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Abstract11

We propose an estimator of the ex-post covariation of log-returns under asynchronicity and microstruc-

ture noise. We use a positive semidefinite factorization of the correlation matrix in order to exploit

the heterogeneity in trading intensity to estimate the different parameters sequentially with as many

observations as possible. The estimator is guaranteed positive semidefinite, robust to microstructure

noise and asynchronicity. An extensive Monte Carlo study confirms good finite sample properties.

In our application we show that for a portfolio of 52 financial institutions, Value-at-Risk forecasts

obtained using dynamic models utilizing our high-frequency estimator are accurate, in contrast to

those from an approach using daily returns, for which the violations are serially correlated.

Keywords: Positive semidefinite, Integrated covariance, Non-synchronous trading, Realized12

covariance.13

1. Introduction14

The availability of high-frequency data and a large variety of estimators harnessing their infor-15

mation, has led to much greater understanding of the covariation between series. The estimation16

of covariance matrices is vital in many interesting and important financial, economic and statistical17

applications. However, most of these do not only require the estimated matrix to be accurate, but18

also positive semidefinite (PSD). Unfortunately, in search of the former, many proposed estimators19

have sacrificed the latter (e.g. Hayashi and Yoshida, 2005; Zhang, 2011; Lunde et al., 2012).20

Up until recently, estimation of realized covariance at ultra high frequencies was made difficult by21
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two empirical phenomena which induce biases in the estimates. First, the presence of market micro-1

structure noise (e.g. bid-ask bounce), and second, non-synchronous trading. To avoid these biases,2

covariances were estimated using returns at moderate frequencies, for instance every 20 minutes. Now,3

estimators that are robust to both problems have been proposed, and the only limit to the frequency4

of data one faces is due to the fact the observations have to be synchronized.5

The multivariate realized kernel of Barndorff-Nielsen et al. (2011) uses refresh-time sampling to syn-6

chronize data. Although this synchronization technique is quite efficient, its problem is that the7

number of observations is always determined by the least frequently traded asset. To diminish that8

effect, several papers try to make more efficient use of data by splitting up estimation into subsets9

of the data. Hautsch et al. (2012) propose a method that separates groups of liquid and illiquid as-10

sets, applies the multivariate realized kernel to each group, and combines these estimates into the full11

matrix. Aı̈t-Sahalia et al. (2010) synchronize pairs and use the ‘polarization result’ to estimate the12

covariance bivariately, using univariate estimators. Lunde et al. (2012) use a class of Composite esti-13

mators, which estimate the variances univariately, and use bivariate sampling to obtain correlations.14

Fan et al. (2012) use both the polarization and pairwise refresh-time techniques. These estimators15

increase efficiency by using more observations, but sacrifice positive semidefiniteness in the process.16

The contribution of this paper is a method that estimates each element sequentially, whilst ensuring17

the final estimate to be positive semidefinite. By applying an orthogonal decomposition to the covari-18

ance matrix we reduce the estimation from a d−dimensional matrix to a large number of bivariate19

estimations on transformed series, and ensure a well-conditioned matrix. However, due to the neces-20

sary transformations, we cannot sample over just two series for each element, but have to iteratively21

sample over an increasing set of series. The efficiency of data usage therefore lies somewhere in be-22

tween that of PSD d−dimensional estimation, and non-PSD pure bivariate estimation.23

Each bivariate estimate on transformed series can be done with any currently available or future24

estimator, as long as it is robust to the biases induced by ultra high-frequency data. Suitable es-25

timators include the sub-sampling estimator (Zhang, 2011; Boudt and Zhang, 2012), pre-averaging26

estimator (Christensen et al., 2010), kernel estimator (Barndorff-Nielsen et al., 2011) and likelihood27

based method (Aı̈t-Sahalia et al., 2010). In this paper we use the pre-averaging estimator.28

In an extensive simulation study, we find our estimator performs at least as well as its main com-29

petitors, and it offers significant improvements when estimating vast-dimensional matrices and/or in30

scenarios with high heterogeneity in trading frequencies. Its performance is similar to the Composite31

versions without resorting to an arbitrary rotation to make the estimate positive semidefinite.32

For the empirical application, we use our estimator to forecast portfolio Value-at-Risk for 52 assets.33

We apply recent advances in the literature on modeling Integrated Covariances on the CholCov, and34

compare the forecasting accuracy to those obtained using dynamic specifications on daily returns only.35

We find that models that utilize the CholCov in their estimation greatly improve both unconditional36

coverage and independence between Value-at-Risk violations.37

The paper is structured as follows. In Section 2 we consider the theoretical setup and outline the38

decomposition. Section 3 first discusses practical issues in preparing the data for estimation, and39

then presents the algorithm on how to obtain the estimate. In the next section we outline its general40

asymptotic properties, which depend on the candidate estimator. We provide an example for the pre-41

averaging estimator. Section 5 presents a summary of extensive Monte Carlo Simulations designed42
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to highlight the improvements due to more efficient data-sampling. Section 6 provides the empirical1

application on the forecasting of portfolio Value-at-Risk. Finally, Section 7 concludes.2

2. Theoretical setup3

Our aim is to accurately estimate the Integrated Covariance (ICov) matrix of a d−dimensional4

Brownian semimartingale process Y = (Y (1), . . . , Y (d))′. The measurement is complicated by the fact5

that the component processes are observed at irregular and non-synchronous time points, and that6

the price process of interest is observed with measurement error. The actual observed log-prices are7

denoted X = (X(1), . . . , X(d))′. Let the set of all series be denoted D, with subsets d ⊆ D. Each8

component process can be observed at different time points over the interval [0, T ]. For simplicity we9

take T = 1 in this paper. The observation times for the k−th asset are denoted by 0 ≤ t
(k)
1 ≤ t

(k)
2 ≤10

. . . ≤ t
(k)
N(k)

≤ 1. X is driven by the efficient log-price Y , a Brownian semimartingale defined on a11

filtered probability space (Ω,F , (F0
t ), P 0):12

Y (t) =

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s), (1)

where µ is a d×1 predictable locally bounded drift process, W is a d-dimensional vector of independent13

Brownian motions and σ a d × d càdlàg process such that Σ(s) = σ(s)σ′(s) is the spot covariance14

matrix of Y at time s.15

At very high frequencies, microstructure noise leads to a departure from the Brownian semimartingale.16

As a result we do not observe Y , but instead a process X, defined as:17

X
(d)
t = Y

(d)
t + ε

(d)
t , (2)

where ε
(d)
t is the microstructure noise and Y

(d)
t is the d-th component of Y . In this paper, εt =

(ε
(1)
t , ..., ε

(d)
t )′ is assumed to be an i.i.d. process independent of Y , satisfying

E(εt) = 0, E (εtε
′
t) = Ψ,

with Ψ a positive definite d× d matrix. Hansen and Lunde (2006) show that these assumptions can18

be called to question at very high frequencies. They can be relaxed to allow for dependence on Y and19

the asymptotic theory in this paper is still valid (see Christensen et al., 2010). The assumptions made20

here are specific for the pre-averaging estimator, and others may be considered when using a different21

candidate estimator. For simplicity we only consider noise of the form in Equation (2).22

Our parameter of interest is the integrated covariance over the unit interval:23

ICov =

∫ 1

0

Σ(s)ds. (3)

Estimation of the off-diagonal elements of the ICov requires synchronization of the data. Two ap-24

proaches are popular. One is to synchronize all observations jointly, but this has the disadvantage25

of letting the resulting observation frequency be determined by the least liquid asset (e.g. Barndorff-26

