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1 Introduction

- signal extraction widely used to focus on major movements in
data (e.g., estimation of trend, long run component) and as input
to policy-making

- multivariate case one of interest for signal extraction; for instance,
central banks keep track of price movements in various sectors

- stochastic trends, nonstationarity, pervasive in economic data; also
common trends, cointegration

- theory for single time series or for stationary multivariate case

- structure of filter design studied only for univariate case



2 Improved signal with multiple series

- Harvey and Trimbur (2003): Multivariate stochastic cycle model;
empirical application to US business cycle, GDP-Investment

- Azevedo et. al (2006): applied MV higher order cycle model to
Eurozone data

- Basistha and Startz (2008): Applied MV AR(2) [cyclical roots]
model, common component, NAIRU

- Sinclair (2009) - Okun’s Law pairing, GDP-URate model for US

- Kiley (2010): common trend (random walk) model for core and
total inflation for US



3 Signal extraction research

Wiener (1949), Whittle (1963), Bell (1984): Wiener-Kolmogorov
(WK) filters, bi-infinite benchmark, for multivariate stationary series
or for nonstationary univariate series

McElroy (2008): Exact matrix formulas for nonstationary univariate
case for actual finite-length series

Bi-infinite filters, generalization of WK, not yet derived for multi-
variate nonstationary case

Finite-series formulas not yet presented for the case of multivariate
series, either stationary or nonstationary



4 Aims

- generalize the Wiener-Kolmogorov formula (bi-infinite series) to
multiple nonstationary series, both under very general conditions
and with the uniform structure usually used in the literature

- new formulas for actual data (finite series) for multivariate case
(stationary or nonstationary), exact everywhere including near end
of sample, simple and fast computation

- Treatment of Multivariate trends: related or common; examine
some major generalized filters

- Illustrate with analysis of trend inflation using both core and total
inflation data



5 Multivariate Filters
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6 Multivariate filters - frequency domain

Frequency Response - F.T. of ’s: FR() = F (−)

Gain function: how filter affects amplitudes at each frequency

Example: Low-pass filters for trends cut out high frequencies

G() [ × ] () = () for Im(()) = 0

For symmetric filters (past and present equally weighted for a given

time separation), zero phase shift and G() = FR()



7 Filters and Decomposition Models

Reason for filtering: series has a signal of interest, s along with

other, less informative, components - the noise, n

S-N decomposition model: y = s + n

s one component, e.g., trend, or combination such as trend plus

cycle (regular movements)

n - remaining component(s), e.g., irregular or temporary part



8 Multivariate (MV) UC models

- intuitive form; flexible structure

- param. estimates, statistical fit and diagnostics

- close look at important individual series

- extracted components consistent with each other and with

data; measure uncertainty in these estimates

- detailed correlation structure (components)



9 Theoretical Foundations for Signal Extraction

(Optimal filters for doubly infinite Series)

long-term impact - abstracts from near-endpoint effects

approximately holds for most time points in a long enough series

uncorrelated components → time-symmetric filters

compact expressions for filters and gain functions

essential properties and comparisons across filters



10 Existing Signal Extraction Formulas (I)

Matrix autocovariance generating function (ACGF)

For stationary x: Γx() =
∞X

=−∞
Γ



where Γ = (−) is auto-covariance matrix for lag 

Optimal filter: () = Γs()[Γs() + Γn()]
−1

For Gaussian components, minimum mean-squared error (MMSE);

For MV white noise (WN) disturbances, best linear estimator



11 Pseudo-acgf

Univariate ARMA: () = ()  ∼(0 2)

(): AR polynomial, (): MA polynomial, 

ACGF: x() = 2
()(−1)

()(−1)()(−1)

Univariate ARIMA: ()() = ()  () = 1− 

Pseudo-ACGF: x() =
()0(−1)

