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Abstract
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1 Introduction

In this paper we develop a new measure of business cycle co-movement that satisfies a

number of desirable properties before assessing its performance alongside that of already

existing measures via a simulation study. We also investigate the ability of our measure to

detect changes in co-movement making use of recently developed methods for discovering

structural breaks, before conducting an analysis of business cycle co-movement.

We find that our proposed measure of business cycle co-movement is very effective at

detecting changes in co-movements and at the same time having favourable size properties.

When applied to recent business cycle series from developed and developing nations, we find

that breaks indicated by the impulse indicator saturation approach significantly reflect the

structural change in the concordance of business cycles.

In Section 2 we propose a new measure of business cycle co-movement building on

the work of De Haan et al. (2007). We perform a graphical and simulation exercise to

demonstrate the properties of this measure and empirically investigating business cycle co-

movement based on our proposed measure. In Section 2.1 we firstly discuss the ideal prop-

erties of a business cycle co-movement measure before introducing both existing measures

of co-movement (Section 2.2) and then our proposed new measure (Section 2.3). We intro-

duce our methodology for detecting structural breaks (Section 3) subsequently and describe

(Section 4) and analyse (Section 4.1) a simulation study to establish the properties of our

measure, and in particular its performance in detecting changes in co-movements. We then

apply our measure in an analysis of business cycle co-movement for a panel of G7 and BRICS

economies (Section 5). Section 6 concludes.

2 Measures of Business Cycle Co-Movement

There are multiple steps in moving from the measured statistics on output in an economy to

measures of co-movement between the business cycles of countries. Few if any of the steps

are without controversy. The extensive literature on locating and defining turning points of

business cycles as well as on properties of cycle phases such as duration and amplitude is
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comprehensively discussed by Harding and Pagan (2006a) and advanced on testing synchro-

nisation in Harding and Pagan (2006b). Moreover we refer to Pagan and Harding (2005) for

a framework for locating the research approaches and traditions in the literature upon what

data series the cycle measurement is based on and what characteristics eventually determine

a cycle in the respective concept.

We disregard considerations on the accuracy of national statistics and price indices,

and also sidestep the (justified) concerns (e.g. Cogley and Nason, 1995) regarding how the

resulting measure of real GDP (denoted yit) is detrended to remove a permanent component

and retain a transitory one so as to arrive at data for the business cycle (git) by using filtering

techniques such as the commonly applied Hodrick and Prescott (1981) (HP) filter. We do so

on the grounds that our methods developed here can be applied invariant to the detrending

procedure used to arrive at a business cycle component.

2.1 Ideal Properties of a Co-Movement Measure

An ideal co-movement measure, we propose, has the following properties:

• It is bounded. Many previously proposed measures are unbounded and often take

extreme values meaning that standardising them to lie on the unit interval does not

yield any more information.

• In the limit (as noise tends to zero) it tends to:

-1 if cycles are perfectly the opposite of each other, hence gi(t) = −gr(t), ∀t.

0 if cycles are completely unrelated to each other, hence gi(t) 6= f(gr(t)), ∀t, or

Cov (gi, gr) = 0.

1 if cycles move together perfectly, hence gi(t) = gr(t), ∀t.

The extreme bounds of such a measure are obviously theoretical concepts rather than likely

actual outcomes, yet it is useful to know this when appraising the output of a measure, not

least to allow comparability between countries.
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To test the latter property, we design a Monte Carlo simulation to include these three

cases, and we consider the average of it over increasing dataset sizes. This is of importance

since we do not have infinitely large datasets at our disposal in applied economics, and it is

thus important to know how quickly these properties are attained for various measures (if

at all).

2.2 Existing Measures

An elementary measure of co-movement is the sample correlation coefficient, used by Baxter

and Kouparitsas (2005). This measure is usually applied to entire samples of data, yet in

our case we seek to understand changes in co-movements over time, making the correlation

coefficient somewhat less reliable to use.

De Haan et al. (2007) decompose business cycle co-movements into two parts: synchronic-

ity and amplitude. They propose measuring each separately as follows:

Synchronicity (group) : φ(t) =
1

N

N∑
i=1

gitgrt
|gitgrt|

, (1)

Synchronicity (indiv) : φi(t) =
gitgrt
|gitgrt|

, (2)

Amplitude (group) : γ(t) = −
∑N

i=1 |git − grt|∑N
i=1 |git|

, (3)

Amplitude (indiv) : γi(t) = −|git − grt|
|git|

. (4)

The latter measure for the dimension of amplitude takes zero if the two business cycles are

identical to each other (hence gi(t) = gr(t)∀t), and becomes more negative the less alike

they are. When the object cycle is not the largest in absolute terms, then γi(t) can be

smaller than negative unity.1 Thus, γ is unbounded, and while De Haan et al. do propose

standardising to achieve boundedness, large negative values affect the mean and standard

deviation and hence distort the effectiveness of this as a measure of amplitude.

1A method to circumvent this difficulty is to alter the denominator to, for example, max (|gi(t)| , |gr(t)|).
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2.3 Our Proposed Measure

Our proposed measure is motivated by the desirable properties outlined in Section 2.1, which

lead us to the concept of realised covariance (or correlation, since to satisfy our desired

properties we scale). As we seek to only measure covariance over short periods of time, the

scaling factor of T in standard covariance would distort our inference. We thus propose:

ψi(t) = 1− (git − grt)2

g2
it + g2

rt

. (5)

This measure achieves zero when Cov (gi, gr) = 0 since E [gitgrt] = 0 in that situation, unity

when git = grt, and negative unity when git = −grt. If noise is assumed (e.g. git = grt + et

where et ∼ (0, σ2
e)), then as the variance of the noise tends to zero, the measure tends to

plus or minus unity.

Hence this measure combines information on the direction of co-movement (if two cycles

move in opposite directions, which is equivalent to ∆git = −∆grt, then it is negative), and

also the extent of co-movement, since the nearer two cycles are to satisfying git = grt, the

nearer is the measure to unity. Furthermore, the greater the noise (so the greater is σ2
e),

the measure still preserves the sign of co-movement.

An added value of this measure is that combining time periods is elemental given its

nature as a covariance measure, and doing so will likely add information. Hence we argue

that our measure captures everything that the De Haan et al. (2007) measures capture, but

in one single number, which is suitable for detecting structural breaks — of great interest in

the post-financial crisis world.

3 Changes in Co-Movements — Structural Change

An important contribution of this paper is to bring to bear recent developments in structural

break detection on the problem of detecting changes in co-movements. Identifying changes in

relationships between variables through time, referred to as structural breaks, is demanding

because by definition such changes are misspecifications of standard linear regression models.