Nielsen et al., 2011). The second approach is to estimate the extra-diagonal elements of the ICov27
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separately using synchronized pairs of price processes, but the result is not ensured positive semidef-1

inite (e.g. Lunde et al., 2012). We propose a third approach that uses a factorization of the spot2

correlation matrix, combining the advantages of both methods.3

2.1. Decomposition4

For the estimation of the Integrated Covariance, it will reveal useful to decompose each spot5

covariance matrix into a symmetric factorization of square matrices. Such a factorization is ensured6

to be positive semidefinite. Additionally, we wish to separate volatilities from correlations and that7

the parameters defining the spot correlation between k and l do not depend on the parameters defining8

m and n with m > k and n > l. The latter condition ensures that we can estimate the parameters9

sequentially, which allows more efficient data usage. This is the case for the Cholesky decomposition,10

but also for the factorization proposed by Palandri (2009). We will focus on the former, and the latter11

is discussed in the web Appendix.12

The Cholesky decomposition is also used in the volatility context in Chiriac and Voev (2011) and13

Tsay (2010). Chiriac and Voev (2011) decompose the covariance matrix and use time series models14

to forecast the elements. This way they ensure positive semidefiniteness of covariance forecasts. Tsay15

(2010) uses the re-parametrization in a multivariate GARCH framework. The use of the Cholesky16

decomposition is the only similarity with our work. Their methods and goals are different from ours.17

We propose an ex-post covariance estimator, not a time-series volatility model.18

First, we rewrite the spot covariance matrix by rewriting the spot covariances into the product of spot19

volatilities and spot correlations as in Boudt et al. (2012). The spot correlation between log-returns20

of assets k and l is defined as21

ρk,l(s) =
Σk,l(s)√

Σk,k(s)Σl,l(s)
, (4)

where Σk,l(s) is element (k, l) of the spot covariance matrix Σ(s), implying

Σk,l(s) = ρk,l(s)σk(s)σl(s)

with σk(s) =
√

Σk,k(s). In multivariate notation, this leads to Σ(s) = D(s)R(s)D(s) where D(s) is a

d× d diagonal matrix containing the spot volatilities, and R(s) the d× d spot correlation matrix.

Second, the spot correlation matrix is split up using the well known Cholesky decomposition, i.e.

R(s) = H(s)G(s)H(s)
′
, (5)

where H(s) is a lower diagonal matrix with ones on the diagonal, and G(s) a diagonal matrix. More

specifically,

H(s) =


1 0 · · · 0

h21(s) 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

hd1(s) hd2(s) · · · 1

 G(s) =


g11(s) 0 · · · 0

0 g22(s) · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · gdd(s)

 .
For instance, omitting the time-dependence, for d = 3:22

R = HGH
′

=

 g11 h21g11 h31g11

h21g11 h2
21g11 + g22 h21h31g11 + h32g22

h31g11 h21h31g11 + h32g22 h2
31g11 + h2

32g22 + g33

 . (6)
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Hence, the elements in the H and G matrices are linked to the elements of R as follows1

gkk = Rkk −
k−1∑
m=1

h2
k,mgmm (7)

hkl =
1

gkk

(
Rkl −

k−1∑
m=1

hkmhlmgmm

)
, (8)

for k > 1 with g11 = R11. The (k, l)-th element of the correlation matrix only depends on gmm and2

hnp with m,n, p ≤ max(k, l). The elements can therefore be estimated sequentially.3

3. Estimation4

3.1. Dealing with asynchronicity5

In high-frequency data, assets are traded at irregular intervals and seldom simultaneously. More-6

over, not all stocks are equally liquid, such that the number of fresh prices within a fixed time interval7

may substantially differ across firms. One way to synchronize the data is by means of refresh-time8

sampling, as proposed by Harris et al. (1995). It picks refresh-times at which all assets have traded9

at least once since the last refresh-time point. Barndorff-Nielsen et al. (2011) define refresh-time for10

t ∈ [0, 1] as follows. The first refresh-time occurs at τ1 = max(t
(1)
1 , . . . , t

(d)
1 ), and subsequent refresh-11

times at τj+1 = max(t
(1)

N
(1)
τj+1

, . . . , t
(d)

N
(d)
τj+1

). The grid, denoted τ d , is a function of the series over which12

they are sampled, with d ⊆ D. The grid’s number of observations is denoted N d , while the individual13

series have size N (k). Finally, denote the durations as ∆d
i = τ d

i − τ d
i−1. Throughout the paper, for14

clarity of notation, the superscript may be omitted if it is clear which grid is being discussed, or in15

general statements concerning every grid.16

As a result of the sampling scheme, N d ≤ minkN
(k), and may be a lot smaller depending on the17

trading pattern and number of series under consideration. Hautsch et al. (2012) illustrate that the18

percentage data loss can exceed 90% when the number of assets becomes large and arrival rates are19

unequal. The sample size is clearly largely determined by the least liquid stock. Including a single20

non-liquid stocks may therefore drastically reduce the estimation efficiency of all elements, including21

those for which a lot of data is available.22

This problem is circumvented by the composite estimation technique used in Lunde et al. (2012) and23

Fan et al. (2012). The data loss is reduced, but at the expense of positive semidefiniteness, one of the24

defining properties of a covariance matrix. Moreover, many applications, such as principal components25

analysis and portfolio optimization, critically rely on it. Therefore the question arises how to project26

the symmetric matrix onto the space of PSD matrices.27

There exist many ways to transform the matrix to a PSD alternative. A general method called shrink-28

age is proposed in Ledoit and Wolf (2003). In the Realized Covariance setting Barndorff-Nielsen and29

Shephard (2004) and Fan et al. (2012) set all negative eigenvalues in the spectral decomposition to30

zero. Hautsch et al. (2012) impose more structure by employing eigenvalue cleaning, a random matrix31

theory technique similar in intuition to shrinkage. While such eigenvalue cleaning may increase the32

efficiency of the covariance matrix estimate, it still remains that for portfolio optimization purposes33

the dependence of the optimized portfolio on the eigenvalue cleaning is highly undesirable. Schmelzer34
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Figure 1: Number of observations used for each element in estimation of Σ
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These graphs depict simulation based number of observations available for the estimation of el-
ements in a 20×20 covariance matrix for different sampling schemes. The sampling frequencies
follow independent poisson processes with parameter λ ranging uniformly from 10 and 15. For
more details, see Section 5. From left to right: Sampling over all series, sequential sampling and
pairwise sampling.

and Hauser (2013) discuss the severe implications of a negative eigenvalue in the context of portfolio1

optimization and point to the above mentioned strategies to get rid of them. They conclude, however2

that, from their experience, a careful analysis of the estimation process itself adds far more value to3

the trading strategy.4

Here, we use the Cholesky decomposition to exploit the heterogeneity in trading intensity and estimate5

the different parameters sequentially, using as much data as possible. The decomposition holds for6

any PSD matrix, which is by definition true for the correlation matrix, and the recombined results will7

also be PSD. However, ensuring positive semidefiniteness does come at a cost. We cannot synchronize8

just pairs of data, but have to sample over a growing set of series. The first elements are estimated by9

sampling over two series, but the last elements to be estimated require a common grid on all series. To10

make optimal use of the data, it is therefore crucial to order the series in terms of decreasing liquidity.11

To illustrate, Figure 1 plots a simulated example of the number of observations used for each element12

using the three different methods. We consider 20 assets, where each asset is slightly less liquid than13

the last. The leftmost picture depicts a situation in which refresh-time sampling is applied to all assets14

at once. The rightmost picture depicts pairwise sampling, the situation for the Composite estimators15

of Lunde et al. (2012). The diagonal elements are estimated sampling over just the single series, and16

therefore also depict the number of observations available for that asset. The off-diagonal elements17

are estimated using bivariate sampling. The data-loss is therefore minimal. The middle graph depicts18

sequential sampling, the technique used for our estimator. The diagonal elements are estimated in19

the same fashion as for the Composite estimator, but we require sampling over more series for the20

off-diagonal estimates. As such, the number of observations for all elements involving the first asset21

coincide with those for pairwise sampling, while the observation count for the other elements lies22

somewhere in between the two other sampling approaches.23
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3.2. Ranking stocks based on liquidity1

In order to best utilize the sequential estimation, we propose to sort the series in terms of liquidity.2

For the Regularization and Blocking (‘RnB’) estimator, Hautsch et al. (2012) sort series in terms of3

liquidity solely based on the number of observations N (k). However, there are many scenarios where4

this would not lead to a large number of observations when sampling over many series. Instead, we5

propose the following new liquidity criterion:6

0 ≤
N(k)∑
i=0

(
∆

(k)
i −

1

maxdN (d)

