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Abstract

We investigate alternative robust approaches to forecasting, using a new class of robust devices,
contrasted with equilibrium-correction models. Their forecasting properties are derived facing a
range of likely empirical problems at the forecast origin, including measurement errors, impulses,
omitted variables, unanticipated location shifts and incorrectly included variables that experience a
shift. We derive the resulting forecast biases and error variances, and indicate when the methods are
likely to perform well. The robust methods are applied to forecasting US GDP using autoregressive
models, and also to autoregressive models with factors extracted from a large dataset of macroeco-
nomic variables. We consider forecasting performance over the Great Recession, and over an earlier
more quiescent period.

JEL classifications: C51, C53.
Keywords: Robust forecasts; Smoothed Forecasting devices; Factor models; GDP forecasts; Location
shifts.

1 Introduction

In recent times,1 there has been increased interest in forecasting with diffusion indices and factor models:
see e.g., Stock and Watson (1989, 1999, 2009), Forni, Hallin, Lippi and Reichlin (2000), Peña and Pon-
cela (2004), Schumacher and Breitung (2008) and Castle, Clements and Hendry (2013). In Castle et al.
(2013), we investigated which approach to forecasting output levels and growth using factors, variables,
both, or neither performed best on quarterly data over the Great Recession to 2011. After updating and
extending the dataset from Stock and Watson (2009), we used Autometrics (as described in Doornik,
2009, and Doornik and Hendry, 2013) for in-sample modeling, which allowed all the principal compo-
nents of the variables as well as the original variables to be included jointly, while also tackling multiple
breaks by impulse-indicator saturation (IIS: see Johansen and Nielsen, 2009, and Castle, Doornik and
Hendry, 2012). Forecasting US GDP growth over 1-, 4- and 8-step horizons showed that factor models
were somewhat more useful for short-term forecasting, but their relative performance declined as the
forecast horizon increased. We found (like many other investigators) that it was difficult to beat scalar
autoregressions: Fildes and Stekler (2002) provide a survey of macroeconomic forecasting before the
Great Recession, which the follow up in Stekler and Talwar (2011) show was not well predicted. Our
own forecasts for GDP levels highlighted the need for robust strategies (such as intercept corrections)

1Contact details: jennifer.castle@magd.ox.ac.uk, M.P.Clements@icmacentre.ac.uk and david.hendry@nuffield.ox.ac.uk.
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when location shifts (i.e., shifts in the previous unconditional mean) occurred. The empirical results were
consistent with the forecast-error taxonomy for factor models, which highlighted the impacts of location
shifts on systematic forecast-error biases.

In this paper, we develop the theory of forecasting for members of a robust class of forecasting model
motivated by Hendry (2006). The robust approach proposed is applicable to factor models and models
with variables (as well as hybrids), almost all of which are variants of equilibrium-correction models
(EqCMs), but seeks to avoid the systematic forecast failure symptomatic of EqCMs after a location shift.
The class of robust forecasting devices we introduce includes that proposed in Hendry (2006) as the most
flexible, and hence the most volatile, at one end, with the least flexible, conventional full-sample vector
equilibrium-correction model (VEqCM) at the other, having recursive updating, rolling windows, and
smoothed robust devices as intermediate cases.

We then compare and contrast findings for forecasting US GDP over both a quiescient period (2000(1)–
2006(4)) and a period including the Great Recession (2007(1)–2011(2)) to see how well robust forecast-
ing devices motivated by Hendry (2006) perform in the face of breaks. While championing the use
of factor models for forecasting, Stock and Watson (2009) find ‘considerable evidence of instability in
the factor model; the indirect evidence suggests instability in all elements (the factor loadings, the fac-
tor dynamics, and the idiosyncratic dynamics).’ They suggest estimating the factors on the full historical
period across the break (in their case, the Great Moderation around 1984, see, e.g., McConnell and Perez-
Quiros, 2000), but only using the post-break period to estimate the forecasting models which include the
factors as explanatory variables.

The structure of the paper is as follows. Section 2 reviews the problems confronting VEqCMs as
non-robust forecasting models when unanticipated location shifts occur at or near the forecast origin.
Section 2.1 considers changes in dynamics to show they will not by themselves generate systematic
forecast failure. Section 3 describes the new class of robust forecasting devices, explains why they
can avoid systematic forecast failure, then investigates two members that differ in their smoothness,
and compares how they react under: (i) constant parameters in §3.1, then to (ii) measurement errors in
§3.2, (iii) unknown impulses in §3.3, (iv) unanticipated location shifts at the forecast origin in §3.4, (v)
unknowingly omitted variables in §3.5, (vi) changing forecast origins after shifts §3.6 and (vii) making
longer-horizon forecasts in §3.7: §3.8 draws some conclusions on robustifying VEqCMs. Section 4
applies that analysis to factor-based models for forecasting facing a location shift. Section 4.1 considers
location shifts induced by changes over time in the relevance of ‘explanatory variables’. Section 5
presents the empirical analysis forecasting US GDP over the period 2000(1)–2011(2), divided as noted
above. Section 6 concludes.

2 Vector equilibrium-correction models

This section introduces our notation and establishes a benchmark by showing that VEqCMs are not robust
when forecasting after an unanticipated location shift, so can suffer systematic forecast failure (see e.g.,
Clements and Hendry, 1999, 2006). Explaining why equilibrium-correction models are susceptible to
forecast failure in such circumstances leads us to introduce the new class that is robust.

Consider a data generation process (DGP) given by the first-order open VEqCM for an n-dimensional
time series {xt, t = 0, . . . , T}, integrated of first order, denoted I(1):

∆xt = γ +α
(
β′xt−1 − µ

)
+ φ′(zt−1 − κ) + εt (1)

where εt ∼ INn [0,Ωε], denoting an independent normal random vector with mean E [εt] = 0 and
variance V [εt] = Ωε. In addition to lags of the xt’s, we allow that xt may depend on a set of k
explanatory variables zt, which may be I(0) individual variables and/or factors. As indicated by (1),
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∆xt responds to disequilibria between zt−1 and its mean E [zt−1] = κ, so the DGP is also equilibrium-
correcting in the zt’s. However, the omission of zt−1 is not known to the investigator. In (1), both ∆xt
and β′xt are I(0), with equilibrium mean E

[
β′xt

]
= µ and average growth E [∆xt] = γ in-sample.

Then (1) is incorrectly estimated as:

∆x̂t = γ̂ + α̂
(
β̂
′
xt−1 − µ̂

)
(2)

where E [γ̂] = γe and E [µ̂] = µe, and usually γe 6= γ and µe 6= µ because of the model mis-
specification. In general, there will also be small-sample biases in these estimates, but we ignore these
to sharpen the analysis. We also ignore biases and variances in estimating α and β, as well as changes
therein (as discussed in section 2.1).

