
Select all regressors that have |ti| > cα.

In the case of S3, the Bayesian information criterion4 is used as tie breaker:

S3 : Estimate (2)
Estimate all possible submodels, keeping only those with Z2(k) ≤ cα
Keep only those models in the selected pool that are ‘minimal’
If all models are rejected, return the GUM
Otherwise return the model with the smallest BIC.

The test used in S3 is the likelihood-ratio test with a χ2 distribution. We set the sample
size to T = 200 and use M = 10000 replications.

The first column with results in Table 2 is labelled ‘gauge’. This is the retention
rate of irrelevant variables in the final model. The gauge is averaged over all regressors,
but, because they are exchangeable, it also applies to each individual regressor. The
gauge can therefore be interpreted as the type I error of the test H0 : γi = 0. The
column with σ̂ reports the average residual standard error, which is unity in the DGP,
and always close to one here – there is no sign of overfitting, so no data mining in the
sense of Denis Sargan.

The last three columns relate to the average model size: the percentage of models
that is empty (k = 0), the percentage that has one regressor (k = 1), and the remainder.
One hundred minus the percentage of empty models is the type I error of the test for
H0 : γ1 = ... = γK = 0.

Returning to the gauge, we see that for all methods except S3, the empirical rejec-
tion frequencies are equal to the nominal frequency of 5%. These three methods are
all very similar, which is to be expected in an independent design. They all have a type
I error for H0 : γ1 = ... = γK = 0 that corresponds with the theory, e.g. about 40%
when K = 10. As noted, this is not the objective of these selection methods.

S3 is very different. Here the type I error for H0 : γ1 = ... = γK = 0 is close to
α, ranging from 5.1% to 6% in the table. The price that logically must be paid is that
the type I error for H0 : γi = 0 gets smaller as K grows. We should note that S3 is

4Also called Schwarz criterion (SC). BIC is defined as (−2̂̀+ k log T )/T , where ̂̀ is the estimated
log-likelihood, and k the number of parameters in the model.
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Gauge σ̂ k = 0 k = 1 k ≥ 2
K = 1

S1 0.050 0.9984 95.0% 5.0% 0%
S3 0.051 0.9984 94.9% 5.1% 0%
Stepwise 0.050 0.9984 95.0% 5.0% 0%
Backward 0.050 0.9984 95.0% 5.0% 0%

K = 2
S1 0.049 0.9977 90.4% 9.4% 0.2%
S3 0.028 0.9981 94.7% 5.1% 0.2%
Stepwise 0.049 0.9977 90.4% 9.4% 0.2%
Backward 0.049 0.9977 90.4% 9.4% 0.2%

K = 10
S1 0.050 0.9935 60.6% 30.1% 9.2%
S3 0.007 0.9979 94.0% 5.3% 0.7%
Stepwise 0.051 0.9933 59.4% 32.0% 8.6%
Backward 0.052 0.9931 58.9% 31.8% 9.3%

Table 1 Type I errors of some model selection procedures at nominal significance
level α = 5% and with K variables in the GUM. All variables are irrelevant in the
DGP, T = 200,M = 105.

not feasible in general: our brute force method of estimating 2K models can be taken
to about K = 15.

**** ends here ****
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T Gauge σ̂ k = 0 k = 1 k ≥ 2
S1

10 0.048 0.9504 91.4% 7.7% 0.9%
20 0.051 0.9765 90.3% 9.2% 0.4%
50 0.049 0.9898 90.6% 9.1% 0.4%
1000 0.051 0.9997 90.1% 9.7% 0.2%
100000 0.052 1.0000 89.9% 9.8% 0.3%

min. BIC
10 0.201 0.9170 65.3% 28.5% 6.2%
20 0.118 0.9688 79.6% 18.5% 1.9%
50 0.054 0.9895 89.7% 9.9% 0.4%
1000 0.008 0.9998 98.4% 1.6% 0%
100000 0.0007 1.0000 99.9% 0.1% 0%

Table 2 Gauges of S1 at α = 5%, and model selection by BIC. K = 2 variables in
the GUM, all irrelevant in the DGP, M = 105.

5 Asymptotic properties
A model selection procedure is consistent if it finds the correct model with probability
approaching certainty as the sample size goes to infinity. In that case, inference based
on the selected model is asymptotically identical to that of the true model (Pötscher,
1991, Lemma 1).

There are many consistent model selection procedures. For example, selecting the
model with the smallest BIC is consistent, whereas using AIC = (−2̂̀+ 2k)/T in-
stead is not (AIC leads to larger models). Information criteria can be expressed as a
likelihood-ratio test with critical value depending on sample size and number of regres-
sors.