)2

< 1, (9)

which is not just based on the number of intraday returns available, but also the degree to which the7

returns are spread out over the day. To achieve this we compare the actual observation times, or their8

difference ∆i, with an optimal grid, defined as the equidistant grid based on the maximum number of9

observations available for any of the series. The series are ordered in increasing value of the liquidity10

criterion, such that the first series is the most liquid.11

3.3. Decomposition of the ICov assuming locally constant correlations12

Consider the finest equispaced time grid ti, with δ = ti+1 − ti and i = 1, ..., Nt. The volatility

is allowed to be time-varying throughout the day. The correlation is assumed constant throughout

sub-periods of the day, but may change between those periods. Without loss of generality we assume

these periods to be of equal length, κδ. Then, ICov can be approximated as follows:

ICov ≈
Nt/κ∑
j=1

[∫ tκj

tκ(j−1)

D(s)R(tκ(j−1))D(s)ds

]
, (10)

where D(s) is the diagonal matrix whose kth element is the spot volatility of asset k and R(tκ(j−1))

is the constant correlation matrix between κ(j − 1) and κj. Equation (10) is a discretized version

of (3) and converges to ICov under some smoothness conditions when Nt → ∞,κ → 0, but with

Nt/κ →∞.

In practise we are dealing with a refresh-time grid. We assume the spot correlation to be constant over

a fixed number, κ, of refresh-times. τD is the refresh-time grid using all series under consideration,

with ND observations. κ is defined on this grid such that the spot correlation is constant for the κ
observations at times τD

κ(j−1), ..., τ
D
κj for j = 1, ..., ND/κ. In the remainder of the paper, split-sample

will refer to a sample partitioned into ND/κ samples based on transaction times τD
κj , regardless of

what transaction grid the sample has. The number of observation within a subsample will generally

be larger than κ. When ND → ∞, the length of the constant correlation windows converges to zero

and does not depend on the inter-arrival times of observations.

The time-varying spot volatilities, D(s) are estimated using a rolling window of length γ, as in

for instance Boudt et al. (2012), and aggregated to the constant correlation windows. Asymptotic

properties for a class of related estimators of local variance in absence of jumps can be found in

Kristensen (2010). The correlations are estimated using the observations within the window τκ(j−1)

7



and τκj . We then obtain

ICov ≈
ND/κ∑
j=1

[∫ τD
κj

τD
κ(j−1)

D(s)R(τD
κ(j−1))D(s)ds

]
. (11)

Finally, the question remains how to determine κ and γ practice. Determining their values is a1

typical bias, variance trade-off. Higher values will reduce variance but increase bias if the correlation2

or variance is not constant throughout the window. The value should be chosen as high as possible3

to use as many observations for any one estimate as possible. One way to determine the values4

is to take the approach adopted in Boudt et al. (2012) by testing for equal correlation or variance5

between windows. Previous research suggests that patterns in the correlations are highly persistent6

and intraday patterns are often negligible (Tang, 1995). Volatility however shows clear intraday7

patterns (Andersen et al., 2007), suggesting the window length for volatilities should be a lot shorter8

than for correlations, or that returns should be pre-filtered.9

For simplicity of presentation we will take κ = γ = 1/ND , such that the constant correlation and10

variance periods equal one day, but asymptotically we require them to go to 0. The next section11

describes in detail how we estimate the correlation matrix R.12

3.4. The CholCov13

The first step is to estimate the variances and standardize the series. Define the series of intra-

day returns r
(1)
τj , . . . , r

(d)
τj , where r

(k)
τj = X

(k)
τj − X

(k)
τj−1 . D(s) can be estimated using any integrated

variance estimator on the returns. Boudt et al. (2012) obtain the spot volatilities by estimating

the Integrated Variance (IV) over rolling windows. An alternative would be to explicitly model the

intraday periodicity (see e.g. Boudt et al., 2011). Next, data is pre-multiplied by D(s)−1, which

amounts to dividing all returns by their spot volatility. As the time intervals are irregularly spaced,

the spot volatility, σ(k)(s), for the returns is proportional to the time interval between the two adjacent

observations:

σ̂(k)
τj =

√√√√ 1

N

∑
τj−1≤s≤τj

σ̂2(k)(s).

The standardized log-returns, are therefore14

û(k)
τj =

r
(k)
τj

σ̂
(k)
τj

. (12)

This ensures that the integrated variance of the series û
(k)
τj , j = 1, ..., ND, equals one in expectation.15

Even though we are now technically dealing with the estimation of a correlation matrix, this is unlikely16

to be exactly true in practice. We therefore do not impose this assumption in the estimation.17

Next, the elements in the decomposition of the correlation matrix in (5) are estimated. By replacing18

Rkk and Rkl in the system of equations (7) and (8) with local estimates of the variance and covariance,19

we sequentially estimate the gkk and hkl terms. Each element requires only a subset of the data series.20

Tsay (2010) shows that the quantities in (7) and (8) are simply the coefficients and residual variances21

8



of the orthogonal transformations1

f (1)
τj = û(1)

τj

f (2)
τj = û(2)

τj − β̂21f
(1)
τj

...

f (d)
τj = û(d)

τj −
d−1∑
l=1

β̂dlf
(l)
τj ,

(13)

where β̂kl are the least-squares coefficients in the regressions2

û(2)
τj = β21f

(1)
τj

û(3)
τj = β31f

(1)
τj + β32f

(2)
τj

...

û(d)
τj =

d−1∑
l=1

βdlf
(l)
τj ,

(14)

where we left out the error terms in each regression for notational convenience. We therefore have3

hkl = βkl and gkk = Var(f
(k)
τj ), with f

(k)
τj ⊥⊥ f

(l)
τj for k 6= l. This system of equations may be estimated4

on a split-sample basis, again governed by τD and κ.5

To put this in the context of the high-frequency estimator, we first consider a simple scenario in6

which we observe equispaced returns for all series, uncontaminated by microstructure noise. In this7

scenario Realized (Co)Variance is a consistent estimator of the Integrated (Co)Variance and OLS8

on intraday returns leads to consistent estimates of β. In this case, the estimation of the CholCov9

is relatively straightforward and, as the Cholesky decomposition is exact, identical to the standard10

Realized Covariance estimator (RCOV) (Andersen et al., 2003). The estimation then directly follows11

(13)-(14). g11 is obtained as the RV of the first return series. h21 is the OLS-coefficient from regressing12

f (1) on û(2). g22 is the RV of the projected series f (2) from the previous regression. The next two13

elements, h31 and h32 are OLS-coefficients from regressing û(3) on f (1) and f (2). The RV of the next14

orthogonal transformation is the g33 element. This process continues until all elements have been15

estimated.16

In practice, we observe tick-data which has to be synchronized and has microstructure noise. To17

estimate under this scenario some adaptations have to be made, but the general principle is identical.18

The elements are computed sequentially, sampling over an increasing number of series (sorted with19

respect to the liquidity criterion (9)). This offers large benefits in terms of data usage, but it also20

means that different grids are used for every single element. We estimate the quantities using robust21

realized variances and realized betas1 (Andersen et al., 2006). Using realized beta instead of OLS has22

the advantage that the minimum number of observations needed for estimation is a lot lower. For23

OLS, the number of observations of fully synchronized data needs to be greater than the dimension24

1The realized beta is computed by estimating a 2 × 2 realized covariance matrix Σ̂. The realized beta is then
computed as β̂kl = Σ̂kl/Σ̂ll.
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of the problem, a clear restriction for vast matrices. Realized beta does not have this restriction.1

Additionally, it allows for optimal bandwidth selection of each individual element.2