Location shifts are the most pernicious problem for forecasting, since when γ, µ and κ shift to γ∗,
µ∗ and κ∗ at time T , the DGP becomes:

∆xT+1 = γ∗ +α
(
β′xT − µ∗

)
+ (φ∗)′ (zT − κ∗) + εT+1 (3)

where we have allowed the coefficient of the omitted vector to change as well, so the 1-step ahead
forecast errors from:

∆x̂T+1|T = γ̂ + α̂
(
β̂
′
xT − µ̂

)
(4)

have a mean of:
(γ∗ − γe)−α (µ∗ − µe) + (φ∗)′ (κ∗ − κ) (5)

The extent of forecast failure depends on the magnitudes of the mean shifts in (5), but can be very large
(see e.g., Castle, Fawcett and Hendry, 2010). In fact, using (4) when the DGP is (3) leads to all of the
following errors:
(ia) ‘deterministic shifts’ of (γ, µ, κ) to (γ∗,µ∗ κ∗);
(ib) ‘stochastic breaks’ of φ to φ∗, although shifts in α and β are also perfectly possible;
(iia,b) inconsistent parameter estimates γe and µe (and potentially also in α and β) from the unknown
omission of zt−1;
(iii) forecast origin uncertainty when x̂T 6= xT (considered later though not explicitly included above);
(iva,b) estimation uncertainty from V[γ̂, α̂, β̂, µ̂];
(v) omitted variables, zT ;
(vi) innovation errors, εT+1.

When (4) is still used to forecast the outcomes from (3) even after several periods, so that:

∆x̂T+h|T+h−1 = γ̂ + α̂
(
β̂
′
xT+h−1 − µ̂

)
(6)

then the forecast error ε̂T+h|T+h−1 = ∆xT+h − ∆x̂T+h|T+h−1 has a persistent bias (even assuming
E [zT+h−1] = κ∗) of:

E
[
ε̂T+h|T+h−1

]
= (γ∗ − γe)−α (µ∗ − µe) (7)

so the first two components in (5) continue to cause systematic mis-forecasting into the future until the
estimated model is revised. The problem is that equilibrium correction always corrects back to the old
equilibrium, determined by γ, µ, irrespective of whether or not the equilibrium has shifted. Even in
the absence of model mis-specification, systematic mis-forecasting will occur when there is a break:
using the pre-break, in-sample DGP with the population values of the parameters, the equivalent of (6)
becomes:

∆x̂T+h|T+h−1 = γ +α
(
β′xT+h−1 − µ

)
(8)

with a forecast error of:
E
[
ε̂T+h|T+h−1

]
= (γ∗ − γ) +α (µ∗ − µ) (9)
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which is of the same form as (7). Consequently, (4) is a hazardous basis for forecasting after location
shifts, even when it is a ‘good’ in-sample model, as the DGP is bound to be (compare Allen and Fildes,
2005).

2.1 Changes in dynamics

There are other possible shifts than changes in γ and µ. If instead, α in Γ = (In+αβ′) changes at time
T to α∗, with γ,µ and β constant, the new DGP in levels is:

xT+h = γ −α∗µ+ Γ∗xT+h−1 + εT+h (10)

which seems to involve a shift. However, (10) can be written as:

∆xT+h = γ +α∗
(
β′xT+h−1 − µ

)
+ εT+h

This formulation entails no permanent changes in either E [∆xT+h] or E
[
β′xT+h

]
so there is no impact

on the long-run of a change in dynamics when no location shift occurs. Consequently, the change in α
will be nearly undetectable. Similar considerations apply to changes in β when the equilibrium mean
shifts accordingly to maintain a zero expected equilibrium deviation. Consequently, we take α and β as
constant with known population values in the remainder of the paper.

3 A class of robust forecasting devices

There are a number of possible solutions to the failure of VEqCMs to converge to a new equilibrium after
a location shift, including rapid estimation updating (e.g., recursive or rolling windows) and intercept
corrections. In this section, we develop then analyze a new class of robust forecasting devices that
can avoid some of the systematic forecast failure described in the previous section. We investigate two
members that differ in their smoothness, and compare how they react (i) under constant parameters in
§3.1, then (ii) to measurement errors (§3.2), (iii) unknown impulses (§3.3), (iv) unanticipated location
shifts (§3.4) at the forecast origin and (v) unknowingly omitted variables (§3.5). Then §3.6 considers the
consequences of shifting the forecast origin through time, and §3.7 discusses the corresponding longer
horizon forecasts of levels and growth rates. §3.8 summarizes the results on robustifying VEqCMs.

The basis of the approach can be illustrated by using the first difference of (2) for 1-step forecasts:

∆̃xT+h|T+h−1 = ∆xT+h−1 + α̂β̂
′
∆xT+h−1 (11)

as differencing eliminates the ‘deterministic shifts’ for the included variables, and converts location shifts
to impulses. However, there is a deeper reason why such a differencing strategy might work. Equation
(11) is also:

∆̃xT+h|T+h−1 =
(
In + α̂β̂

′)
∆xT+h−1 (12)

where from (1), h > 2 periods after the break, ∆xT+h−1 is in fact generated by:

∆xT+h−1 =
[
γ∗ +α

(
β′xT+h−2 − µ∗

)
+ φ∗′(zT+h−2 − κ∗)

]
+ εT+h−1 (13)

so that:

∆̃xT+h|T+h−1 =
(
In + α̂β̂

′) ([
γ∗ +α

(
β′xT+h−2 − µ∗

)
+ (φ∗)′(zT+h−2 − κ∗)

]
+ εT+h−1

)
(14)
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Then the term in brackets [· · · ] in (14) contains everything you ever wanted to know when forecasting—
and you don’t even need to ask. Specifically, without knowing anything about the location shifts or the
omitted variables, the forecast given by (14):
(Ia) has the correct γ∗, µ∗ and κ∗, so adjusts to the new equilibrium;
(Ib) had α and β also shifted, (14) would still have the right adjustment speeds and cointegration;
(IIa,b) the correct population parameter values in [· · · ] are incorporated without any estimation biases;
(III) but forecast origin uncertainty due to x̂T+h−2 6= xT+h−2 could be a problem (discussed below);
(IV) there is no estimation uncertainty in [· · · ];
(V) zT+h−2 is included despite the omitted variables in the VEqCM;
(VI) innovation errors, εT+h−1 remain.
Robust devices are a form of automatic ‘learning device’, in that later forecasts reflect location shifts
when forecasting after they have occurred, even when the modeler is unaware of their occurrence. Al-
though (14) uses α̂ and β̂, whereα and β need to be estimated and could shift, they are well-determined
full-sample estimates. This analysis helps explain the past ‘success’ of random-walk type forecasts,
∆̃xT+h|T+h−1 = ∆xT+h−1 where α̂β̂

′
= 0.

An alternative expression for (11) complements this explanation, writing it as:

∆̃xT+h|T+h−1 = ∆xT+h−1 + α̂
(
β̂
′
xT+h−1 − β̂

′
xT+h−2

)
= γ̃ + α̂

(
β̂
′
xT+h−1 − µ̃

)
(15)

In (15), ∆xT+h−1 can be interpreted as the highly adaptive estimator γ̃ of the growth rate γ in (1), and
the previous value of the cointegrating combination, β̂

′
xT+h−2 = µ̃, estimates µ. We use γ̃ and µ̃ as

shorthand for these estimates, although they both depend on T and h. In this interpretation, both γ and µ
are replaced by instantaneous estimators that are unbiased both before and some time after the population
parameters have shifted, since for h > 2, E

[
β′xT+h−2

]
' µ∗ and E [∆xT+h−1] ' γ∗.