()(−1)()(−1)
2




12 Existing Signal Extraction Formulas (II)

For univariate nonstationary ,  (with distinct nonstationary op-

erators), use Bell’s extension of WK formula:

Optimal filter: () = s()[s() + n()]
−1

Gain: () = s(
−)[s(−) + n(

−)]−1

Here s(
−) is a "pseudo-"spectrum - it doesn’t exist at a non-

stationary frequency, but a cancellation occurs for the gain function



13 Multivariate Nonstationary Case


()
 , () , ()  = 1  

{() } = {()s ()
()
 }, {() } = {()n ()

()
 }

{() } = {()()() }

Nonstationary operators, ()s () 6= 
()
n () for each 

Let {u} = {(1)   
()
 } likewise for {v} and {w}



14 Multivariate Nonstationary Case

Let ()s () 
()
n () be uniform across  : 

()
s () = s() and


()
n () = n() for all 

Let es() be a diagonal matrix with elements s()

Then, es()s = ut and for analogous en() en()n = vt

Let Fw denote the multivariate spectrum of {w}. Likewise,

define Fu as the spectrum of {u} and F v as the spectrum of v.



15 Theorem 1 - Assumptions

{u} {v} stationary and uncorrelated

Assumption∞: Initial values ()∗ uncorrelated with {u}, {v}

Assumption: Fw is invertible everywhere, except for a set of fre-

quencies that has Lebesgue measure zero.



16 New Theorem for multivariate nonstationary

signal extraction (bi-infinite series)

Define Pseudo-ACGF of s: Γs() = Γu()
hes()es(−1)i−1

Define Pseudo-ACGF of n: Γn() = Γv()
hen()en(−1)i−1

Theorem 1 The generalized optimal filter for nonstationary s and

n defined above is given by

() = Γs()[Γs() + Γn()]
−1



17 Optimal filters for multivariate nonstationary

signal extraction

Gain: (
−) = Γs(−)[Γs(−)+Γn(−)]−1

Depends on individual dynamic properties (variances of component

disturbances) and on relationships (component cross-correlations)

Wold decomposition: s()s = Ξ()ζ ζ ∼(0Σζ)

Covariance matrix Σζ ( × ) can have full (related signals) or

reduced rank (common signals, cointegration)



18 Real Data: Finite-series setup

()= [
()
1  

()
2   

()
 ]0 Likewise, () and ()

Seek estimator bs() that minimizes the MSE criterion:
bs()= X

=1
() = [()|(1) (2) · · ·  ()]

 is  × dimensional,  6=  cross filters,  =  own filters

Derive the set of s from properties of () and ()



19 Stochastic trends

Many series are nonstationary and have a stochastic trend

Set s = μ, signals long-run patterns (low-frequency movements)

Examples: trend inflation, potential output, NAIRU

Set n = ε stationary irregular, e.g., ε ∼(0,Σ)

y = s + n = μ + ε,



20 Local Level Model

μ = μ−1 + η η ∼(0Σ)

Random walk, simplest I(1) trend

Cov(η ε) = 0 [× ], trends driven by different types of factors
than noise, leads to symmetric filters

Random, permanent shocks each period → trend stays flat, on

average, moving forward; frequent small changes in direction



21 Smooth trend

μ = μ−1 + β−1

β = β−1+ ζ ζ ∼(0Σ) Cov(ζ ε) = 0 [ × ]

time-varying slopes β, allow for permanent variation in growth

rate of underlying signal

Usually, small diagonal values for Σ → estimated trends change

direction slowly - "smooth"



22 Common Trends

μ = μ−1 + η η ∼(0Σ)

Reduced rank Σ: μ depends on    core trends, in μ†

μ = Θμ† + μ†0

μ† = μ†−1 + η†

Θ ( ×) contains the load factors, restrictions used for identi-

fication; μ†0 ( × 1) vector of constants



23 MV Butterworth low-pass filters

Filter, Time domain: Ψ() = ()[() +()]
−1

Gain based on spectra: Ψ() = ()[() + ()]
−1

Ψ() = Σζ
³
Σζ + (2− 2 cos)Σ

´−1
  = 1 2 

Full rank Σζ (irreducible related trends)→ Ψ() well-defined and

continuous everywhere for  on [0,]