Realized beta does not take into account dependence between regressors, and hence the estimator is3

only consistent if the orthogonal transformations f (.) are indeed orthogonal. If all betas are estimated4

on the same grid this condition holds by construction. However, as the grid changes for every element,5

all the f (.) have to be recomputed on each new grid using preceding estimates of beta. The betas6

orthogonalize the series on the grid they are estimated on, but are unlikely to perfectly orthogonalize7

the same series on a different observation grid. To counter this problem and to ensure consistency of8

the estimator, we achieve perfect orthogonality by re-estimating preceding betas at every new grid.9

The realized beta obtained using the smallest set of series, the first time it is estimated, is used as10

the final estimate in H. As it uses the smallest set, it will have the most observations and is therefore11

likely to be the most accurate. The following algorithm summarizes the procedure:12

CholCov Estimation Algorithm.13

1. Apply refresh-time on a = {1} to obtain the grid τ a . Estimate ĝ11 using an IV estimator on14

f
(1)
τ a
j

= û
(1)
τ a
j

.15

16

2. Apply refresh-time on b = {1, 2} to obtain the grid τ b . Estimate β̂b
21 as the realized beta between17

f
(1)

τ b
j

and û
(2)

τ b
j

. Set ĥ21 = β̂b
21. Estimate ĝ22 using an IV estimator on f

(2)

τ b
j

= û
(2)

τ b
j

− ĥ21f
(1)

τ b
j

.18

19

3. Apply refresh-time on c = {1, 3} to obtain the grid τ c . Estimate β̂c
31 as the realized beta between20

f
(1)
τ c
j

and û
(3)
τ c
j

. Set ĥ31 = β̂c
31.21

22

4. Apply refresh-time on d = {1, 2, 3} to obtain the grid τ d . Re-estimate β̂d
21 at the new grid,23

such that the projections are orthogonal. Estimate β̂d
32 as the realized beta between f

(2)

τ d
j

=24

û
(2)

τ d
j

− β̂d
21f

(1)

τ d
j

and û
(3)

τ d
j

. Set ĥ32 = β̂d
32. Estimate ĝ33 using an IV estimator on f

(3)

τ d
j

=25

û
(3)

τ d
j

− ĥ32f
(2)

τ d
j

− ĥ31f
(1)

τ d
j

.26

27

5. Continue in the same fashion by sampling over 1, ..., k, l to estimate hlk using the smallest28

possible set. Re-estimate the βnm with m < n ≤ k at every new grid to obtain orthogonal29

projections. Estimate the gkk as the IV of projections based on the final estimates, ĥ.30

The matrix Q̂(s) = Ĥ(s)Ĝ(s)Ĥ(s)
′

is guaranteed to be a symmetric positive semidefinite matrix, but

to qualify as a correlation matrix, it also needs that the diagonal elements are equal to one and that

the off-diagonal elements are in the [-1,1] intervals. We considered two ways to ensure this. First, as

in Equation (2.5) of Pelletier (2006) we could impose the constraint

gii = 1−
i−1∑
k=1

h2
(i+1)kgkk,

such that the diagonal elements in (6) equal 1 by construction. In Pelletier (2006) this is part of an

iterative maximum likelihood estimation of the correlation matrix, whereby the joint optimization of

10



all elements ensures the accuracy of the estimates. However, in our case, there is no iteration and

simulations showed that the efficiency of resulting estimate is not satisfactory. The second approach

is to simply standardize the matrix to unit diagonal, as in Engle (2002),

R̂(s) = diag(Q̂(s))−1/2Q̂(s) diag(Q̂(s))−1/2.

This ultimately leads to the CholCov estimator for the daily integrated covariance matrix:

CholCov =

ND/κ∑
j=1

 ∑
τD
κ(j−1)

≤s≤τD
κj

D̂(s)R̂(τD
κ(j−1))D̂(s)(τκj − τκ(j−1))

 . (15)

4. Properties1

The CholCov possesses a combination of the most attractive properties of realized covariance2

estimators. First, it is positive semidefinite and invertible by construction. Each element in the3

sum of (15) is PSD by virtue of the Cholesky decomposition, and the sum of PSD matrices is PSD.4

Invertibility is shown by e.g. Miller (1981).5

Second, the CholCov offers great flexibility. We can use any estimator to compute the realized6

variances and betas. It adopts the robustness properties of whatever estimator one uses. For instance,7

we can use the Modulated Realized Variance and Covariance to compute ĝkk and ĥkl respectively, and8

obtain robustness against noise, asynchronicity and serial dependence in noise. Similarly we could9

use the jump robust two time scale covariance (Boudt and Zhang, 2012) and additionally obtain10

robustness against jumps. In principle, one could use any combination of estimators, even within11

one estimation. One could use pre-averaging techniques to estimate the variances, and kernel-based12

methods to estimate the realized betas.13

Next to robustness, the CholCov also adopts asymptotic properties related to the estimators used.14

First, under some smoothness conditions on the spot covariance, consistency follows directly from15

consistency of the estimators used for the gkk and hlk elements. As long as we only use estimators that16

are consistent, all estimates are individually consistent, and hence the combined estimator is consistent.17

To ensure convergence, it is sufficient to require the spot covariance process to be (Riemann) integrable.18

4.1. Asymptotic Distribution19

We discuss the asymptotic distribution (avar) of the estimates in Ĝ and Ĥ. The consistency is

not affected by the sequential estimation, but confidence bounds may be wider. We only consider the

distribution of the estimates conditional on no estimation error in previous estimates. In practice,

a more accurate estimate may be obtained by bootstrap methods (see e.g. Hounyo et al., 2013).

However, as the estimators used are consistent, there is no systematic bias. We conjecture that

asymptotic theory for noise-robust estimators may therefore still hold as the impact of previous stage

estimation error can me modeled as noise. Lastly, we only consider the distribution of the estimates

in one window of constant correlation. As there is no overlap between blocks, and the blocks are

independent, the avar for the entire day is the period length-weighted sum of the avar matrices.

All elements are estimated on transformed series. The transformation obviously affects the stochastic

11



process, but it remains within the class of Brownian semimartingales. The asymptotic variance of every

possible estimator depends on the volatility matrix process, so we need to keep track of the volatility

process through the transformations. All transformed series are linear combinations of original series.

Hence, the volatility process is always of the form

D−1(s)Aσ(s)dW (s) = σ∗(s)dW (s),

with σ∗(s) = D−1(s)Aσ(s), and therefore Σ∗ = σ∗(s)(σ∗(s))′. A denotes a matrix containing the

weights for the linear transformation. For instance, when d = 3, and we are interested in the avar of

h32 we need the volatility process of the series r(3) and s(2), such that

A =

 1 0 0

−β21 1 0

0 0 1

 .
The asymptotic theory of the g and h elements follows directly from the theory of whichever estimator1

we use. In Appendix B we report for completeness these results when the pre-averaging estimator, as2

detailed in Appendix A, is used.3

5. Monte Carlo simulation4

In the previous section some of the CholCov’s theoretical and asymptotic properties were discussed.5

In this simulation study we investigate its properties on realistic samples in a small bivariate setting6

and a larger problem of dimension 20. Since we want to focus on the PSD construction using the7

Cholesky decomposition and not the specific estimator for the elements, pre-averaging estimators8

are used throughout the simulations and the application. We consider the CholCov, as well as the9

MRC and Composite MRC. The web Appendix reports simulations which show similar results for the10

equivalent Kernel-based estimators.11

5.1. Setup12

As in Barndorff-Nielsen et al. (2011), we generate hypothetical prices, with Y (k)(s) the associated

log-price of asset k, from the log-price diffusion given by

dY
(k)
t = µ(k)ds+ dV

(k)
t + dF

(k)
t ,

dV
(k)
t = ρ(k) σ

(k)
t dB

(k)
t ,

dF
(k)
t =

√
1− (ρ(k))2σ

(k)
t dWt.

with k = 1, . . . , d. All B(k) as well as W are independent Brownian motions. F (k) denotes the common

factor, scaled by
√

1− ρ2 to determine its strength.

Each Y (k) is a diffusive SV model with drift µ(k). Their random spot volatility are given by σ(k) =

exp(β
(k)
0 +β

(i)
1 %(k)), with d%(k) = α(k)%(k)dt+dB(k). The correlation between the changes in Y (k) and

Y (l) is constant and equals
√

1− (ρ(k))2
√

1− (ρ(l))2.