Once we have departed from the assumptions underlying such models, we can no longer be
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sure about statistics calculated on the basis of such models, which creates difficulties in

attempting to understand such changes.

Recursive methods can be employed, but as Hendry and Krolzig (2003) point out, there

are limits to the informativeness of sub-sample model selection, and with such methods

it can be difficult to detect precisely when a break happened even if one can be sure of

the existence of one. Additionally, techniques that allow time-varying coefficients can be

employed. There is a rich literature on detecting structural breaks (see Castle et al. (2010)

for example). The general conclusions drawn in that literature point towards the difficulty of

detecting structural breaks using standard regression techniques when structural parameters

shift (although when seemingly innocuous parameters like the constant change, this can be

much more easily detected). Additionally, it often takes a number of time periods before

any such structural change can be detected. At least two observations are required since one

observation could simply be an outlier, whereas two or more observations would be indicative

of a more fundamental change. It is worth noting at this point that using quarterly data

over annual data may thus be useful in detecting structural breaks, since it affords more

observations over the same time period in which a change may have taken place (Hubrich

and Hendry, 2006); Quarterly data would in principle provide additional observations for

subsequent econometric analysis but at the same time would potentially induce spurious

variability in the cyclical component by giving greater weight to temporary and/or seasonal

shocks.

An alternative methodology of detecting structural breaks is that of dummy saturation,

or impulse indicator saturation, as proposed by Hendry et al. (2008). Dummy saturation

adds an impulse dummy variable for each observation in a sample; hence for our sample of T

observations, we would add T impulse dummy variables to cover each observation. To avoid

perfect multicollinearity the dummies would be added in blocks; for example, two blocks of

T/2 dummies each. A regression is run on each block, and the significant dummies retained.

A union model is then formed of all retained dummies, and only the significant dummies from

this union model are retained overall. Significant dummy variables over a particular time
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period are consequently suggestive of a structural change. The regression methodology

allows the investigator to augment visual inspection of data with sophisticated regression

analysis that takes into account the usual variation expected in data series. Hendry et al.

note a number of prominent uses of dummy saturation, and one particularly pertinent is

to identifying structural breaks that other methods, such as detecting large residuals, may

fail to spot. We therefore employ impulse indicator saturation in the context of changes in

co-movements.

We firstly employ it in our simulation study in order to establish its effectiveness in

detecting structural breaks before applying it to our actual dataset. We use the resulting

dummies as an explanatory variable as we attempt to understand more about changes in

business cycle co-movements in Section 5.

4 Simulation Design

Our first aim is to document summary statistics on the behaviour of the various potential

measures for business cycle co-movement. We thus vary the relationship between business

cycles in a number of ways and calculate the average value and standard deviation of the

measure over a number of replications. The simulation study will indicate whether each

measure yields the type of output we desire for co-movements, and how accurately it does

so.

We consider the following scenarios, and list what we expect to find from a co-movement

measure. Recall that we report the simple correlation coefficient ρ, the De Haan et al.

measures φ (whether cycles are same/opposite side of potential GDP) and γ (how far apart

are cycles standardised on subject cycle), and our proposed ψ measure (a covariance-type

measure).

1. Business cycles are identical; git = grt. We would expect to find that ρ = 1, ψ = 1,

φ = 1 and γ = 0 in this situation. We would also expect standard deviations of these

measures to be zero.

7



2. Business cycles differ only by noise. We generate ut ∼ N (0, σ2
u) and hence set git =

grt + ut. Hence we anticipate that in expectation ρ = 1 − σ2
u, φ = 1 and γ = 0 and

ψt → 1 as σ2
u → 0, since E(ut) = 0 and Var(ut) = σ2

u. We expect that standard

deviations will be somewhat higher, and particularly for φ since it varies between -1

and 1.

3. Business cycles are identical but not perfectly synchronised:

(a) Business cycle of country i is lagged one period behind that of country r: git =

gr,t−1.

(b) Business cycle of country i is lagged two periods behind that of country r: git =

gr,t−2.

We expect in this case that the departures from unity of ρ and φ will be more substantial

since synchronisation is broken. As cycles last longer than one or two periods, φ will

not achieve -1 very often other than at the point where cycles cross potential output.

We anticipate ψ to get nearer to zero since Cov (git, grt) must fall. We expect γ will

be more pronounced in its departure from zero now E(git) 6= E(grt).

4. Business cycles differ only by noise and are not synchronised. Here we consider again

lagging the cycle in country i by:

(a) one period and

(b) two periods.

The added noise ought to increase the departure of ρ and ψ from unity because each

case adds σ2
u to the departure from synchronisation. In expectation, there ought to

be no impact on φ or γ.

5. Business cycles are exactly the opposite of each other; git = −grt. Here we expect

that ρ = ψ = −1 and furthermore that φ = −1 and γ = −2 by substituting git = −grt
into their respective formulas.
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6. Business cycles are the opposite of each other with noise added: git = −grt + ut with

ut defined as in case 2. Here, σ2
u moves ρ and ψ from -1 and also creates enough noise

to move φ away from -1. On average, since E(ut) = 0, γ ought to be unaffected.

7. Business cycles are opposite of each other and not synchronised: We add this setting

to see whether indeed the measures are further increased from all previous cases, and

we repeat the sub-cases listed in case 3 and referred to in case 4.

(a) Business cycle of country i is lagged one period behind that of country r: git =

−gr,t−1.

(b) Business cycle of country i is lagged two periods behind that of country r: git =

−gr,t−2.

Because git and grt are persistent time series, then grt ≈ gr,t−1 = git, it is highly likely

that if ρ is calculated over sufficiently long time periods, ρ will remain high even though

cycles are not synchronised. Similarly, we suspect that while φ will move from -1, it

will not move particularly far since the only time when cycles will be either side of

potential GDP will be when they are crossing it, which is not particularly frequent for

cycles. Since git = −gr,t−1 an extra difference is added to the calculation of γ hence

we anticipate it will increase compared to case 5. We anticipate ψ will be nearer to

zero.

8. Business cycles are opposite of each other with noise added and not synchronised: We

repeat the sub-cases listed in case 3 and referred to in case 4.

(a) Business cycle of country i is lagged one period behind that of country r: git =

gr,t−1.

(b) Business cycle of country i is lagged two periods behind that of country r: git =

gr,t−2.