This reinterpretation of the approach in Hendry (2006) to robustifying forecasting models after loca-
tion shifts defines a class of forecasting devices given by:

∆xT+h|T+h−1 =
1

r

r∑
i=1

∆xT+h−i + α̂

(
β̂
′
xT+h−1 −

1

m

m∑
i=1

β̂
′
xT+h−1−i

)
(16)

where the instantaneous estimates γ̃ and µ̃ are replaced by local averages when r > 1 and m > 1, and
we do not require r = m. Then r = m = 1 gives (11). The adaptation to unanticipated location or
growth shifts is slowed by higher values of r and m, but the forecasts will be smoother, less inclined to
overshoot at the end of a break, and consequently behave better when there are no further location shifts.

Four well-known forecasting devices are special cases of (16). First, the recursively updated full-
sample estimated model in (1) essentially uses (for r = m = T + 1, . . . , T + h− 1, and K = 2):

γ̃(r) =
1

r

r∑
t=K

∆xt and µ̃(m) =
1

m

m∑
t=K

β̂
′
xt−1 (17)

The full-sample VEqCM will deliver the ‘smoothest’ forecasts, and will be best when there are no loca-
tion shifts, but is the least robust to location shifts as noted in the previous section. Moreover, updating
the estimates of α and β after a location shift can lead to the loss of cointegration (see Castle et al.,
2010), as the estimate of α is driven towards zero to eliminate the adverse impact of the shift in µ.

Second, rolling windows use (17) with K = r − s for a fixed s > 1, and m = r, so are more or less
smooth or robust after a location shift depending on the length of the window, again noting that estimates
of α and β may also be updated. Third, and at the other extreme to the VEqCM, (11) with r = m = 1
is the most robust after location shifts, but also produces the noisiest forecasts, with estimates of α and
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β unchanged. Finally, with quarterly data, a natural intermediate choice in (16) is r = m = 4. When
∆xt is the quarterly growth rate, then

∑4
i=1 ∆xT+h−i = ∆4xT+h−1 where ∆4 = 1 − L4, which is the

year-on-year growth rate. Although data are often seasonally adjusted, such a formulation should also
be robust to seasonal variation.

To facilitate the choice between members of the class in (16), we analytically investigate the 1-step
ahead forecasts of (16) for r = m = 1 and r = m = 4 when: (i) the data generation process is
unchanged, so that robustification of the forecasts is unnecessary; (ii) there are measurement errors; (iii)
there is an impulse unbeknown to the forecaster; (iv) there is an unanticipated location shift; and (v) there
are unknown omitted variables as in (1). For (i) to (iv) the in-sample DGP is given by:

∆xt = γ +α
(
β′xt−1 − µ

)
+ εt where εt ∼ INn [0,Ωε] . (18)

We then consider (vi) shifting forward the forecast origin after a location shift, and (vii) longer horizon
forecasts after the impact of a location shift.

3.1 Unchanged DGP

Although one would not need to use a robust forecasting device when the DGP is constant, the fol-
lowing analysis will nevertheless prove useful below. First, forecast errors from (18) are distributed as
INn [0,Ωε], although that is an infeasible baseline.

When r = m = 1, and α̂ and β̂ are taken as known at their population values for analytical simplic-
ity, (11) becomes:

∆̃xT+1|T =
(
In +αβ′

)
∆xT (19)

leading to a forecast error for (18) of ε̃T+1|T = ∆xT+1 − ∆̃xT+1|T :

ε̃T+1|T = γ +α
(
β′xT − µ

)
+ εT+1 −

(
In +αβ′

) (
γ +α

(
β′xT−1 − µ

)
+ εT

)
= αβ′

[
∆xT −α

(
β′xT−1 − µ

)
− εT

]
+ ∆εT+1

= ∆εT+1 (20)

noting that β′γ = 0. Then E
[
ε̃T+1|T

]
= 0, but V

[
ε̃T+1|T

]
= 2Ωε, so that robustification has doubled

the innovation-error variance.
Next, for r = m = 4, (16) is:

˜̃
∆xT+1|T =

1

4

3∑
i=0

∆xT−i +α

(
β′xT −

1

4

3∑
i=0

β′xT−1−i

)
(21)

so when ˜̃εT+1|T = ∆xT+1 −
˜̃
∆xT+1|T :

˜̃εT+1|T =

(
γ − 1

4

3∑
i=0

∆xT−i

)
−α

(
µ− 1

4

3∑
i=0

β′xT−1−i

)
+ εT+1. (22)

The first term can be evaluated from (18) as:

1

4

3∑
i=0

∆xT−i =
1

4

3∑
i=0

γ +α

(
1

4

3∑
i=0

β′xT−i−1 −
1

4

3∑
i=0

µ

)
+

1

4

3∑
i=0

εT−i

= γ +α

(
1

4

3∑
i=0

β′xT−i−1 − µ

)
+ εT (23)
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where εT = 1
4

∑3
i=0 εT−i, and substituting from (23) in (22) gives:

˜̃εT+1|T = εT+1 − εT . (24)

Thus, E
[˜̃εT+1|T

]
= 0 with variance V

[˜̃εT+1|T

]
= 1.25Ωε, so smoothing helps in this setting as ex-

pected. These outcomes compare to an error variance of Ωε when the in-sample DGP is used, so there is
only a relatively small cost to this ‘insurance policy’ for r and m greater than unity.

3.2 Measurement errors at the forecast origin

National accounts data are subject to revision, so that the data on which forecasts are conditioned at
the forecast origin will be measured with error, whereas assuming a relatively short revision process, the
majority of the observations underlying the estimation of the model will constitute fully-revised or mature
data.2 A number of authors have tackled this problem, including Koenig, Dolmas and Piger (2003),
Kishor and Koenig (2012), Garratt, Lee, Mise and Shields (2008) and Clements and Galvão (2013b,
2013a), either by: estimating the revised values of recent-release data; using only lightly-revised data;
or modeling the multiple-vintages available for any observation. Measurement error is most likely to
be problematic in real-time forecasting exercises, when considering forecasts from a number of forecast
origins, each time making use only of the vintage of data available at that forecast origin (see e.g.,
Patterson, 2003). Hence the data relating to the forecast origin observations will of necessity be first
estimates. Our empirical forecasting exercise will be pseudo-real time, in that all observations are drawn
from the same (recently-released) data vintage.3 Nevertheless, we consider the performance of the robust
class of model when there are measurement errors.

To begin with, suppose that only the latest observation is measured with error, so that xT = xT +vT ,
but vT−1 = 0. Then forecasting from (18) delivers:

∆̂xT+1|T = γ +α
(
β′xT − µ

)
= γ +α

(
β′xT − µ

)
+αβ′vT

with a forecast error for (18) of ε̂T+1|T = ∆xT+1 − ∆̂xT+1|T so:

ε̂T+1|T = εT+1 −αβ′vT

where any additional bias depends on E[vT ], and the variance is increased by V
[
αβ′vT

]
= αβ′Ωvβα

′.
Next, consider forecasting with r = m = 1. Then the forecast is directly conditioned on the mis-

measured observation, and (11) becomes:

∆̃xT+1|T =
(
In +αβ′

)
∆xT = Γ∆xT + ΓvT

where Γ =
(
In +αβ′

)
, again taking α and β as known for simplicity, leading to a forecast error for

(18) of ε̃T+1|T = ∆xT+1 − ∆̃xT+1|T :

ε̃T+1|T = γ +α
(
β′xT − µ

)
+ εT+1 −

(
In +αβ′

) (
γ +α

(
β′xT−1 − µ

)
+ εT + vT

)
= ∆εT+1 − ΓvT

2See e.g., Fixler and Grimm (2005, 2008) and Landefeld, Seskin and Fraumeni (2008) on the nature of the US Bureau of
Economic Analysis (BEA) data releases and revisions.