Separation of gains at lowest frequency: Ψ(0) = 



24 Common Trends Low Pass

Reduced rank Σζ (common trends)→ Ψ() well-defined and con-

tinuous everywhere on [0,] except for  = 0

Common trends: Σζ = ΘΣ†ζ(Θ)0

Ψ(0) = lim→0Ψ() = Θ
³
Θ0Σ−1 Θ

´−1
Θ0Σ−1

Sharing of gains: Θ =  (column vector of ones), Σε = 2ε  →
Ψ(0) = 0 (equal weights on each input series)



25 Application: Total Trend Inflation with Core

Example : trend in total inflation (additional information from core:

has volatile food and energy components stripped out)

Data: Quarterly PCE inflation, total and core

Sample: 1986:1 to 2010:4

Source: Bureau of Economic Analysis (Vintage: 2011Q1)



Local Level Model - Univariate, Trends
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Local Level Model - Univariate, Weights
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Local Level Model - Univariate, Gains
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Local Level Model - Bivariate, Trends
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Local Level Model - Bivariate, Weight patterns
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Local Level Model - Bivariate, Gains
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Local Level Model, Univariate and Bivariate Trends
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Smooth Trend Model - Univariate, Trends
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Smooth Trend Model - Univariate, Weights
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Smooth Trend Model - Univariate, Gain functions
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Smooth Trend Model - Bivariate, Trends
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Smooth Trend Model - Bivariate, Weight patterns
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Smooth Trend Model - Bivariate, Gain functions
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Univariate, Bivariate Smooth trend models
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Bivariate Local level, Smooth trend models
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26 Conclusions

new results on signal extraction for multiple series - generalized WK
formula for nonstationary case and exact finite sample expressions

foundation for the extraction problem useful for nearly all economic
applications of interest such as current analysis and policymaking

clarify the signal extraction architecture based on individual prop-
erties and relationships across series; otherwise, very difficult to
determine how to combine information with cross-filters

flexibility in filter design; analytical expressions for multivariate gain
functions - own-gains and cross-gains; consistency among filters and
with set of series



Exact formulas for finite-sample weights

u() = ∆
()
s s() and v() = ∆

()
n n()

matrices ∆
()
s and ∆

()
n contain differencing polynomials ()s and 

()
n  Let

u() = ∆
()
s s() and v() = ∆

()
n n(), with cross-covariance matrices denoted

Σ
u and Σ

v . Now assume there are no common roots among 
()
s and ()n ,

so that ()() = 
()
s ()

()
n (). Then

∆() = ∆
()
n ∆

()
s = ∆

()
s ∆

()
n  (1)

where ∆
()
n and ∆

()
s are similar differencing matrices of reduced dimension,

having  −  rows.

Assumption  : For each  = 1 2 · · ·   , the initial values of y() are
uncorrelated with u and v.
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∆
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With bs = y, a compact matrix formula for  is given as follows. Define
block-matrices  that have th block matrix entries given by
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Σ
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Σ
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Σ
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let f∆ block diagonal matrix with the matrix ∆() in the th diagonal.



 = e+ e
 =−1 h e + ( −)Σ−1w f∆i
 = + + ( −)Σ−1w ( −)0



Optimal filter design

low-pass with varying curvature and location is optimal (MMSE)

curvature results from overlapping contributions (frequencies) of
stochastic components

shape of low-pass varies across series which have different trend-
noise relationships

which model generates a given filter, e.g., HP filter

model performance, model-filter selection, interpretation



the stochastic structure of signal and noise vectors - signal-noise
ratios and correlations