In this case we anticipate little impact on the mean-type measures (φ and γ) since

E(ut) = 0, whereas the variance-related measures (ρ, ψ) ought to be closer to zero than
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in cases 7(a) and 7(b) by the size of σ2
u.

grt git 

0 20 40

0.00

0.05

Case 1
grt git 

0 20 40

-0.05

0.05

Case 2

0 20 40

-0.025
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0.025
0.050 Case 3(a)

0 20 40

-0.05

0.00
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0 20 40

0.00
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0 20 40
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0.05 Case 4(b)

0 20 40
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0.00
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0 20 40

-0.05

0.00

0.05
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0 20 40

-0.05
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0 20 40
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0 20 40
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0.05
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0 20 40

-0.05

0.00

0.05

Case 8(b)

Figure 1: Samples of generated business cycles using trend stationary DGP.

Figure 1 presents one realisation of all of the 12 cases listed above. Our simulation is

designed in this manner to ascertain whether any measures achieve the desired properties

listed earlier. Notably case 1 should yield positive unity, case 5 negative unity, as the two

polar extreme cases, while cases 4(b) and 8(b) should achieve values closest to zero as the

cases with the largest departures from co-movement.

Given the central question of this paper, notably the detection or otherwise of changing

in co-movements, we thus will analyze whether the measures are able to detect changes in

coupling, and how quickly. Naturally, all kinds of variations on changes in coupling could be

considered, and hence we must be restrictive. We consider thus only episodes of coupling,

decoupling and recoupling, and within that only one specification for each. For coupling,

we refer to case 2 above; when we allude to non-coupled economies, we refer to our polar

opposite case considered above in case 4, where the cycles are the opposite of each other and

lagged twice with noise added.
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Our simulation studies cover 50 observations, i.e. 50 years. In order to best mimic

potential actual events, we consider for both single changes (to coupled, to decoupled) that

they happen 5 and 10 years from the end of the sample. For recoupling we consider that

after 30 observations decoupling happens, and then for the final 5 observations recoupling

occurs. Thus we investigate three scenarios:

(I) Decoupling, dc: Two cycles move from case 2 (separated only by noise) to case 8(b)

(opposite, lagged twice with noise added) 5 and 10 observations from end of sample

(where T = 50). This scenario is henceforth labeled “dc5” and “dc10” respectively.

(II) Coupling, c: Two cycles move from case 8(b) (opposite, lagged twice with noise added)

to case 2 (separated only by noise) 5 and 10 observations from end of sample (where

T = 50). This scenario is henceforth labeled “c5” and “c10” respectively.

(III) Recoupling, rc: Two cycles are initially coupled for the first 30 observations (case 2)

before being decoupled between observations 31 and 45 (case 8(b)), and in the final

five observations becoming recoupled again (case 2).

In Figure 2 we plot one of our generated time series for coupling in the final five time

periods (scenario (II)). For the first 45 observations we note that the two cycles (solid blue

line and solid red line) show no obvious co-movement, but for the final five observations both

move together closely. The dotted blue line is the co-moving series from case 2, which for

the final five observations becomes scenario (II), while the dashed blue line is the series from

case 8(b), where the coupling series (scenario (II)) is for the last five observations.

In each of the cases 1–8(b) we discussed the anticipated impact on our proposed measures,

and hence we expect that in scenarios (I)–(III) measures move from behaving akin to case 2

to 8(b) and vice versa, depending on the respective scenario. Hence we should expect, for

decoupling, ρ to turn negative and decrease in absolute value, φ to similarly change sign and

likely fall in absolute value, γ to increase in size, and ψ to also increase, and vice versa for

the coupling case.

It might be contented that we propose here rather unrealistic structural breaks on
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economies — surely they do not shift as dramatically and suddenly as this in reality? How-

ever, it is important to know whether candidate measures of co-movement are able to pick

up dramatic changes in the ideal case where we know exactly where the change happened.

If we are unable to detect changes in this context, then there is little hope that we will be

able to detect them in real-world economic data either.

yit 
yrt for case 2 (first 45 observations) 

yrt 
yrt for case 8(b) (last 5 observations) 

0 5 10 15 20 25 30 35 40 45 50

-0.05

0.00

0.05

yit 
yrt for case 2 (first 45 observations) 

yrt 
yrt for case 8(b) (last 5 observations) 

Figure 2: Example of structural break in business cycle movements as generated in simula-
tion.

4.1 Simulation Results

The simulation results are provided in Table 1 (trend stationarity). The findings are dis-

played for the correlation coefficient ρ and the measures φ, γ and ψ calculated each period

as well as cumulated over a number of time periods (3, 5 and 10 periods — a panel of the

table for each cumulation). The rows of the table refer to the specific cases 1–8(b) listed

above. In each cell, the average over the replications (10,000) is reported in large typeface,

with the standard deviation reported beneath in small typeface. The bottom part of the

table (dc5, ..., rc) refers to the structural change scenarios and will be discussed later in this

Section.

The first measure we consider is the sample correlation coefficient, ρ, reported in each

panel. As would be expected, for cases 1–4 ρ is positive and is negative for cases 5–8(b).

In the first panel ρ is calculated over the entire sample, whereas for the 3, 5 and 10 periods

panels, it calculated only over these shorter periods. The difference between the panels for

12



cases 1, 2, 5 and 6 is not particularly large, but for the other cases there is a distinct difference;

if ρ is calculated over just 3 periods it is essentially zero in all other cases; this suggests that

ρ over short time periods may be very effective at determining a lack of synchronisation, as

is the specification in these cases. As mentioned earlier, this is because over longer time

horizons the persistence in data mean that grt ≈ gr,t−1 = git, but calculating only over 3 or

5 observations makes this approximation much more unstable. The distinction remains but

is less stark when ρ is calculated over 5 and to a lesser extent 10 time periods. Over these

longer horizons, the lag distinction is clear — the 1-lag specifications (cases 3(a) and 4(a))

have a much higher correlation coefficient than the 2-lag specifications (cases 3(b) and 4(b))

— suggesting again that ρ is able to yield insight on to the relative level of synchronisation.

Considering next the De Haan et al. measures, we note that indeed φit achieves its upper

bound and lower bounds in cases 1 and 5, and outside of these cases, where noise and lagged

values reduce the probability that the cycles are of opposite signs, steadily moves towards

zero. The rate at which φit declines is faster than that of the correlation coefficient ρ

for non-cumulated measures but slower for cumulated, reflecting that φit is concerned with

only synchronisation not co-movement. The cumulation variant used does not alter φit

noticeably.

De Haan et al.’s γ measure of amplitude varies considerably over the twelve cases and, as

expected, registers its highest values for cases with greater noise. Notably though, γ appears

to pick up decreases in synchronisation as well as φ; for example when moving from case 1

to 3(a) and 3(b) only the synchronisation of the cycles is affected yet γ increases. The most

notable feature though of γ is the standard deviation. They are remarkably large, reflecting

the aforementioned lack of a lower bound for the measure. Even if we rescale the measure

to be on the unit interval as De Haan et al. suggest, such large negative values will distort

the remaining values that have been rescaled, and hence yields undesirable characteristic of

this measure.