12



We calibrate the parameters (µ, β0, β1, α, ρ) at (0.03, −5/16, 1/8, −1/40, −0.3) as in Barndorff-

Nielsen et al. (2011). The stationary distribution of % is utilized to restart the process each day at

%(0) ∼ N(0, (−2(β)2/α)−1). The parameter choice ensures that E
(∫ 1

0
σ(k)2(u)du

)
= 1. The fact that

ρ is set equal for all i leads to an equicorrelation structure with common correlation coefficient 0.91.

Microstructure noise is added to the return log-prices as X(k) = Y (k) + ε(k) with

ε(k) | σ,X iid∼ N(0, ω2) with ω2 = ξ2

√√√√N−1

N∑
j=1

σ(k)4(j/N).

Hence, the variance of the noise increases with the variance of the underlying process, in line with1

evidence from Bandi and Russell (2006).2

Finally, independent Poisson processes are used to extract irregular, non-synchronous data from the3

complete high-frequency dataset. Each Poisson process is governed by a parameter λ(k), resulting4

in on average one observation every λ(k) seconds for series k. On average, the series are observed5

23, 400/λ(k) times.6

For each of the estimators, the bias and RMSE for variance and covariance elements are computed7

separately. The bias and RMSE, for a given element (k, l) of the matrix, Σ̂k,l are defined as8

Biask,l = Σ̂k,l − Σk,l and RMSEk,l =

√
(Σ̂k,l − Σk,l)2. (16)

We report the averages over S = 1000 replications. For the large dimensional matrices (d = 20), we9

consider average bias and RMSE over multiple elements. Additionally, to get one general measure10

of accuracy, the average of the Frobenius distances is reported. For any d-dimensional matrix, the11

Frobenius distance is defined as12

Frobenius Distance =
∑

1≤k,l≤d

(Σ̂k,l − Σk,l)
2. (17)

5.2. Simulation Results13

Simulation I. In the first simulation we consider only two assets, to determine a base level of per-14

formance. As a benchmark, we consider the Modulated Realized Covariance (MRC) of Christensen15

et al. (2010). For details of its implementation, see Appendix A. The estimates in the CholCov are16

similarly based on pre-averaging methods. We report the bias and RMSE with respect to the ICov17

for both estimators.18

Table 1 reports that in the 2 × 2 case, our estimator has similar performance to the MRC. In our19

simulations it has slightly higher bias, but much lower RMSE. In high noise cases there is a clear gain20

in terms of variance estimation, and thus correlation estimates. The simulation also illustrates the21

effect the number of observation has on estimation. The CholCov determines the variances separately,22

such that they are estimated at the highest possible observation frequency. The first series has on23

average twice the number of observations series two has, and the bias and RMSE of the variance for24

the liquid stock are much lower. This is indicative of the effect for larger dimensional estimates, and25

the gains we can achieve on the first estimates by sequential estimation.26

13



Table 1: Results Simulation I

CholCov MRC CholCov MRC
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Panel A: Integrated Covariance Panel B: Integrated Correlation

ξ2 = 0.000
λ = (3, 6) -0.010 0.086 0.004 0.149 -0.009 0.021 -0.001 0.020
λ = (5, 10) -0.013 0.097 0.008 0.165 -0.010 0.023 -0.001 0.023
λ = (10, 20) -0.017 0.114 0.010 0.190 -0.012 0.027 -0.002 0.026
λ = (30, 60) -0.033 0.149 0.019 0.244 -0.014 0.035 -0.005 0.034
λ = (60, 120) -0.049 0.182 0.039 0.287 -0.016 0.042 -0.007 0.038
ξ2 = 0.001
λ = (3, 6) -0.010 0.087 0.004 0.150 -0.010 0.022 -0.003 0.021
λ = (5, 10) -0.014 0.099 0.005 0.165 -0.011 0.024 -0.003 0.023
λ = (10, 20) -0.019 0.115 0.010 0.192 -0.012 0.028 -0.005 0.027
λ = (30, 60) -0.033 0.149 0.022 0.242 -0.015 0.037 -0.008 0.034
λ = (60, 120) -0.052 0.182 0.035 0.284 -0.017 0.046 -0.012 0.041
ξ2 = 0.010
λ = (3, 6) -0.015 0.095 0.005 0.151 -0.013 0.032 -0.023 0.029
λ = (5, 10) -0.019 0.107 0.005 0.165 -0.017 0.035 -0.026 0.032
λ = (10, 20) -0.023 0.125 0.008 0.191 -0.017 0.041 -0.031 0.038
λ = (30, 60) -0.033 0.165 0.024 0.246 -0.016 0.057 -0.041 0.051
λ = (60, 120) -0.049 0.194 0.032 0.286 -0.021 0.075 -0.050 0.061

Panel C: Integrated Variance 1 Panel D: Integrated Variance 2

ξ2 = 0.000
λ = (3, 6) -0.002 0.077 0.005 0.159 -0.006 0.091 0.002 0.155
λ = (5, 10) -0.005 0.086 0.010 0.177 -0.009 0.102 0.006 0.171
λ = (10, 20) -0.009 0.103 0.013 0.204 -0.011 0.122 0.008 0.197
λ = (30, 60) -0.018 0.137 0.026 0.263 -0.035 0.161 0.017 0.248
λ = (60, 120) -0.030 0.169 0.049 0.309 -0.058 0.199 0.039 0.296
ξ2 = 0.001
λ = (3, 6) -0.003 0.078 0.007 0.160 -0.005 0.092 0.005 0.156
λ = (5, 10) -0.005 0.088 0.009 0.176 -0.009 0.104 0.006 0.171
λ = (10, 20) -0.009 0.103 0.016 0.205 -0.015 0.125 0.011 0.198
λ = (30, 60) -0.019 0.136 0.031 0.260 -0.034 0.165 0.025 0.250
λ = (60, 120) -0.032 0.171 0.048 0.308 -0.059 0.198 0.040 0.291
ξ2 = 0.010
λ = (3, 6) -0.004 0.086 0.029 0.162 -0.008 0.100 0.025 0.158
λ = (5, 10) -0.003 0.097 0.034 0.177 -0.010 0.116 0.029 0.173
λ = (10, 20) -0.009 0.113 0.041 0.207 -0.015 0.135 0.033 0.199
λ = (30, 60) -0.014 0.152 0.069 0.269 -0.031 0.183 0.060 0.253
λ = (60, 120) -0.028 0.182 0.083 0.314 -0.045 0.215 0.078 0.298

Simulation results of the multivariate factor diffusion with d = 2. The different panel report
average Bias and RMSE over 1000 simulations for the individual elements of the covariance
matrix.

Simulation II. The main advantages of the CholCov should be achieved in larger dimensional matrices1

with heterogeneity in trading intensity. To illustrate, here we simulate d = 20 series with λ =2

{5, 5, . . . , 5, 120}2. The first nineteen series are observed on average every five seconds, and the last3

series once every two minutes. The MRC on the full dataset will generally use less than 23, 400/1204

observations, even though for the vast majority of the series more data is available. Our estimators5

will use the high observation frequency of the liquid series for all elements but those involving the last6

series.7

We consider the MRC as well as its Composite counterpart, denoted cMRC. For the Composite8

estimator, as in Lunde et al. (2012), we first estimate the variances, D, using the univariate version9

of the estimator, after which realized correlations, R, are estimated on pairs of data. Similar to the10

CholCov, these estimators not only have the advantage of better data-sampling, but also optimal11

2Unreported simulations show similar, if less pronounced, conclusions with λ = 5 for all assets and λ =
{2, 4, . . . , 38, 40}.
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bandwidth selection for each element. The resulting estimate of the covariance matrix, DRD, will not1

necessarily be PSD, so any possible negative eigenvalues are set to zero as in Barndorff-Nielsen and2