3This is true of virtually all studies of factor model forecasting, partly due to the costs of assembling real-time data sets on
the large numbers of variables typically employed in constructing factors. An exception is Bernanke and Boivin (2003), who
calculate inflation forecasts based on factors constructed from the restricted set of variables for which they have real-time data.
They show that the properties of the forecasts depend on the number of variables underlying the factors (more variables lead to
more accurate forecasts) rather than whether real or pseudo-real-time data are used.
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which augments (20) by−ΓvT , so the bias depends on E[vT ] and the variance is increased by V[ΓvT ] =
ΓΩvΓ

′.
When the smoothed forecast device (21) is used with r = m = 4, the impact of the measurement

error becomes −
(
1
4In +αβ′

)
vT , so averaging attenuates both any bias due to the measurement error,

and its variance component.
Suppose, however, that the previous observation was also mis-measured by an independent error with

the same variance, so xT−1 = xT−1 + vT−1 but the impact of both measurement errors on parameter
estimates can be ignored. For the VEqCM here, there is no additional impact, whereas when r = m = 1:

∆̃xT+1|T =
(
In +αβ′

)
∆xT = Γ∆xT + Γ∆vT

leading to:
ε̃T+1|T = ∆xT+1 − ∆̃xT+1|T = ∆εT+1 − Γ∆vT (25)

so the forecast-error variance is increased by V[Γ∆vT ] = 2ΓΩvΓ
′, the doubling being due essentially to

mis-estimating µ by using β′xT−1. Although we have assumed serially uncorrelated measurement error,
it is clear from (25) that positive correlation in the measurement errors will reduce the overall impact on
forecast error variance, whereas negative correlation will have the opposite effect.

The smoothed forecasting device (21) is affected by the combined measurement errors:

1

4
vT +αβ′

(
vT −

1

4
vT−1

)
(26)

which augments the innovation-error variance of 1.25Ωε (in the absence of measurement error) by the
variance of (26), which is:(

1

4
In +αβ′

)
Ωv

(
1

4
In + βα′

)
+

1

16
αβ′Ωvβα

′ (27)

Smoothing over r = m = 4, therefore, again leads to a very small increase in the total error variance
from the impact of the previous measurement error, and even over the DGP forecast error variance of
αβ′Ωvβα

′.
The above expressions assume that the aim of the exercise is to forecast the true value. When data are

subject to multiple regular and benchmark revisions a case can be made for targetting an earlier-vintage
‘actual’ value, as discussed in some of the references at the beginning of this section.

3.3 An unknown impulse at the forecast origin

Unlike a measurement error which only contaminates a model and not the underlying mechanism, an
impulse at T + 1 impacts on the DGP, which becomes:

∆xT+1 = γ + δ1{T+1} +α
(
β′xT − µ

)
+ εT+1 (28)

leading to a forecast error of ε̂T+1|T = δ1{T+1} + εT+1.
Next, still using (19) to forecast, with ε̃T+1|T = ∆xT+1 − ∆̃xT+1|T delivers:

ε̃T+1|T = δ1{T+1} + ∆εT+1 (29)

adding a bias of δ, but no additional variance component. In fact, the smoothed forecast will also have
the additional error of δ1{T+1} so all three forecasting devices suffer the same additional error. Thus, in
the first period after the forecast origin, the impacts of impulses differ from those of measurement errors,
as impulses affect the DGP but not the model, whereas measurement errors do the opposite.
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However, outcomes will differ in the second period, when the DGP reverts to:

∆xT+2 = γ +α
(
β′xT+1 − µ

)
+ εT+2.

The in-sample VEqCM is now unaffected, whereas the robust forecast (r = m = 1) of:

∆̃xT+2|T+1 =
(
In +αβ′

)
∆xT+1

leads to the forecast error:
ε̃T+2|T+1 = ∆εT+2 − δ1{T+1} (30)

which is increased by the full amount of the impulse at T + 1, but with the opposite sign, as against the
second-period doubling of the measurement error impact seen in (25).

In contrast, r = m = 4 will only partly reflect the impulse, for reasons similar to why it was less
distorted by the measurement error, since:

˜̃
∆xT+2|T+1 =

1

4

3∑
i=0

∆xT+1−i +α

(
β′xT+1 −

1

4

3∑
i=0

β′xT−i

)
so using:

1

4

3∑
i=0

∆xT+1−i = γ +
1

4
δ1{T+1} +α

(
1

4

3∑
i=0

β′xT−i − µ

)
+ εT+1 (31)

then ˜̃εT+2|T+1 = ∆xT+2 −
˜̃
∆xT+2|T+1 is:

˜̃εT+2|T+1 = εT+2 − εT+1 −
1

4
δ1{T+1}

Although the smoothing entailed by larger values of r and m is beneficial in all these cases, that advan-
tage is not maintained for an unanticipated location shift at the forecast origin, as we now show.

3.4 Location shift at the forecast origin

In all three cases above, the smoothed robust predictor dominates that using r = m = 1, and is not much
worse than the in-sample DGP. The outcomes differ considerably when an unanticipated location shift
persists over the forecast horizon. The case of r = m = 1 above prompted the creation of the class,
but we did not establish its benefits explicitly compared to using the in-sample DGP when h > 2 and
∆xT+h is generated by:

∆xT+h = γ∗ +α
(
β′xT+h−1 − µ∗

)
+ εT+h. (32)

The robust forecasts h-steps ahead are given by:

∆̃xT+h|T+h−1 =
(
In + α̂β̂

′)
∆xT+h−1 = Γ̂

(
γ∗ +α

(
β′xT+h−2 − µ∗

)
+ εT+h−1

)
.

Simplifying with known α and β, ε̃T+h|T+h−1 = ∆xT+h − ∆̃xT+h|T+h−1 = ∆εT+h, as in §3.1,
precisely because the new DGP is unchanged from T +h−1 to T +h for h > 2. Thus, the robust device
dominates the in-sample DGP provided the squared combined shift is larger than the error variance.

The slower adjustment of r = m = 4 is not now beneficial, even taking the more favourable case of
h = 3 to illustrate:

˜̃
∆xT+3|T+2 =

1

4

3∑
i=0

∆xT+2−i +α

(
β′xT+2 −

1

4

3∑
i=0

β′xT+1−i

)
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so when ˜̃εT+3|T+2 = ∆xT+3 −
˜̃
∆xT+3|T+2:

˜̃εT+3|T+2 =

(
γ∗ − 1

4

3∑
i=0

∆xT+2−i

)
−α

(
µ∗ − 1

4

3∑
i=0

β′xT+1−i

)
+ εT+3

=
1

2
(γ∗ − γ)− 3

4
α (µ∗ − µ) + εT+3 − εT+3 (33)

as:
1

4

3∑
i=0

∆xT+2−i =
1

2
(γ∗ + γ) +α

(
1

4

3∑
i=0

β′xT+1−i −
1

4
(µ∗ + 3µ)

)
+ εT+3

because ∆xT+2−i is generated by the post-shift parameters γ∗ and µ∗ for i = 0, 1, whereas for i = 2, 3
the pre-shift values prevail. Although only a part of the shift is offset, that becomes increasingly so as h
increases, and (33) will then dominate the in-sample DGP.