Our proposed measure, ψ, performs as expected. For cases 1 (perfect co-movement) and

5 (cycles are opposites) it is 1 and -1 respectively, while for other cases it moves towards
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zero. The movement away from ±1 is more marked than for ρ, but the patterns are similar,

as would be expected. For the 3, 5 and 10 period measures with ψ, we sum the measure

rather than taking the average, as can be inferred from cases 1 and 5. Consequently the

values of ψ for the respective columns are approximately proportional.

The simulation results where structural change is specified are presented in the bottom

part of the table. The “dc” lines represent the decoupling scenarios detailed in Section 4,

where the structural change is induced for economies that were moving together and cease

to do so either five (“dc5”) or ten (“dc10”) observations from the end of the sample. The

“c” represent coupling and “rc” signifies scenarios of recoupling.

In all structural change scenarios we report the co-movement measures for the phases

before and after the specified structural changes (i.e. for “dc5”, 45 periods when the cy-

cles were moving together (“dc5[pre]”) and the 5 periods where they do not move together

(“dc5[post]”)). This is clearly a rather optimistic assessment, but here our question is whether

in the best case scenario we can detect changes in co-movement using particular measures.

We find that for all measures bar the correlation coefficient, the structural change is

picked up. For decoupling all measures apart from the correlation coefficient, ρ, fall in

size as would be expected since the co-movement moves from case 2 to case 8(b), while in

the coupling scenario the opposite happens. For the recoupling scenario, the middle period

(“rc[mid]”middle row) is where the cycles are decoupled and hence here the measures are

lower before increasing for the final line, the recoupled period (“rc[post]”). This is expected

since the correlation coefficient is calculated over the entire sample. It is clear that φ and ψ

offer a greater probability of detecting structural change since the standard errors for γ are

of such size that it is hard to imagine any change being statistically significant, and φ only

measures synchronisation and not amplitude.
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1 Period 3 Periods 5 Periods 10 Periods
Case ρ φ γ ψ ρ φ γ ψ ρ φ γ ψ ρ φ γ ψ
1 1.00