Shephard (2004). Their performance is compared in terms of the three aforementioned criteria. For3

the bias and RMSE the results are split up by reporting the averages of those elements involving the4

illiquid stock, and those that do not separately.5

Table 2 reports the results of the simulation. The CholCov and MRC estimators are both PSD by6

construction, and there is a large difference in average Frobenius distance, with the MRC’s value being7

about five times as high. Looking at the details on the individual elements, this turns out to mostly be8

a variance issue, not an average bias issue. Regardless, the CholCov is very accurate, also in this large9

dimensional framework. The only real bias is in the variance of the illiquid assets, which transfers to10

the covariance. The cMRC has exactly the same problem, as the variance elements are estimated in11

the same way. However, with high levels of noise the cMRC is never PSD, and needs a correction.12

After the correction the cMRC still performs slightly better in terms of Frobenius Distance on the13

covariance matrix, but in the presence of noise the CholCov is more accurate for the correlations.14

6. Empirical Illustration: Value-at-Risk forecasting15

We expect our estimator to be especially useful in realistic large-scale portfolio applications that16

often require the estimator to be positive semidefinite and invertible. In our application we consider17

the forecasting of portfolio Value-at-Risk (VaR). When computing a portfolio VaR one has the option18

to either model the portfolio univariately or multivariately. For the univariate approach one uses the19

weights to compute portfolio returns and estimate its VaR based on the single series. Alternatively,20

one could estimate and model the full covariance matrix, and determine the portfolio VaR based on21

the multivariate setting. This has advantages for several reasons. First one can immediately calculate22

risk estimates for many different portfolios. Additionally, it has the advantage that it can be used for23

dynamic portfolio allocation, such as for instance a minimum variance portfolio. Finally, and most24

importantly, the dynamics of each of the volatility and correlation components are modeled separately.25

Santos et al. (2013) argue that for large dimensions, the information due to the multivariate modeling26

outweighs the additional uncertainty of estimating many parameters, and leads to better forecasts.27

As such, here we take the latter approach and study the efficiency gains of using intraday data for28

VaR forecast accuracy. As such we compare forecasts from models estimated on daily returns with29

estimates based on intradaily techniques, i.e. dynamic models applied to CholCov estimates. Giot30

and Laurent (2004) and Brownlees and Gallo (2010) do this in a univariate setting. We are unaware31

of any paper comparing daily and intradaily models in the multivariate Value-at-Risk setting. For32

simplicity, in this application, we consider just two types of portfolios, equally- and value-weighted.33

6.1. Data34

We analyze the portfolio risk for a total of 52 of the largest U.S. financial institutions.3 We obtain35

trade data from January 2007 till December 2012 for a total of 1499 observation days. We clean the36

3The Tickers are: ACAS, AET, AFL, AIG, AIZ, ALL, AMP, AXP, BAC, BBT, BEN, BK, BLK, BRKB, CB, CBG,
CINF, CMA, COF, CVH, EV, FITB, FNF, GNW, GS, HBAN, HIG, HNT, ICE, JNS, KEY, MET, MTB, NTRS, NYX,
PFG, PGR, PNC, PRU, RF, SEIC, SNV, STI, STT, TMK, TROW, UNH, UNM, USB, WFC, WU, ZION.
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Table 2: Results Simulation II

Panel A CholCov MRC cMRC PSD cMRC

Frobenius Distance Covariance
ξ2 = 0.000 5.855 30.932 5.162 5.161
ξ2 = 0.001 5.663 31.555 5.227 5.224
ξ2 = 0.010 5.819 32.809 5.846 5.808
Frobenius Distance Correlation
ξ2 = 0.000 0.179 0.620 0.168 0.170
ξ2 = 0.001 0.166 0.667 0.179 0.181
ξ2 = 0.010 0.206 0.843 0.293 0.304
Panel B: Fraction PSD
ξ2 = 0.000 1.000 1.000 0.377 1.000
ξ2 = 0.001 1.000 1.000 0.199 1.000
ξ2 = 0.010 1.000 1.000 0.000 1.000

Panel B
CholCov MRC cMRC PSD cMRC

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Covariance Liquid
ξ2 = 0.000 -0.002 0.086 0.026 0.230 -0.001 0.090 -0.001 0.090
ξ2 = 0.001 -0.002 0.088 0.029 0.233 -0.001 0.091 -0.001 0.091
ξ2 = 0.010 -0.003 0.092 0.035 0.247 -0.003 0.098 -0.003 0.098
Covariance Illiquid
ξ2 = 0.000 -0.035 0.138 0.025 0.226 -0.035 0.143 -0.035 0.143
ξ2 = 0.001 -0.037 0.136 0.029 0.230 -0.034 0.145 -0.034 0.144
ξ2 = 0.010 -0.040 0.144 0.034 0.241 -0.034 0.157 -0.034 0.154
Correlation Liquid
ξ2 = 0.000 -0.001 0.018 -0.004 0.037 0.000 0.017 -0.001 0.017
ξ2 = 0.001 -0.001 0.018 -0.004 0.039 -0.001 0.018 -0.001 0.018
ξ2 = 0.010 -0.001 0.021 -0.008 0.060 -0.002 0.026 -0.007 0.026
Correlation Illiquid
ξ2 = 0.000 -0.016 0.031 -0.004 0.035 -0.004 0.035 -0.006 0.034
ξ2 = 0.001 -0.001 0.029 -0.004 0.036 -0.004 0.036 -0.008 0.035
ξ2 = 0.010 0.001 0.031 -0.007 0.056 -0.007 0.056 -0.032 0.053
Variance Liquid
ξ2 = 0.000 -0.001 0.097 0.029 0.249 -0.001 0.097 -0.001 0.097
ξ2 = 0.001 -0.001 0.098 0.033 0.253 -0.001 0.098 -0.001 0.098
ξ2 = 0.010 -0.002 0.109 0.046 0.275 -0.002 0.109 0.004 0.109
Variance Illiquid
ξ2 = 0.000 -0.058 0.199 0.026 0.227 -0.058 0.199 -0.055 0.198
ξ2 = 0.001 -0.055 0.204 0.033 0.232 -0.055 0.204 -0.049 0.202
ξ2 = 0.010 -0.048 0.216 0.042 0.245 -0.048 0.216 -0.009 0.207

Simulation results of the multivariate factor diffusion with d = 20 with λ = 5, 5, . . . , 5, 120. Panel A
reports statistics for the full matrix. Panel B reports the average bias and RMSE of the covariance,
correlation and variances, displayed separately for those elements involving the illiquid asset and those
that do not.
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Figure 2: Frequency plot of the sample’s daily number of observations after synchronization.
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data using the step-by-step cleaning procedure of Barndorff-Nielsen et al. (2009). This entails the1

following rules: (P1) Delete all entries with a time-stamp outside the 9:30-16:00 exchange opening2

hours. (P2) Delete all entries with zero or negative price. (P3) Retain entries originating from a single3

exchange. For 43 firms this is NYSE, for the remaining 9 this is NASDAQ. (T1) Delete all corrected4

trades, where CORR 6= 0. (T2) Delete observations with an abnormal sale condition, i.e. COND has5

a letter other than “E” or “F”. (T3) Multiple transactions at the same time stamp are combined into6

a single observation at the median price. (T4*) Delete an observation when the price deviated by7

more than 10 mean absolute deviations from a rolling centered median of 50 observations.8

Throughout the analysis we use open-to-close returns obtained from the TAQ data. We use open-9

to-close as our ICov estimators do not take into account the overnight return. If we were to include10

overnight returns, we would no longer be able to test the accuracy of the realized estimators, as the11

overnight return is relatively dominant.12

The weights for the value-weighted portfolio are proportional to firms’ market capitalization, deter-13

mined by shares outstanding (from CRSP) times the closing price of the stock.14

The estimation problem is moderately large with 52 firms and synchronization of the data will greatly15

reduce the total number of observations. In Figure 2 we plot the frequencies of number of observations16

after refresh-time synchronization of all the series. The least amount of observations is 6 while the17

most is 624. The median is 161. There are 11 days where the number of observations is smaller than18

the dimension of the problem. This invalidates the use of the traditional full-dimension estimators19

like the MRC and MKernel, which are no longer invertible. Second, our application, like many appli-20

cations involving covariance estimates, requires the estimate to be positive semidefinite, invalidating21

the composite estimation technique. As such, the only estimator that is guaranteed to be positive22

semidefinite and uses efficient sampling is ours.23

6.2. Methodology24

Our aim is to forecast portfolio Value-at-Risk. Recall that for a given d−dimensional vector of25

weights wt, the portfolio VaR equals26

V aRqt = w′tµt|t−1 + zq

√
w′tHt|t−1wt, (18)