3.5 Unknown omitted variables

Reverting to a constant DGP, but where a set of k variables zt is unknowingly omitted both in-sample
and over the forecast horizon so:

∆xT+h = γ +α
(
β′xT+h−1 − µ

)
+ φ′(zT+h−1 − κ) + εT+h

the main difference between the two robust devices is that for r = m = 1, φ′∆zT+h−1 is omitted as
against φ′∆4zT+h−1 when r = m = 4, and φ′zT+h−1 for the VEqCM, so the impact will depend on
the time-series properties of the {zt}. Within a general-to-specific automatic model selection strategy,
searching over all variables and factors, problems related to omitted variables should be of secondary
importance.

3.6 Shifting the forecast origin

Irrespective of the values of r and m in (16), all the forecasts made immediately after an unanticipated
location shift will suffer from the same biases. However, when forecasting from origins sufficiently long
after the shift has occurred, the results for a constant parameter DGP will again hold, assuming the earlier
in-sample breaks have been modeled and no further shifts occur. For forecast origins shortly after the
break, the outcomes for the different approaches are less clearcut, especially for the smoothed robust
forecasting device. The relevance of these origins for our understanding of the outcomes of empirical
forecast exercises, where forecasts are produced from a relatively large number of origins, and forecast
accuracy is estimated by averaging errors across origins, will depend on the frequency of shifts over the
forecast period. We next illustrate this for forecasts of levels and growth rates made at time T + 2 and
later, when the DGP is (18).

3.7 Longer horizon forecasts of levels and growth rates

First, VEqCMs like (6) continue to cumulate the error in (5) when forecasting levels. Let Γ =
(
In +αβ′

)
and ψ = (γ −αµ), then the forecast of T + h from T + 2 for h ≥ 3 using the in-sample DGP, even for
known in-sample parameter values and correct initial conditions, is:

x̂T+h|T+2 = Γx̂T+h−1|T+2 +ψ = Γ2x̂T+h−2|T+2 +ψ + Γψ = · · ·

=

h−3∑
i=0

Γiψ + Γh−2xT+2 (34)
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leading to ever larger forecast errors since the post-shift DGP generates:

xT+h =
h−3∑
i=0

Γiψ∗ + Γh−2xT+2 +
h−3∑
i=0

ΓiεT+h−i (35)

Because Γhα = α
(
Ir + β′α

)h
= αΛh where Λ has all its eigenvalues inside the unit circle, and

Γhγ = γ, Γhγ∗ = γ∗ then:

E
[
xT+h − x̂T+h|T+2

]
= (h− 2) (γ∗ − γ)−α

h−3∑
i=0

Λi (µ∗ − µ) (36)

Although Λi → 0 as i→∞, so the second terms eventually converges, the sum continually increases.
However, for forecasting growth rates, since:

x̂T+h−1|T+2 = Γh−3xT+2 +

h−4∑
i=0

Γiψ

then for h > 4:

∆x̂T+h|T+2 =
(
Γh−2−Γh−3

)
xT+2 +

(
h−3∑
i=0

Γi −
h−4∑
i=0

Γi

)
ψ

= Γh−3
[
γ +α

(
β′xT+2 − µ

)]
.

The conditional expectation of the outcome from the DGP is:

E
[
∆xT+h|T+2|xT+2

]
= Γh−3

[
γ∗ +α

(
β′xT+2 − µ∗

)]
so the forecast error of ε̂T+h|T+2 = ∆xT+h|T+2−∆x̂T+h|T+2 in the growth rate from using the pre-shift
DGP has an expected value of:

E
[
ε̂T+h|T+2

]
= Γh−3 [(γ∗ − γ)−α (µ∗ − µ)] = (γ∗ − γ)−αΛh−3 (µ∗ − µ) (37)

indicating a persistent error from the shift in γ, whereas the effect of the shift in µ on the forecast growth
rate dies out as h increases. Consequently, it matters considerably whether forecast errors are evaluated
for levels or growth rates.

Consider now the robust forecast device with r = m = 1. The growth-rate forecast is given by:

∆̃xT+h|T+2 = Γ∆̃xT+h−1|T+2 = · · · = Γh−2∆xT+2 (38)

so when ε̃T+h|T+2 = ∆xT+h|T+2 − ∆̃xT+h|T+2:

E
[
ε̃T+h|T+2|xT+2

]
= Γh−3

[
γ∗ +α

(
β′xT+2 − µ∗

)
− Γ∆xT+2

]
= Γh−3

[
γ∗ +α

(
β′xT+2 − µ∗

)
− Γ

(
γ∗ +α

(
β′xT+1 − µ∗

))]
(39)

Consequently, assuming β′γ∗ = 0 as above:

E
[
ε̃T+h|T+2

]
= Γh−3αβ′E

[
∆xT+2 −α

(
β′xT+1 − µ∗

)]
= 0.

Hence forecasting later than two periods after the break, when there are no further location shifts, the
robust device returns unbiased longer-run forecasts of the growth rate, compared to the recurring biases
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of the non-robust model’s forecasts in (37). Moreover, this robust method will then deliver unbiased
forecasts of the levels. For example:

x̃T+4|T+2 = x̃T+3 + Γ∆x̃T+3 =
(
In + Γ + Γ2

)
xT+2 − Γ (In + Γ) xT+1 (40)

whereas:
xT+4 = ψ∗ + ΓxT+3 + εT+4 = (In + Γ)ψ∗ + Γ2xT+2 + ΓεT+3 + εT+4

so using xT+2 = ψ∗ + ΓxT+1 + εT+2:

xT+4 − x̃T+4|T+2 = εT+4 + ΓεT+3 − (In + Γ) εT+2 (41)

which has an unconditional expectation of zero, but a large variance.
The smoothed device with r = m = 4 will only deliver unbiased growth rate forecasts once h > 5,

but will converge on that outcome as h increases from 2. The forecasts of the levels will be biased, but
not increasingly so once the growth forecasts are unbiased, and with a smaller forecast-error variance
than (41).

3.8 Further discussion on robustifying VEqCMs

All the robust devices keep the in-sample VEqCM estimates, and would not work well if directly esti-
mated, as such devices are manifestly non-congruent. Consequently, Autometrics style selection for r
and m is also unlikely to work well, but ‘in-sample forecast’ evaluation of the extent that smoothing
helps is possible. Equally, the lack of congruence from deliberately ‘over-differencing’ makes it diffi-
cult to calculate forecast standard errors. When data are poorly measured or are volatile, larger r and
m seem advisable (the simplest case in §3.2 shows this); similarly for longer horizon forecasts when
forecast-origin estimates are unreliable. Thus, trade-offs remain between robustness facing breaks and
increased variance when there are no breaks. Moreover, we have omitted any effects from parameter
estimation biases and variances, and treated each potential problem in isolation, although nothing pre-
cludes combinations thereof occurring empirically. Importantly, there is no need to robustify till after a
forecast failure, because robust devices suffer the same initial forecast failure as non-robust. Improving
on that performance would require such devices to be augmented by some method for forecasting shifts,
although Castle, Fawcett and Hendry (2011) show the difficulties in doing so.