0.00
1.00
0.00

0.00
0.00

1.00
0.00

1.00
0.00

1.00
0.00

0.00
0.00

3.00
0.00

1.00
0.00

1.00
0.00

0.00
0.00

5.00
0.00

1.00
0.00

1.00
0.00

0.00
0.00

10.00
0.00

2 0.91
0.00

0.74
0.14

−2.43
11837.50

0.65
0.08

0.75
0.09

0.74
0.06

−2.40
3846.83

1.97
0.32

0.83
0.04

0.74
0.04

−2.41
2285.91

3.28
0.62

0.88
0.01

0.74
0.02

−2.42
924.29

6.58
1.56

3(a) 0.57
0.00

0.41
0.11

−5.57
405256.11

0.33
0.07

−0.00
0.05

0.41
0.08

−5.60
137221.72

1.01
0.38

0.19
0.04

0.42
0.06

−5.60
79368.74

1.69
0.83

0.41
0.03

0.42
0.04

−5.56
33900.05

3.40
2.26

3(b) 0.28
0.00

0.20
0.06

−6.59
781941.82

0.16
0.06

−0.11
0.07

0.21
0.07

−6.66
264852.39

0.48
0.39

−0.07
0.05

0.21
0.06

−6.74
157540.95

0.82
0.89

0.10
0.04

0.21
0.04

−6.78
74194.44

1.66
2.37

4(a) 0.52
0.00

0.37
0.11

−7.86
10538716.38

0.30
0.07

0.01
0.05

0.38
0.08

−8.01
3569927.81

0.91
0.38

0.17
0.05

0.38
0.06

−8.08
2124144.87

1.52
0.82

0.37
0.04

0.38
0.04

−7.45
776640.46

3.05
2.28

4(b) 0.26
0.00

0.18
0.06

−21.68
257483204.14

0.14
0.06

−0.10
0.06

0.19
0.07

−21.71
87173323.70

0.44
0.38

−0.05
0.05

0.19
0.06

−22.08
51835548.50

0.75
0.85

0.10
0.04

0.19
0.04

−23.97
24580290.44

1.51
2.28

5 −1.00
0.00

−1.00
0.00

−2.00
0.00

−1.00
0.00

−1.00
0.00

−1.00
0.00

−2.00
0.00

−3.00
0.00

−1.00
0.00

−1.00
0.00

−2.00
0.00

−5.00
0.00

−1.00
0.00

−1.00
0.00

−2.00
0.00

−10.00
0.00

6 −0.91
0.00

−0.73
0.14

−4.11
105092.07

−0.65
0.08

−0.75
0.09

−0.74
0.06

−3.96
25599.05

−1.96
0.33

−0.83
0.04

−0.74
0.04

−3.94
14856.92

−3.27
0.64

−0.88
0.01

−0.74
0.02

−3.77
4199.82

−6.56
1.56

7(a) −0.57
0.00

−0.41
0.11

−6.23
405309.61

−0.33
0.07

0.00
0.05

−0.41
0.08

−6.26
137255.64

−1.01
0.38

−0.19
0.04

−0.42
0.06

−6.27
79404.27

−1.69
0.83

−0.41
0.03

−0.42
0.04

−6.23
33925.81

−3.40
2.26

7(b) −0.28
0.00

−0.20
0.06

−6.90
782035.64

−0.16
0.06

0.11
0.07

−0.21
0.07

−6.98
264884.16

−0.48
0.39

0.07
0.05

−0.21
0.06

−7.07
157570.72

−0.82
0.89

−0.10
0.04

−0.21
0.04

−7.12
74218.16

−1.66
2.37

8(a) −0.52
0.00

−0.37
0.11

−8.00
10363251.69

−0.30
0.06

−0.01
0.05

−0.37
0.07

−6.42
1223390.98

−0.90
0.37

−0.18
0.05

−0.37
0.06

−6.06
459565.66

−1.51
0.81

−0.37
0.04

−0.38
0.04

−5.73
128965.45

−3.06
2.21

8(b) −0.25
0.00

−0.18
0.06

−7.31
115023.92

−0.14
0.06

0.10
0.06

−0.19
0.07

−7.25
36029.49

−0.44
0.38

0.05
0.05

−0.19
0.06

−7.18
20501.02

−0.74
0.86

−0.10
0.04

−0.19
0.04

−7.07
9019.45

−1.51
2.32

Scenario

(I)
dc5[pre] 0.84

0.00
0.75
0.15

−2.39
12467.25

0.66
0.09

0.75
0.09

0.75
0.06

−2.34
3231.16

1.98
0.34

0.83
0.04

0.75
0.04

−2.35
1925.82

3.30
0.65

0.88
0.01

0.75
0.02

−2.38
863.52

6.60
1.60

dc5[post] 0.84
0.00

−0.07
0.25

−7.99
453091.13

−0.05
0.18

0.36
0.23

0.25
0.18

−6.75
76188.32

0.67
0.98

0.55
0.11

0.42
0.08

−5.43
27203.68

1.82
1.29

0.72
0.03

0.58
0.02

−3.98
6818.48

5.12
1.32

dc10[pre] 0.73
0.00

0.75
0.16

−2.32
10622.77

0.66
0.09

0.75
0.10

0.75
0.07

−2.31
3585.02

1.98
0.36

0.83
0.04

0.75
0.04

−2.32
1935.95

3.30
0.68

0.88
0.01

0.75
0.02

−2.34
744.65

6.61
1.61

dc10[post] 0.74
0.00

−0.12
0.14

−7.00
268209.47

−0.10
0.12

0.21
0.15

0.04
0.14

−6.20
55091.39

0.13
0.83

0.27
0.12

0.12
0.12

−5.53
20496.40

0.58
2.02

0.46
0.06

0.33
0.06

−4.27
5141.76

3.04
3.87

(II)
c5[pre] −0.18

0.00

−0.19
0.07

−7.23
111921.30

−0.15
0.06

0.10
0.07

−0.20
0.08

−7.10
36855.09

−0.46
0.40

0.05
0.05

−0.20
0.06

−7.12
21745.12

−0.77
0.90

−0.10
0.04

−0.20
0.04

−7.10
9635.64

−1.55
2.38

c5[post] −0.11
0.00

0.72
0.39

−2.79
29565.97

0.62
0.22

0.38
0.23

0.37
0.18

−4.64
25048.06

0.96
1.08

0.23
0.11

0.18
0.09

−5.13
5915.95

0.84
1.50

0.06
0.04

−0.00
0.02

−5.54
1680.18

0.11
1.51

c10[pre] −0.07
0.00

−0.20
0.08

−7.39
123531.96

−0.15
0.06

0.10
0.07

−0.20
0.08

−7.36
41250.08

−0.47
0.42

0.05
0.05

−0.20
0.07

−7.28
24146.19

−0.78
0.94

−0.10
0.04

−0.20
0.04

−7.20
10138.26

−1.56
2.41

c10[post] −0.05
0.00

0.73
0.30

−2.85
37542.91

0.64
0.17

0.57
0.19

0.55
0.15

−3.39
10502.89

1.45
0.84

0.54
0.15

0.46
0.14

−4.00
6230.23

2.03
2.21

0.31
0.07

0.23
0.06

−5.03
3770.50

2.11
4.30

(III)
rc[pre] 0.59

0.00
0.75
0.18

−2.27
8995.43

0.66
0.11

0.75
0.12

0.75
0.07

−2.25
3008.57

1.99
0.39

0.83
0.04

0.75
0.05

−2.23
1463.52

3.32
0.73

0.88
0.01

0.75
0.02

−2.28
522.79

6.64
1.56

rc[mid] 0.57
0.00

−0.19
0.12

−7.09
224609.85

−0.14
0.10

0.18
0.12

−0.07
0.13

−6.39
62409.48

−0.12
0.72

0.20
0.10

−0.00
0.12

−6.26
31153.76

0.08
1.90

0.28
0.09

0.15
0.09

−5.66
7846.42

1.51
6.27

rc[post] 0.53
0.00

0.72
0.39

−2.79
29565.97

0.62
0.22

0.38
0.23

0.37
0.18

−4.64
25048.06

0.96
1.08

0.23
0.11

0.18
0.09

−5.13
5915.95

0.84
1.50

0.06
0.04

−0.00
0.02

−5.54
1680.18

0.11
1.51

Table 1: Simulation results for trend stationary data.
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As noted above, however, this is a rather optimistic picture of detecting structural breaks

in economic data series. We implicitly assume knowledge of the breakpoint that one is not

privy to in reality and must instead attempt to discover it. Employing dummy saturation,

as was discussed in Section 3, we check whether an observation is an outlier or may be part

of a structural break.

It is important to assess via simulation that in our stylised cases and scenarios of co-

movement, dummy saturation on some or all of our measures will enable us to detect struc-

tural breaks. Thus we run dummy saturation on each generated series of our simulation

and consider how often the dummy for each observation is retained. If that observation

does not belong to a period in which we specify a structural break, we expect that most of

the time that dummy variable is not retained; if we carry out dummy saturation at the 5%

level we would expect that 5% of the time a dummy is retained when no structural break

has been specified for that observation. This is referred to as the size of the procedure. On

the other hand, if a structural break has occurred for a particular observation, we expect

that the number of occasions in our simulations that a dummy is retained is substantially

higher than 5%. This alternative aspect of our testing is referred to as the power: Does

dummy saturation using our measures of co-movement have the power to detect changes in

co-movement?

We represent this information graphically, starting in Figure 3. This plots the three

measures (we do not plot ρ since it does not change throughout the sample) in separate

panels. The size cases are cases 1-8(b), while the power cases are the “dc”, “c” and “rc”

scenarios. Considering size first, in cases 1-8(b) (1 and 5 are not reported since there is no

variation in the data series for these cases by definition), all measures have consistent size

in the region of 5%, although for φ and ψ this is temporarily somewhat lower.

Turning to power, the structural breaks all happen towards the end of the sample and

in all three panels this can be observed, as some of the series do jump up for the last 5 or

10 observations. The size of that jump up though is important, and can be learnt from the

vertical axis. For γ, the jump up is only to just over 10%, whereas for φ and ψ it is to usually
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above 30%, indicating that for the latter measures, there is a greater probability of a change

in co-movement being detected. For γ approximately 10% of dummies are rejected in the

event of a structural break yielding a low probability of actually detecting a break having

occurred. Thus, γ has lower power. The power of φ and ψ is also not particularly high,

with still less than a 50/50 chance of detecting a break using these measures. Furthermore,

the coupling cases do not yield any evidence that they would be detected in this manner.

2 
6 
dc5 

3(a) 
7(a) 
dc10 

3(b) 
7(b) 
c5 

4(a) 
8(a) 
c10 

4(b) 
8(b) 
rc 

0 5 10 15 20 25 30 35 40 45 50

0.05

0.10

0.15

γ
2 
6 
dc5 

3(a) 
7(a) 
dc10 

3(b) 
7(b) 
c5 

4(a) 
8(a) 
c10 

4(b) 
8(b) 
rc 

0 5 10 15 20 25 30 35 40 45 50

0.25

0.50
φ

0 5 10 15 20 25 30 35 40 45 50

0.2

0.4

ψ

Figure 3: Retention frequencies of dummy variables using dummy saturation for measures
γ, φ and ψ.