17



where µt|t−1 is the vector conditional means, Ht|t−1 the conditional covariance matrix and zq the q1

quantile of the standard normal distribution. The normality assumption is hard to justify for single2

stocks, but the dynamic quantile test that we will perform does not reject it in our portfolio setting.3

We consider the Value-at-Risk of both long and short positions, setting q = {0.01, 0.025, 0.05}. Long4

positions consider the left tail of the distribution, whereas for short positions the right tail is important.5

The Value-at-Risk for long positions is denoted V aRq, while for short positions we use V aR1−q.6

The conditional mean is forecasted using AR(p) models, where the optimal order is individually7

determined by means of the Schwarz Information Criterion.8

The CholCov is an ex-post measure, while for estimating the VaR we need a covariance forecast. As9

such we need a dynamic model to forecast the ICov. We consider two model types: either we impose10

the same dynamics on all elements, leading to a Scalar-BEKK type specification, which was introduced11

as the HEAVY model by (Noureldin et al., 2012). Alternatively, we allow for separate dynamics for12

the individual volatilities and correlations, leading to the cRDCC (Bauwens et al., 2012). We will13

compare the performance of these two models with their counterparts using only daily returns, the14

Scalar-BEKK (Engle and Kroner, 1995) and cDCC (Aielli, 2013) respectively.15

Before presenting the results, let us first detail the different estimation methods. The Scalar-BEKK16

/ HEAVY models take the form of17

Ht|t−1 = (1− α− β)Ω + αVt−1 + βHt−1|t−2 (19)

where for the Scalar-BEKK Vt = εtε
′
t, with εt corresponding to the vector of demeaned returns, and18

for the HEAVY model Vt = Σ̂t, the CholCov estimate. To reduce the number of parameters to be19

estimated, we apply covariance targeting, where Ω is the unconditional variance-covariance matrix of20

returns for the Scalar-BEKK and the average CholCov for HEAVY. The HEAVY model additionally21

has a correction term, to match the unconditional variance of the model to that of daily returns. We22

implement the version of Equation (11) in Noureldin et al. (2012).23

The cDCC models take the following form:24

Ht|t−1 = Dt|t−1Rt|t−1Dt|t−1

Rt|t−1 = diag(Qt|t−1)−1/2Qt|t−1diag(Qt|t−1)−1/2

Qt|t−1 = (1− α− β)Q̄+ αP ∗t|t−1 + βQt−1|t−2,

(20)

where P ∗t = diag(Qt|t−1)1/2D−1
t|t−1VtD

−1
t|t−1diag(Qt|t−1)1/2, where Vt is defined as before, with Vt =25

εtε
′
t for the cDCC and Vt = Σ̂t for the cRDCC. Again, there is correlation targeting, in the form of26

Q̄, which is set to the mean of P ∗t . Both cDCC models can be estimated in two steps, where first27

univariate models are fitted to model the volatilities Dt, which are then used to model the correlation28

matrix Rt. A specification has to be chosen for the univariate models. There is ample evidence (e.g.29

Andersen et al., 2003) for the presence of long memory in realized variances, and the separation of30

volatilities and correlations allows us to model them as such. We use ARFIMA(1,d,0) models on -31

to ensure positive out-of-sample forecasts - the natural logarithm of the CholCov variances.4 For a32

fair comparison we model the volatilities in the cDCC on daily returns using a long memory model as33

4We adjust for the bias caused by the transformation as in Giot and Laurent (2004).
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well, i.e. a FIGARCH(1,d,1).1

The Scalar-BEKK and cDCC are estimated using a Composite Gaussian Likelihood, while the HEAVY2

and cRDCC models are estimated using a Composite Wishart Likelihood, all on contiguous pairs.3

Composite likelihood techniques for large-dimensional ARCH-type models were developed in Engle4

et al. (2008). They facilitate estimation, and reduce bias in parameters present in large-dimensional5

problems. We assume Gaussian innovations for the computation of the VaR for all models.6

To obtain the forecasts, we estimate all the models on an increasing window of observations, making7

one-step-ahead forecasts for the 1000 last days, re-estimating the parameters daily.8

We test the out-of-sample performance of the VaR estimates using the dynamic quantile test of Engle9

and Manganelli (2004). They define a Hit variable associated with the ex-post observation of a VaR10

violation at time t:11

Hitt(q) =

1− q if w′rt < V aRqt|t−1

−q otherwise.
(21)

Similarly, Hitt(1−q) = 1−q if w′rt > V aR1−q
t|t−1. We run the regressionsHitt(q) = δ+

∑K
k=1 βkHitt−k(q)+12

εt and test for the joint hypothesis H0 : δ = β1 = ... = βk = 0, ∀k = 1, ...,K. VaR violations are13

uncorrelated over time if the β are 0, whereas the unconditional coverage is correct if δ = 0. Denote14

by Ψ = (δ, β1, ..., βK)′ the vector of parameters of the model and by X the matrix of explanatory15

variables of the regression. The test statistic is16

Ψ̂′X ′XΨ̂

q(1− q)
, (22)

and follows a χ2-distribution with K + 1 degrees of freedom under the null of correct specification.17

6.3. Results18

Table 3 reports the results of the Dynamic Quantile Test. The first three columns depict the19

results for the long-positions, and the last three columns show the results for the short positions. The20

top panel reports the p-values for the Equal Weighted (EW) portfolio and the bottom panel shows the21

results for the Value Weighted (VW) portfolio. Each panel contains successively the results for the22

two models using daily returns, Scalar-BEKK and cDCC, and the two models utilizing the CholCov,23

HEAVY and cRDCC. We give the results for K = 2, but they are qualitatively similar for larger K.24

First consider the models on daily returns, the Scalar-BEKK and cDCC. The empirical results given25

in both panels tell the same story. The models using just daily returns are not flexible enough to26

accurately forecast the VaR. The Scalar-BEKK’s unconditional coverage is rejected in many cases,27

and the rejection across the board for k ≥ 1 shows that the violations are also dependent. The cDCC28

does perform a lot better, taking into account possible long-memory in volatility, but fails to model29

the left tail of the distribution adequately, with the p-values for the null hypothesis of the different30

versions of the test often smaller than 0.05, when q = 1% or q = 2.5%. We have considered alternative31

specifications, not reported for brevity, which included leverage effects, but these were also rejected.32

It is unclear whether the rejection is due to model misspecification or non-normal returns. As such33

we also estimated the model using the more flexible multivariate Student distribution. Again, this did34

not lead to significant improvements.35
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By increasing the information set to include intraday data, we can estimate the models on CholCov.1

The short memory HEAVY model is rejected by the data. Based on k = 0 or k = 1 the returns might2

be conditionally Gaussian, but rejection for k = 2 shows misspecification. This suggests we need more3

lags, and as such we have considered a HEAVY(2,2) model, which is rejected by the data in a similar4

manner.5

The cRDCC with ARFIMA dynamics on the variances takes into account the long-memory properties6

of Realized Variance. This allows the model to not only capture the unconditional coverage, but it7

also passes the test for independence of violations, with only a single rejection at the 5 percent level8

for the 1% VaR at k = 2.9

The results show that we can obtain accurate forecasts of the covariance matrix in large portfolio10

settings, by utilizing the information content of high-frequency data, a PSD estimate of the covariance11

and an appropriate dynamic model.12

7. Conclusions13

We propose an ex-post estimator of the integrated covariance that uses the Cholesky decomposition14

to obtain an estimate that is ensured positive semidefinite. The elements are estimated sequentially, on15

an increasing set of series. As such, the estimator uses many more observations than the traditional16

multivariate estimators, but fewer than pairwise estimators. The Cholcov is flexible and can use17

any other estimator for the intermediate calculations, adopting both their robustness and asymptotic18

properties. Simulations confirm this and show that the resulting estimates are accurate.19