There are other strategies available for improving the robustness of forecasting devices when location
shifts occur, including both rolling windows and recursive updating, noted above as other members of
the class in (16), as well as intercept corrections and averaging over a set of reasonable models. Castle
et al. (2010) show that recursive updating in a VEqCM after a location shift can lead to the elimination of
the equilibrium-correction terms, which are the source of the forecast failure, so the outcome ends close
to an estimated robust device. We expect a similar outcome from rolling windows, so both would then
lose any policy implications from equilibrium corrections, which can be recovered from (16) knowing its
origins. Conversely, Castle et al. (2010) also show that both rolling windows and recursive updating help
when previously high collinearities between explanatory variables are reduced by an ‘external’ break that
nevertheless leaves the VEqCM constant. Since the above analysis shows that the impacts of the various
problems differ and also affect each of the three exemplars in different ways, averaging over a number
of these devices merits consideration.

The next section considers the application of robust methods to forecasting using factors. Note that
forecasting models with factors are equilibrium-correction models when, as in (1) with the zt interpreted
as factors, the factors enter as I(0) variables with well-defined means.

12



4 Robust factor-based models for forecasting

In this section, we adapt the approach to allow for dynamic scalar equations dependent on factors es-
timated by the principal components of large numbers of unmodeled variables. Let wt be the relevant
transform of the dependent variable when the postulated factor model is:

wt = θ + ρ (wt−1 − θ) + δ′ (ft−1 − µ) + εt (42)

where θ is the in-sample equilibrium mean, E [wt] = θ, and ft denotes a vector of factors or principal
components with E [ft] = µ. The in-sample parameter estimates of (42) are denoted θ̂, ρ̂, µ̂ and δ̂.

From the analysis in section 3, the robust device for forecasting h = 1 step ahead over a horizon
k = 1, . . . ,K from an origin at T is:

w̃T+k+1|T+k = wT+k + ρ̂∆wT+k + δ̂∆fT+k

= wT+k + ρ̂ (wT+k − wT+k−1) + δ̂ (fT+k − fT+k−1) (43)

where wT+k is the ‘instantaneous estimator’ of the mean of wT+k+1, and wT+k−1 is regarded as the
‘estimator’ of the mean ofwT+k, both of which are denoted ‘θ’ in the assumed constant-parameter model
(42), and fT+k−1 ‘estimates’ µ. Correspondingly, the 1-step ahead smoothed robust variant becomes:

wT+k+1|T+k =
1

r

r−1∑
i=0

wT+k−i + ρ̂

(
wT+k −

1

s

s∑
i=1

wT+k−i

)
+ δ̂

′
(

fT+k −
1

m

m∑
i=1

fT+k−i

)
(44)

so short moving averages are used to estimate the potentially changing values of θ and µ.
As future values of large numbers of factors are too difficult to forecast, direct multi-step estimation

(DMS) is needed for (42) when h > 1, leading to (see e.g., Chevillon, 2007):

w̃T+h+k|T+k = θ̃h + ρ̃h

(
wT+k − θ̂

)
+ δ̃

′
h (fT+k − µ̂) (45)

where θ̃h, ρ̃h and δ̃
′
h, denote the in-sample estimates from an h-step projection. Equation (45) is also:

w̃T+h+k|T+k = π̃h + ρ̃hwT+k + δ̃
′
hfT+k (46)

where π̃h is the estimated composite intercept, which is the formulation used in section 5 and denoted
PC1-4 (being based on the first four principal components).

There are several possible ways to robustify (46), corresponding to a robust version of that multi-step
form using h-period differences, or developing a multi-step robust device after first differencing. We
chose a variant of the former (denoted R1PC1-4 below), namely:

w̃T+h+k|T+k = wT+k + ρ̃h (wT+k − wT+k−h) /h+ δ̃
′
h (fT+k − fT+k−h) /h (47)

where division by h adjusts regressors to be in the same units as wt. The other robust formulation would
use first differences for the regressors. In both cases, the same parameter estimates as (46) are used.

The multi-step smoothed robust variant (denoted R4PC1-4 below for r = s = m = 4) is formulated
as:

wT+h+k|T+k =
1

r

r−1∑
i=0

wT+k−i + ρ̃h

(
wT+k −

1

s

s∑
i=1

wT+k−i

)
+ δ̃

′
h

(
fT+k −

1

m

m∑
i=1

fT+k−i

)
(48)

As before, (48) can be formulated with other values for r, s and m. When wt = ∆yt is a quarterly
growth rate, say, as occurs below,

∑4
i=1 ∆yT+k−i = ∆4yT+k−1, so is the annual growth rate.
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The robust versions of a first-order autoregression (AR1) reported below correspond to (47) with
δ̃h = 0.

For models that have both variables zt−1 and factors ft−1 with in-sample means µz and µf respec-
tively, then the initial general unrestricted model (GUM) would be the singular specification:

yt = θ + ρ (yt−1 − θ) + λ′ (zt−1 − µz) + δ′
(
ft−1 − µf

)
+ εt (49)

However, using combinations of contracting and expanding block searches, as in Autometrics, selection
can be applied to deliver the ‘non-robust’ full-sample estimated model as shown in Castle et al. (2013):

ŷt = θ̂ + ρ̂
(
yt−1 − θ̂

)
+ λ̂

′
1

(
z1,t−1 − µ̂1,z

)
+ δ̂

′
1

(
f1,t−1 − µ̂1,f

)
(50)

The corresponding smoothed robust approach for 1-step ahead forecasts becomes:

wT+k+1|T+k =
1

r

r−1∑
i=0

wT+k−i + ρ̂

(
wT+k −

1

s

s∑
i=1

wT+k−i

)

+ λ̂
′
1

(
z1,T+k −

1

m

m∑
i=1

z1,T+k−i

)
+ δ̂

′
1

(
f1,T+k −

1

m

m∑
i=1

f1,T+k−i

)
(51)

Setting r = s = m = 4, for example, the smoothed robust 1-step forecasts are given by:

wT+k+1|T+k = S4wT+k + ρ̂ (wT+k − S4wT+k−1)

+ λ̂
′
1 (z1,T+k − S4z1,T+k−1) + δ̂

′
1 (f1,T+k − S4f1,T+k−1) (52)

where Sr = 1
r

(
1 + L+ L2 + L3 + . . . Lr

)
and L is the lag operator.

To make matters concrete, if we let wt = ∆yt denote the quarterly GDP growth rate (defined as the
first difference of the natural log of quarterly GDP), then the smoothed robust forecasting device has the
interpretation that future quarterly GDP growth is predicted using lagged annual growth at quarterly rates,
the previous quarterly growth rate ∆yT+k−1 as a deviation from its past yearly average, and the relevant
variables and factors entered as I(0) transformed deviations from their moving averages (S4z1,T+k−1 and
S4f1,T+k−1). Thus, we propose using Autometrics model selection to get the best in-sample model, then
generate robust forecasts therefrom as transformed in (52) as well as for r = m = s = 1 in (51).