In Figure 4 we combine information over 2, 3 and 5 periods in order to determine whether

this beneficial in detecting a break. Since structural breaks, by definition last for a number

of time periods, and hence if information for more than one of these time periods is used,

the probability of their detection is increased. Figure 4 confirms that hypothesis. Even

with two periods of information, coupling episodes are much more likely to be detected, and

the chance of detecting decoupling jumps to more than a 50% probability. This pattern

continues if three or five periods of information is used, and when five periods is used the
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chance of detecting breaks is over 50% for all cases (including coupling).2 However, there is

a trade-off, since for instance with real-life data, if a break was suspected of happening after

2008, then on annual data there is now only just five years of information to use — combining

over longer time horizons naturally has a cost in terms of observations lost. Nonetheless,

from the bottom right panel of Figure 4 there is a distinct pattern in the rejection frequencies

the moment a break happens — they start to increase dramatically, suggesting that some

information could be used before the five years have passed to help determine whether a

break might have happened.
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Figure 4: Retention frequencies of dummy variables using dummy saturation for ψ with
different numbers of time observations.

We conclude from this section that our ψ measure of co-movement is able to perform

as well as either of the individual measures proposed by De Haan et al., and furthermore

when information is combined over two or three time periods, it seems highly probable

that structural breaks would be detected in co-movements. This exemplifies the utility of

2This pattern is also apparent for the γ and φ measures, although not as distinct for the coupling cases,
and also the size more generally increases with γ and φ as we increase the number of periods over which we
calculate. See Figures 8 and 7 in the Appendix.
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the impulse indicator saturation method, and also confirms the usefulness of our proposed

measure of business cycle co-movements.

5 Data Analysis

Having considered the properties of each measure of co-movement, and the likelihood of

detecting structural breaks using dummy saturation, in this section we put both sets of

results into practice by using our ψ measure of co-movement alongside impulse indicator

saturation to understand more about potential changes in co-movement.

We run a regression model containing the indicator variables selected by dummy satura-

tion and consider whether including trade intensity, a conventional explanatory variable for

business cycle co-movement, reduces the significance of the dummy variables. If the dummy

variables remain significant, there is evidence for structural changes during the period we

consider.

The dataset comprises the G7 economies (Canada, France, Germany, Italy, Japan, United

Kingdom and USA) as well as the BRICS countries (Brasil, Russia, India, China and South

Africa) on an annual basis ranging from 1980 to 2011.3 In extracting the cyclical compo-

nent of the real GDP series in USD at market rates we account for the widely discussed

sensitivity of estimation results relying on data based on high-pass and band-pass filtering

techniques and therefore apply methods suggested by Baxter and King (1999) (BK here-

after), Butterworth (1930) (BW hereafter), Christiano and Fitzgerald (2003) (CF hereafter)

and the widely used Hodrick and Prescott filter (Hodrick and Prescott (1997)) (the HP-filter

hereafter). The HP-filter integrates the smoothing parameter λ which is varied following

Ravn and Uhlig (2002)4. The cross-correlations of the cyclical components extracted by the

various detrending methods are reported in Tables 3-15, indicating overall high correlations

3GDP data (series codes: 99B..ZF..., 99B.CZF..., 99B.CZW...) exchange rates of national currencies in
USD (series code: ..AE.ZF...) and GDP deflator series (series code: 99BIRZF...) are collected from the
International Financial Statistics database of the IMF. Trade data were obtained from the IMF Direction of
Trade Statistics (series codes: 70..DZF111, 71..DZF111).

4Due to space limitations we restrict ourselves to reporting the estimation results for cyclical components
derived with HP-filtering (λ = 4). Applying the other afore mentioned filtering techniques and their various
configurations yield comparable results that are available upon request.
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for the data we analyse, irrespective of the applied filtering technique. The calculation of the

proposed concordance measure based on the particular transitory components will therefore

yield highly correlated quantities for the data under consideration.

The general regression model

Ψit = α0 + β1Ψi,t−k + γ∆i,t + β2Xit + β3Xi,t−k + uit (6)

examines the concordance of the business cycles in reference to the US cycle that is measured

as proposed in (5). The matrix Ψi,t−k contains the (k) lagged values of the concordance

measure. ∆i,t is a matrix of the impulse indicator series that account for structural breaks in

the business cycle synchronicity of the respective country vis à vis the US cycle. The matrix

Xit comprises bilateral trade intensity as a major determinant of business cycle synchronicity

(see Baxter and Kouparitsas (2005) among others).5

Figure 5 illustrates the calculated three periods moving average of the ψ(3) measure for

business cycle concordance, exemplified for the United Kingdom, France, Italy and Ger-

many.6 The graphical illustration indicates an intensified co-movement of the UK business

cycle component with the US cycle since 2004 . While the co-movement of the US and UK

cycle series can be described with a lagging behind of the UK cycle until the mid 1990s, the

characteristic of the interrelation of their time patters changes during the remaining half of

the century. Figure 6, which displays the impulse indicator series in the lower part of the

graphs, confirms this notion by indicating a significant structural break of the co-movement

pattern for the US and UK cycle in 1995.7

The regression results (Table 5) with heteroskedasticity and autocorrelation robust stan-

dard errors highlight the importance of the impulse indicator saturation (IIS ψ(3)) in detect-

ing breaks when assessing business cycle synchronicity. The dummy indicators significantly

detect changes in the concordance of the business cycle components with respect to the US

5Trade intensity is proxied by the mean of aggregate bilateral exports and imports vis-à-vis the US for
each period.