In an empirical application we use the CholCov in a portfolio setting which requires the estimate20

to be Positive Semidefinite. The problem is moderately large with over 50 series considered. Using21

an appropriate dynamic model, which allows for long memory in the variances, we forecast portfolio22

Value-at-Risk and are unable to reject the model, using standard normal quantiles. This in contrast23

to models based on daily returns and dynamic models on the CholCov not allowing for long memory,24

which are rejected by the data.25
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Appendix A. Implementation Details1

Pre-Averaged Estimators. In order to define the univariate pre-averaging estimator Hautsch and
Podolskij (2010) we first define the pre-averaged returns as

r̄(k)
τj =

kN−1∑
h=1

g

(
h

kN

)
r(k)
τj+h

,

The function g : [0, 1] → R is continuous, piecewise continuously differentiable with a piecewise

Lipschitz derivative g′ with g(0) = g(1) = 0 satisfying
∫ 1

0
g2(s)ds > 0. Define the following functions

and numbers associated with g:

φ1(s) =

∫ 1

s

g′(u)g′(u− s)du,

φ2(s) =

∫ 1

s

g(u)g(u− s)du,

ψ1 = φ1(0), ψ2 = φ2(0),

Φ11 =

∫ 1

0

φ2
1(s)ds, Φ12 =

∫ 1

0

φ1(s)φ2(s)ds, Φ22 =

∫ 1

0

φ2
2(s)ds.

The functions φ1 and φ2 are assumed 0 outside the interval [0,1]. Finite sample estimators of these2

quantities are available in Christensen et al. (2010) and will be denoted with a superscript kN . Fol-3

lowing Hautsch and Podolskij (2010); Christensen et al. (2010) we use g(x) = min(x, 1− x).4

kN is a sequence of integers satisfying kN = bθuN1/2c. We use θu = 0.8 for the univariate estimator5

during our entire paper based on simulations and recommendations in Hautsch and Podolskij (2010).6

The pre-averaged returns are simply a weighted average over the returns in a local window. This7

averaging diminishes the influence of the noise. The order of the window size kN is chosen to lead to8

optimal convergence rates. The pre-averaging estimator is then simply the analogue of the Realized9

Variance but based on pre-averaged returns and an additional term to remove bias due to noise, which10

we denote Modulated Realized Variance (MRV):11

MRV =
N−1/2

θψkN2

N−kN+1∑
i=0

(r̄τi)
2 − ψkN1 N−1

2θ2ψkN2

N∑
i=0

r2
τi . (A.1)

The multivariate counterpart is very similar and was proposed in Christensen et al. (2010). The12

estimator is called the Modulated Realized Covariance (MRC) and is defined as13

MRC =
N

N − kN + 2

1

ψkN2 kN

N−kN+1∑
i=0

r̄i · r̄′i −
ψkN1

θ2ψkN2

Ψ̂, (A.2)

where r̄i = (r̄(1) r̄(2) · · · r̄(d)) denotes the matrix of all pre-averaged return series and Ψ̂N = 1
2N

∑N
i=1 rτi(rτi)

′.
The second term is a bias correction to make it consistent. However, due to this correction the estima-
tor is not ensured PSD. An alternative is to slightly enlarge de bandwidth such that kN = bθmN1/2+δc.
δ = 0.1 results in a consistent estimate without the bias correction and a PSD estimate, in which case:

MRCδ =
N

N − kN + 2

1

ψkN2 kN

N−kN+1∑
i=0

r̄τi · r̄′τi .

In this paper we use θm = 1.0 for the multivariate version and slightly increase the bandwidth with14

δ = 0.1 to get a consistent estimator.15
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Appendix B. CholCov asymptotics using pre-averaging estimators1

The Modulated Realized Variance (MRV), defined in Appendix A, is essentially a realized variance2

on pre-averaged returns, with a number of bias corrections. As our estimate gkk is exactly this3

estimator on transformed series, its asymptotic distribution follows directly from that of the MRV.4

Proposition 1 Under assumptions H and K in Jacod et al. (2009), the estimates of gkk conditional
on no estimation error in previous estimates converge stably in law as

N1/4 (ĝkk − gkk)
ds→ N(0,Γ),

where Γ = 4
ψ2

2

(
φ22θσ

∗4 + 2φ12
σ∗2Ψ∗

θ + φ11
Ψ∗2

θ3

)
, Ψ∗ is the variance of the noise process of the trans-5

formed series and ds denotes stable convergence in distribution.6

Proof: see Theorem 3.1 in Jacod et al. (2009).7

Similarly, the hlk estimates follow the distribution of the realized beta based on the multivariate8

pre-averaging estimator, the Modulated Realized Covariance (MRC).9

Proposition 2 Assume that E
(
|εj |8

)
< ∞ for all j = 1, ..., d. Define ∇ = Σ̂−1

kk

(
1,−ĥlk

)
, where10

Σ̂kk is the kk−th element of the MRC estimate. As N →∞ the distribution of hlk conditional on all11

previous estimates is as follows12

N1/5
(
ĥlk − hlk

)
d→MN

(
∇′ (Ψlk,Ψkk) ,∇Γ̄∇′

)
, (B.1)

with13

Γ̄ =

[
âvar

∗
(k−1)d+l,(k−1)d+l âvar

∗
(k−1)d+l,(k−1)d+k

• âvar
∗
(k−1)d+k,(k−1)d+k

]
, (B.2)

where14

avarMRC =
2Φ22θ

ψ2
2

∫ 1

0

Λ(s)ds. (B.3)

Λ is a d× d× d× d arrays with elements

Λs = {Σkk′(s)Σll′(s) + Σkl′(s)Σlk′(s)}k,k′l,l,l′=1,...,d .

Of course, avar∗ is as in Equation (B.3), but with Σ = Σ∗ and Ψ = Ψ∗.15

Proof: see Theorem 6 in Christensen et al. (2010).16

The estimate of the realized beta is inconsistent, due to a slight inconsistency in the MRC estimator17

when δ = 0.1. The bias is very small in recent data and could be ignored. Alternatively, one could18

estimate the bias term to correct the MRC estimate, making it non-PSD, or estimate the realized19

beta bias term to correct it.20

Feasible versions of the asymptotic distributions are discussed at length in Jacod et al. (2009) and21

Christensen et al. (2010). When estimating the feasible versions, one does not have to worry about the22

transformations of the data, and the resulting Σ∗ and Ψ∗. Indeed, the feasible asymptotic variance23

of the different parameters can be estimated directly by computing them using the transformed series24

as input. Note that different versions are available, dependent on the bandwidth choice. The results25

presented here are based on the slightly larger bandwidth used in this paper.26
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Appendix C. Notation1

Indices i, j are used for time. k, l,m, n are used for the d different assets.2

Refresh-time
Number of assets d
Set of assets D
Calender time grid (e.g. seconds) ti
Refresh-time grid on series d ⊆ D τ d

i

Number of observations refresh sample N d

Number of refresh-times of constant correlation κ
Decompositions

Spot covariance matrix Σ(s)

Spot volatility σk(s) = Σ
1/2
k,k (s)

Spot correlation ρk,l(s)
Diagonal matrix with spot variance D(s)
Spot correlation matrix R(s)
Lower diagonal matrix Cholesky H(s) with elements hk,l
Diagonal matrix Cholesky G(s) with elements gk,l
Matrices Palandri K(s)
Elements in K ηk,l(s)

Series
Price observations Xτj

Returns r
(1)
τj , ..., r

(d)
τj

Cholesky projections f
(1)
τj , ..., f

(d)
τj

Devolatized returns û
(1)
τj , ..., û

(d)
τj

Devolatized and further standardized returns ũ
(1)
τj , ..., ũ

(d)
τj

3
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