However, the factors used below have already been differenced once or twice, so are already partly
‘robustified’. Moreover, Chevillon (2007) shows that DMS also provides partial robustification against
various forms of mis-specification, including location shifts. Thus, the extra differencing of the robust
methods proposed for such factor formulations may be less helpful than for a VEqCM,and will be advan-
tageous primarily when π changes, so is better approximated by recent lagged growth than a full-sample
estimate. Beyond h = 4, the in-sample estimates ρ̃h and δ̂h below are tiny, so only the composite in-
tercept mattered empirically. Consequently, we also consider a variant of (48) where the estimates of
δ are not constrained to those found from (42), but are re-estimated after imposing differencing: this is
denoted R4PC1-4est below.

4.1 Change in the relevance of a variable

An alternative source of location shifts may be from changes over time in the relevance of ‘explanatory
variables’ or factors. For example, Stock and Watson (2008) report a pseudo out-of-sample forecasting
exercise for US inflation, and find that models with indicator variables only episodically enhance fore-
casts relative to a random walk model, at least over the period from 1985 onwards. Suppose the DGP
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is:

yt = θ + ρyt−1 + εt, t < τ

yt = θ + ρyt−1 + γzt−1 + εt, t ≥ τ (53)

so that zt helps to predict yt+1 only after time τ . Depending on the relative pre and post break sample
sizes in (53), assuming that the coefficient of zt−1 was constant over the whole period might well result in
z appearing to be insignificant when the full-sample model is estimated, and at the least its effect would
be attenuated. Rolling windows of a length that did not span both regimes at the time of forecasting
would perform well.

When the mean of zt−1 in the second period is µ, then (53) becomes:

yt =
(
θ + γµ1(t≥τ)

)
+ ρyt−1 + γ1(t≥τ) (zt−1 − µ) + εt (54)

where 1(t≥τ) = 1 for t ≥ τ . This extended model has constant parameters (as in Clements and Hendry,
1999, p.260), but in practice, the dates of such breaks (as there may be several) and which variables (or
factors) are affected are unknown. When there are a number of explanatory variables that might have
changing effects, a strategy of interacting all possible such terms with step indicators for every date then
selecting the optimal forecasting model could be infeasible. However, the most detrimental effect of
omitting a variables such as zt−1 probably arises from the induced location shift, γµ1(t≥τ). The strategy
of step-indicator saturation (SIS)—saturating the model with step-shift indicators—then becomes a pos-
sible solution. Commencing at the first observation and continuing to every observation, one creates T
indicator variables for T observations, of the form S1 =

{
1{t≤j}, j = 1, . . . , T

}
, when 1{t≤j} = 1 for

observations up to j, and zero otherwise. Step indicators are the cumulations of impulse indicators up to
each next observation. Such a general procedure is needed when the locations, durations, magnitudes and
signs of location shifts are unknown. Castle, Doornik, Hendry and Pretis (2013) investigate the theory
of step-indicator saturation under the null of no location shifts, and for a variety of single and multiple
shifts. SIS is included in Autometrics and is feasible because software like Autometrics can handle more
candidate variables N than observations T , using a combination of expanding and contracting multiple
block searches. SIS even provides a potential solution when the need to include zt−1 is not known (see
Castle and Hendry, 2013). Location shifts when τ is near the forecast origin were considered above, and
if found, SIS then provides a natural intercept correction.

Alternatively, suppose the DGP is:

yt = θ + ρyt−1 + γzt−1 + εt, t = 1, . . . , T (55)

but shifts to:
yT+h = θ + ρyT+h−1 + εT+h, h ≥ 1 (56)

so that zT+h−1 no longer predicts yT+h after T . When the mean of zt−1 in-sample is µ1 but changes
magnitude to µ2 in the forecast period, then the forecasts from the estimates of (55) are:

ŷT+h = θ̂ + ρ̂yT+h−1 + γ̂zT+h−1 (57)

so with ε̂T+h = yT+h − ŷT+h:

ε̂T+h =
(
θ − θ̂

)
+ (ρ− ρ̂) yT+h−1 − γ̂zT+h−1 + εT+h

then (ignoring finite-sample biases of O(T−1) in (57)):

E [̂εT+h] ' −γµ2
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The most detrimental effect of including γ̂zT+h−1 in (57) therefore arises from the induced location
shift, γµ2. As an empirical example (see Castle et al., 2013), consider the sudden and dramatic shift
that occured in the monetary base following the financial crisis, which jumped from $863bn in 2008(3)
to $1724bn in 2009(3). Models which retained a term in the monetary base would have experienced a
forecast error shift of γ̂zT+h−1 in the forecast period, resulting in forecast failure. Rolling windows of a
length that eventually did not span both regimes would end performing well. In practice, intervention by
the forecaster could also attenuate such effects, and we provide an ex post mimic of that below.

The simplest robust approach (e.g., the equivalent of (51) with r = s = m = 1) is:

ỹT+h|T+h−1 = yT+h−1 + ρ̂∆yT+h−1 + γ̂∆zT+h−1.

When h > 1, letting ε̃T+h|T+h−1 = yT+h− ỹT+h|T+h−1, and ignoring parameter estimation, we obtain:

ε̃T+h|T+h−1 = ∆yT+h − ρ∆yT+h−1 − γ∆zT+h−1 = −γ∆zT+h−1 + ∆εT+h.

Providing there are no further location shifts in z:

E
[
ε̃T+h|T+h−1

]
' −γE [∆zT+h−1] = 0

and hence should outperform. In summary: our robust forecasting devices should work in a world in
which the predictive ability of explanatory variables changes over time, and when these variables are
themselves subject to large shifts, as occurred with monetary variables during the Great Recession.

5 Robust forecasts of US GDP and GDP growth

Our empirical forecasting exercise compares the forecast performance of regression models based on
principal components with robust devices. We forecast quarterly GDP growth and the corresponding
level over the period 2000–2011. The robust devices we consider are based on the class described in §4.
We do not consider other possibilities, such as SIS as described in §4.1. Nor do we consider updating the
model estimates over the forecast period as a way of mitigating the effects of breaks in order to focus on
the new class of robust devices we have introduced, although in practice one might implement the robust
devices with recursive or rolling forecasting schemes.

A number of authors have assessed the forecast performance of factor models over this period, and
Stock and Watson (2011) review studies which explicitly consider the impact of breaks on factor-model
forecasts, including Stock and Watson (2009) who suggest estimating the factors on the full historical
period across the break (then, the Great Moderation around 1984, see, e.g., McConnell and Perez-Quiros,
2000), but only estimating forecasting models using factors as explanatory variables on the post-break
period. Here we use the full estimation sample for factors, and the new robust devices to counter location
shifts. AR benchmarks have typically been difficult to beat systematically, and Stock and Watson (2010)
argue that simple univariate models, such as a random walk which is the simplest robust device, are
competitive with models using explanatory variables, consistent with location shifts being important.

The data are discussed in detail Castle et al. (2013), so only briefly noted here in §5.1, and the
forecasting models are described in §5.2. Section 5.3 presents the results.

5.1 Data

The data set, based on Stock and Watson (2009), consists of 144 quarterly time series for the United
States over 1959(1)–2006(4), updated here to 2011(2). There are n = 109 disaggregate variables, used
both as the candidate set of regressors and the set for the principal components. All data are transformed
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to remove unit roots by taking first or second differences (usually in logs) as described in Stock and
Watson (2009) Appendix Table A1. The data available for estimation span T =1962(3)–2011(2), so
there are 150 in-sample observations after transformations and lags, with the forecast horizon of 2000(1)–
2011(2), which is separated into the two periods 2000(1)–2006(4), and 2007(1)–2011(2), to assess the
performance of the forecasting models over both a quiescient period and the financial crisis.