6The illustrations for the remaining countries are shown in Figures 9 and 10 of the Appendix.
7The illustrations of the cyclical components and structural breaks as indicated by dummy saturation for

the remaining countries are shown in Figures 11 and 12 in the Appendix.
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cycle for the underlying sample. The evidence for trade intensity vis-à-vis US as a determi-

nant for business cycle synchronicity is mixed for the panel of economies we analyse. It has

to be noted here though, in lieu of considering a larger set of business cycle determinants

yielding more robust results for the importance of trade in determining business cycle syn-

chronicity our main goal here is to illustrate the utility of the proposed measure as well as

the effectiveness of the impulse indicator approach in detecting structural changes.
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Figure 5: Real business cycles; co-movement as indicated by ψ(3), calculated in reference to
the US cycle.
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Figure 6: Real business cycles; structural breaks of the co-movement calculated in reference
to the US cycle.
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POLS FE First difference GMM
ψ(3)(-1) 0.821534∗∗∗ 0.782069

0.821534

∗∗∗ 0.602259∗∗∗

(0.056875) (0.031924)
[0.091885]

(0.042659)

ψ(3)(-2) -0.315109∗∗∗ −0.344908
−0.315109

∗∗∗ -0.435283∗∗∗

(0.056343) (0.060908)
[0.090768]

(0.069585)

IIS ψ(3) -0.071884∗ −0.141535
−0.071884

∗∗∗ -0.166163∗∗∗

(0.040036) (0.044171)
[0.055366]

(0.047669)

Trade intensity vis-à-vis US -0.257543 −0.242650
−0.257543

-0.454834

(0.182494) (0.239122)
[0.207863]

(0.277411)

Trade intensity vis-à-vis US(-1) 0.463385∗∗ 0.474934
0.463385

∗∗ 0.406052

(0.230198) (0.285399)
[0.268337]

(0.284340)

Trade intensity vis-à-vis US(-2) -0.126002 −0.183189
−0.126002

-0.174288

(0.159674) (0.123613)
[0.199534]

(0.169219)

Intercept -0.010785 −0.001299
−0.010785

(0.016955) (0.020919)
[0.022947]

Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%

Table 2: Business cycle synchronicity (ψ(3)) - Impulse indicator saturation and trade
intensity estimates.
Notes: Robust Huber/White/sandwich errors in parentheses (see Rogers (1994) and Williams (2000)) when not indicated
otherwise. The Breusch-Pagan LM test indicates no evidence of significant differences across units. Pesaran’s test of
cross-sectional independence (see Pesaran (2004)) indicates residual correlation across entities (test statistic=3.633; P-
value=0.0003). Panel corrected standard errors and coefficients are therefore reported for the FE estimates in square
brackets and small type face respectively. The annotations of the significance levels are based on the robust standard
errors.
GMM regression results are presented for one-step difference GMM estimation with Arellano-Bond robust variance/covari-
ance standard errors. IIS ψ(3) is used as standard instrument for the first difference equation. ψ(3) and Trade intensity
vis-à-vis US are employed as GMM-type instruments with lags(1/3) (Roodman (2006)).
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6 Concluding Remarks

The main contribution of this paper is a new metric of business cycle co-movement that

satisfies a number of desirable properties. Its performance alongside that of already existing

measures is assessed through a simulation study. We also investigate the ability of our

measure to detect changes in co-movement making use of recently developed methods for

discovering structural breaks. We find that our proposed measure of business cycle co-

movement is highly effective at detecting changes in co-movements and appears to also

have desirable size properties. When applied to recent business cycle series from developed

and developing nations, we find that breaks indicated by the impulse indicator saturation

approach significantly reflect the structural change in the concordance of business cycles.

Augmenting our dataset with conventional variables of business cycle determinants and

combining them with the impulse indicator approach leaves scope for further research and

assessment of changes in business cycle synchronicity against the backdrop of structural

changes in the state of the economies such as the global financial crisis.
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A Appendix

A.1 Additional Material
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Figure 7: Dummy saturation on φ measure as number of periods used increases.
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Figure 9: Real business cycles; co-movement as indicated by ψ(3), calculated in reference to
the US cycle.
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Figure 10: Real business cycles; co-movement as indicated by ψ(3), calculated in reference to
the US cycle.
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Figure 11: Real business cycles; structural breaks of the co-movement calculated in reference
to the US cycle.
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Figure 12: Real business cycles; structural breaks of the co-movement calculated in reference
to the US cycle.
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A.2 Cross-Correlations of Cyclical Components

Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.998 1.000
Nb. Obs. 19
HP(λ = 10) 0.993 0.998 1.000
Nb. Obs. 19 19
HP(λ = 100) 0.891 0.907 0.924 1.000
Nb. Obs. 19 19 19
HP(λ = 1600) 0.603 0.623 0.647 0.877 1.000
Nb. Obs. 19 19 19 19
BK(q = 1) 0.908 0.885 0.865 0.720 0.227 1.000
Nb. Obs. 17 17 17 17 17
BK(q = 2) 0.971 0.959 0.947 0.831 0.437 0.789 1.000
Nb. Obs. 15 15 15 15 15 15
CF 0.985 0.984 0.978 0.870 0.577 0.850 0.908 1.000
Nb. Obs. 19 19 19 19 19 17 15
BW (n=2) 0.997 0.991 0.982 0.867 0.579 0.925 0.973 0.984 1.000
Nb. Obs. 19 19 19 19 19 17 15 19
BW (n=6) 0.518 0.485 0.458 0.366 0.238 0.774 0.447 0.473 0.555 1.000
Nb. Obs. 19 19 19 19 19 17 15 19 19

Table 3: Cross-correlations of real GDP cyclical components - Brasil

Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.996 1.000
Nb. Obs. 32
HP(λ = 10) 0.983 0.995 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.838 0.878 0.916 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.673 0.713 0.755 0.911 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.911 0.881 0.849 0.686 0.559 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.987 0.977 0.962 0.838 0.684 0.926 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.949 0.926 0.891 0.675 0.531 0.899 0.947 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.995 0.983 0.960 0.790 0.626 0.930 0.989 0.965 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.921 0.892 0.855 0.651 0.503 0.915 0.947 0.937 0.944 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 4: Cross-correlations of real GDP cyclical components - Canada
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Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.999 1.000
Nb. Obs. 32
HP(λ = 10) 0.997 0.999 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.960 0.967 0.974 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.429 0.437 0.447 0.617 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.926 0.916 0.906 0.862 0.419 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.997 0.994 0.990 0.965 0.581 0.930 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.967 0.959 0.950 0.901 0.411 0.907 0.978 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.999 0.997 0.992 0.950 0.420 0.928 0.998 0.975 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.986 0.980 0.972 0.920 0.402 0.914 0.987 0.990 0.991 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 5: Cross-correlations of real GDP cyclical components - People’s Republic of China

Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.994 1.000
Nb. Obs. 32
HP(λ = 10) 0.975 0.994 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.820 0.872 0.918 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.757 0.814 0.867 0.991 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.910 0.882 0.848 0.681 0.617 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.989 0.983 0.970 0.848 0.784 0.931 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.931 0.903 0.864 0.671 0.607 0.880 0.927 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.990 0.969 0.935 0.744 0.677 0.927 0.984 0.948 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.875 0.820 0.757 0.514 0.449 0.911 0.905 0.911 0.930 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 6: Cross-correlations of real GDP cyclical components - France
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Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.994 1.000
Nb. Obs. 32
HP(λ = 10) 0.977 0.994 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.858 0.904 0.941 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.794 0.843 0.885 0.982 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.908 0.870 0.827 0.678 0.629 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.989 0.976 0.957 0.861 0.827 0.934 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.922 0.883 0.839 0.671 0.616 0.942 0.943 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.991 0.971 0.940 0.791 0.725 0.936 0.990 0.951 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.855 0.799 0.739 0.543 0.483 0.936 0.910 0.930 0.908 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 7: Cross-correlations of real GDP cyclical components - United Kingdom

Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.995 1.000
Nb. Obs. 32
HP(λ = 10) 0.978 0.994 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.809 0.858 0.906 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.699 0.751 0.805 0.957 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.928 0.907 0.880 0.706 0.600 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.991 0.987 0.976 0.840 0.725 0.943 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.953 0.929 0.892 0.674 0.547 0.902 0.946 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.993 0.975 0.945 0.742 0.631 0.939 0.987 0.969 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.915 0.873 0.819 0.566 0.463 0.925 0.932 0.952 0.954 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 8: Cross-correlations of real GDP cyclical components - Germany
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Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.996 1.000
Nb. Obs. 32
HP(λ = 10) 0.984 0.996 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.845 0.879 0.910 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.471 0.498 0.528 0.740 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.940 0.912 0.879 0.711 0.441 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.987 0.978 0.962 0.841 0.525 0.942 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.930 0.897 0.857 0.646 0.372 0.948 0.942 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.995 0.983 0.963 0.803 0.439 0.958 0.989 0.957 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.946 0.916 0.879 0.686 0.364 0.961 0.956 0.979 0.971 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 9: Cross-correlations of real GDP cyclical components - India

Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.994 1.000
Nb. Obs. 32
HP(λ = 10) 0.975 0.994 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.835 0.885 0.928 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.765 0.819 0.868 0.979 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.912 0.883 0.848 0.690 0.620 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.989 0.981 0.966 0.848 0.776 0.936 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.914 0.877 0.831 0.635 0.563 0.881 0.913 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.990 0.968 0.934 0.758 0.686 0.931 0.984 0.943 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.869 0.814 0.750 0.521 0.453 0.893 0.891 0.935 0.924 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 10: Cross-correlations of real GDP cyclical components - Italy
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Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.997 1.000
Nb. Obs. 32
HP(λ = 10) 0.987 0.997 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.874 0.903 0.929 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.623 0.651 0.680 0.857 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.908 0.889 0.868 0.763 0.560 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.989 0.983 0.974 0.891 0.683 0.932 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.978 0.967 0.951 0.822 0.544 0.883 0.966 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.995 0.983 0.966 0.832 0.585 0.920 0.989 0.983 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.926 0.895 0.860 0.690 0.473 0.900 0.946 0.953 0.957 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 11: Cross-correlations of real GDP cyclical components - Japan

Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.997 1.000
Nb. Obs. 32
HP(λ = 10) 0.988 0.997 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.898 0.925 0.949 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.802 0.832 0.860 0.962 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.919 0.893 0.861 0.684 0.489 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.911 0.911 0.894 0.726 0.524 0.139 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.971 0.959 0.941 0.829 0.743 0.859 0.673 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.995 0.984 0.968 0.857 0.760 0.937 0.859 0.978 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.497 0.453 0.415 0.317 0.274 0.752 -0.657 0.438 0.547 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 12: Cross-correlations of median real GDP cyclical components
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Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.995 1.000
Nb. Obs. 17
HP(λ = 10) 0.975 0.992 1.000
Nb. Obs. 17 17
HP(λ = 100) 0.741 0.800 0.862 1.000
Nb. Obs. 17 17 17
HP(λ = 1600) 0.564 0.622 0.690 0.939 1.000
Nb. Obs. 17 17 17 17
BK(q = 1) 0.933 0.910 0.876 0.676 0.555 1.000
Nb. Obs. 15 15 15 15 15
BK(q = 2) 0.994 0.992 0.981 0.859 0.768 0.963 1.000
Nb. Obs. 13 13 13 13 13 13
CF 0.925 0.908 0.877 0.646 0.519 0.895 0.932 1.000
Nb. Obs. 17 17 17 17 17 15 13
BW (n=2) 0.995 0.979 0.947 0.675 0.499 0.946 0.989 0.933 1.000
Nb. Obs. 17 17 17 17 17 15 13 17
BW (n=6) 0.840 0.802 0.750 0.460 0.320 0.936 0.921 0.887 0.867 1.000
Nb. Obs. 17 17 17 17 17 15 13 17 17

Table 13: Cross-correlations of real GDP cyclical components - Russia

Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.996 1.000
Nb. Obs. 32
HP(λ = 10) 0.985 0.996 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.831 0.865 0.898 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.597 0.631 0.669 0.887 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.926 0.905 0.879 0.729 0.574 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.990 0.983 0.972 0.880 0.785 0.955 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.906 0.874 0.834 0.632 0.448 0.873 0.904 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.994 0.981 0.961 0.783 0.553 0.941 0.988 0.939 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.811 0.771 0.728 0.533 0.362 0.896 0.902 0.886 0.853 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 14: Cross-correlations of real GDP cyclical components - USA
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Variables HP(λ = 4) HP(λ = 6.25) HP(λ = 10) HP(λ = 100) HP(λ = 1600) BK(q = 1) BK(q = 2) CF BW (n=2) BW (n=6)
HP(λ = 4) 1.000
Nb. Obs.
HP(λ = 6.25) 0.997 1.000
Nb. Obs. 32
HP(λ = 10) 0.987 0.997 1.000
Nb. Obs. 32 32
HP(λ = 100) 0.866 0.897 0.928 1.000
Nb. Obs. 32 32 32
HP(λ = 1600) 0.696 0.728 0.762 0.892 1.000
Nb. Obs. 32 32 32 32
BK(q = 1) 0.913 0.889 0.864 0.733 0.629 1.000
Nb. Obs. 30 30 30 30 30
BK(q = 2) 0.989 0.980 0.968 0.868 0.759 0.939 1.000
Nb. Obs. 28 28 28 28 28 28
CF 0.965 0.952 0.931 0.772 0.644 0.898 0.963 1.000
Nb. Obs. 32 32 32 32 32 30 28
BW (n=2) 0.997 0.987 0.971 0.828 0.659 0.928 0.991 0.973 1.000
Nb. Obs. 32 32 32 32 32 30 28 32
BW (n=6) 0.951 0.931 0.905 0.734 0.574 0.923 0.970 0.954 0.967 1.000
Nb. Obs. 32 32 32 32 32 30 28 32 32

Table 15: Cross-correlations of real GDP cyclical components - South Africa
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