The distinction made in the previous section was also addressed in Sargan (2001b),
showing that S1 can be made consistent by shrinking the significance level sufficiently
quickly as the sample size grows.

Consistency requires that the correct model is within the set being searched.

6 Finding Gets models: multipath search
The core of the multipath search algorithm adopted by Hoover and Perez (1999) and
Hendry and Krolzig (2006) can be described as follows:
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1. Specify the GUM and choose a significance level α.
2. Estimate the GUM, and abort if it fails diagnostic testing.
3. Order the variables according to their squared t-values, most insignificant

first:
t2(1), t

2
(2), ..., t

2
(k).

Let m be the cut-off, such that t2(m+1) ≥ c2α, so there are m insignificant
variables in the GUM.

4. for i = 1, ...,m: delete variable (i), re-estimate, and follow the backward
elimination path, stopping when
(a) the next marginal variable is significant (standard termination of back-

ward elimination);
(b) the model fails the reduction test against the GUM (encompassing or

backtesting failure);
(c) the model fails diagnostic testing (diagnostic tracking failure);
A failure means that the previous model is a terminal candidate (with one
or more insignificant variables), otherwise it is the current model.

5. Remove duplicate terminal candidates to find the first set of terminal mod-
els.

If the m insignificant variables are also insignificant in each path that is followed,
then there is one terminal model with thosem removed, which is found after 1+m(m−
1) model estimations.

The first terminal model that is found, in the absence of backtesting and diagnostic
tracking is the backward elimination model.

7 Finding Gets models: tree search
The algorithm at the heart of Doornik (2009) is different, but tries to achieve the same
aims more efficiently:

[description needed]
Again, in its basic form, without backtesting and diagnostic tracking, Autometrics

finds the backward elimination model first.

8 Finding Gets models: pre-search
A pre-search to remove highly insignificant variables prior to the application of the
search algorithm, is sometimes adopted to reduce the time of searching for terminal
models. This notion was introduced by Hendry and Krolzig (2006) in their PcGets
software, and can be seen as backward elimination without re-estimation:
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1. Order the variables according to their squared t-values, most insignificant
first:

t2(1) ≤ t
2
(2) ≤ ... ≤ t

2
(k).

Let m be the cut-off, such that t2(m+1) ≥ c2α, so there are m insignificant
variables in the GUM.

2. for i = 1, ...,m: if variables (1)..(i) are not a valid reduction of the GUM,
set m = i− 1 and stop.

3. Remove variables 1, ..,m.

9 Properties of selection
• Measuring success
• Distribution of post-selection estimator

(bias correction)
• Consistent selection (oracle nonsense)

10 Properties of automated Gets
To study the properties of automated Gets, simplified versions of the algorithms given
above (which are already simplifications) could provide useful starting points.

One concern that has frequently been raised, is that the algorithms use excessive
testing, to such an extent that the final model is meaningless and inference distorted.
(bit vague) However, to some extent, the method of discovery may not matter: the
questions asked by the student above can be answered, irregardless of how the student
found the model. Indeed, if there were a known DGP, and the student had found it, it
would surely be perverse to reject it because of excessive ‘data mining’.

Hendry and Krolzig (2004b) state that, when all regressors are mutually orthog-
onal, and the set of variables is more general than the DGP, model selection can be
based on selecting all those variables with a squared t-value below a specified critical
value (say using α = 5%). (provided k << T ) In such a world, only one decision is
required, based upon a single estimation. In that case, stepwise regression and back-
ward elimination would be the same (allowing for some small-sample fluctuations at
the margin). Similarly, because the independent t-tests contain the same information as
the joint F -tests against the GUM (or likelihood-ratio tests), the multi-path algorithm
(without diagnostic testing) is also the same. In that case all estimations are redundant,
all further testing a duplication, and there is no impact of testing beyond the single
decision.

We then claim that all testing in the path searched is to improve t-testing in the
presence of non-orthogonality. I feel that this can be substantiated for Autometrics, but
perhaps not for PcGets.
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11 Properties of 1-cut selection
Castle, Doornik, and Hendry (2011) label selection on the basis of ordered t-values
as ‘1-cut selection’. Hendry and Krolzig (2003) derive the probabilities of selecting
one or more variables when none matter (the ‘gauge’), assuming orthogonality, and
book(2014) shows that 1-cut selection is consistent.

12 Properties of backward elimination
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