Three forecast horizons are recorded, for h = 1, 4, 8 step-ahead direct forecasts. Forecasts are
evaluated over the full forecast sample of 2000(1)–2011(2) (46 observations), with the first forecast
subsample of 2000(1)–2006(4) (28 observations), and the second of 2007(1)–2011(2) (18 observations).

5.2 Forecasting models

Our primary interest is in forecasting models which consist of the first four principal components. Castle
et al. (2013) found that such models performed well compared to models selected from factors and
variables. This model, denoted PC1-4, is given by:

∆yt = γ0 + ρh∆yt−h +
4∑

k=1

γk,hfk,t−h + εt (58)

where ∆yt is the first difference of log real gross domestic product and fk,t is the kth PC. The PCs are
extracted from the whole dataset. Although this may seem to favour such models, the effect could go
either way. Information that is not available at the time of the forecast is used, but against that there were
major changes in some of the disaggregated variables over the forecast period. The success of the robust
device R4PC1-4est that allowed the coefficients of the factors to be unrestricted is consistent with that
last point.

The usual benchmark forecasts of a random walk (RW):

∆ŷRWT+h+k|T+k = ∆yT+k (59)

where T + k is the forecast origin, and a first-order autoregression are included for comparison, as is
a robust version of the AR1, essentially (47) without factors. We evaluate the forecasts on root mean-
square errors (RMSFEs) for both levels and growth rates. The level forecasts for GDP (in logs) are
computed from the forecasts of the growth rates as:

ŷT+h+k|T+k =

h∑
i=1

∆ŷT+i+k|T+k + yT+k

for h = 4, 8. Although 1-step ahead forecast errors are identical for levels and differences, results of
both are reported for ease of comparison. Note that 4-step forecasts are evaluated from 2000:4 onwards
and 8-step forecasts from 2001:4 (and similarly for the second subsample).

5.3 Results

Table 1 records the RMSFEs for log GDP and GDP growth for each of the forecasting models in the
whole sample and two subperiods. For GDP growth, the four-period smoothed robust device that does
not impose the original parameter estimates for the factors but instead estimates them after differencing
(R4PC1-4est) performs well, ranking second on all horizons for the full sample due to its favourable
performance in the second, more volatile, sub-period. The unadjusted model that uses the first 4 PCs
(PC1-4) tends to dominate in the more quiescent first sub-period, as would be expected when there are
no breaks. A simple AR(1) is difficult to beat at longer horizons, but there is no benefit to robustifying
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Table 1: Forecast-error outcomes

PC1-4 R1PC1-4 R4PC1-4 R4PC1-4est RW AR1 R1AR1
∆ŷT+h

Full sample
0.562
0.955
1.013

0.827
1.001
1.082

0.630
0.929
1.199

0 .591
0 .852
1 .009

0.753
1.045
1.104

0.732
0.840
0.881

0.859
1.051
1.098

2000(1)-2006(4)
0.468
0 .632
0 .636

0.815
0.685
0.852

0 .524
0.652
0.936

0.531
0.659
0.897

0.766
0.681
0.858

0.561
0.540
0.551

0.926
0.683
0.853

2007(1)-2011(2)
0.728
1.191
1.304

0.904
1.364
1.374

0.829
1.500
1.255

0.734
1.083
1.165

0 .731
1.439
1.404

0.933
1 .139
1 .202

0.741
1.450
1.397

ŷT+h

Full sample
0.562
2.794
5.963

0.827
2.894
4 .595

0.630
3.231
4.551

0 .591
2.614
5.127

0.753
3.023
4.702

0.732
2 .752
5.279

0.859
3.076
4.692

2000(1)-2006(4)
0.468
1.707
3.615

0.815
1.638
3 .607

0 .524
1.829
3.688

0.531
1.754
4.330

0.766
1 .624
3.676

0.561
1.337
2.554

0.926
1.632
3.660

2007(1)-2011(2)
0.728
3 .893
8.915

0.904
4.425
6 .787

0.829
4.703
6.677

0.774
3.769
7.133

0 .731
4.635
6.925

0.933
4.150
8.537

0.741
4.658
6.919

RMSFEs×100 for log GDP and quarterly GDP growth. Forecast devices are: PC1-4 (42); R1PC1-4 (47); R4PC1-
4 (48); R4PC1-4est (48) with δ re-estimated rather than imposed from (42); RW (59); AR1 (42), and R1AR1 (47)
both with δ = 0. The three rows in each block correspond to 1, 4, and 8 step ahead forecast outcomes. The
smallest RMSFE in each row is shown in bold, with the second smallest RMSFE in italics.
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the AR(1) device which does worst overall. Both PC1-4 and R4PC1-4 also outperform the non-smooth
robust device and the random walk.

The rankings are less clear for the levels forecasts, confirming that evaluation in levels and growth
rates need not result in the same ranking. The unadjusted factor model obviously still performs best at
the 1-step horizon, but at longer horizons the robust versions of the model do well. The non-smooth
robust device (R1PC1-4), which did not rank in differences, is ranked second at the 8-step horizon across
all sub-periods, although the smoothed variant is often preferred at other horizons. The AR(1) device
does well in the quiescent period in levels, but not in the more volatile later sub-period. There are
very large increases in the RMSFEs at longer horizons between the two subsamples, which emphasizes
the difficulty of forecasting the level of GDP when the impact of the crisis-period location shift was
unanticipated: all the methods fail to ‘foresee’ the shift.

Figure 1 illustrates this last feature for the 4-period ahead forecasts of changes and levels of log real
GDP for PC1-4 and R4PC1-4est over the quiescent and turbulent periods.

Figure 1: 4-period ahead forecasts of changes (column 1) and levels (column 2) of log real GDP by PC1-4 and
R4PC1-4est over both quiescent (row 1) and turbulent periods (row 2).
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6 Conclusion

The theory and evidence in Castle et al. (2013) demonstrated the importance of robustifying forecasts
to location shifts, a key source of forecast failure. Regression models, whether based on variables or
factors, are equilibrium-correction formulations, so like all EqCMs, are not robust after location shifts,
potentially facing systematic forecast failure. We presented a new class of forecasting devices that are
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robust after location shifts, and analyzed their properties in a variety of settings. For large location shifts,
the most adaptable should prove advantageous, but if other problems are present, such as measurement
errors at the forecast origin, a smoothed variant may perform better.

The empirical application considered log GDP and GDP growth, computing forecasts using robust
devices based around the first four principal components, which had performed as well as selection
over factors and variables in Castle et al. (2013). Only counting 1-step outcomes once, the four-period
smoothed robust device re-estimating the factor coefficients after differencing, produced either the small-
est or second smallest RMSFEs on 7 occasions, as against the AR1 9 times and the non-robust device
based on the levels of the PCs 6 times. The success of the last may be because the principal components
are themselves averages over many variables, or may be due to using full-sample estimates of PCs. Al-
ternatively its relative success may be because the PCs are differenced (sometimes twice), so are already
partly robustified. These three approaches dominated a random walk, the more highly adaptive robust
device, and a robust AR(1) model, providing some support for smoothing robust methods.
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