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Abstract

In many areas of life - economics, meterology, sociology, politics to name a few - there are events

that surprise us. However, much behaviour is dependent on expectations of future events. We show

that it cannot be proved that conditional expectations based on the current distribution are minimum

mean-square error 1-step ahead predictors when unanticipated breaks occur, and consequentially, the

law of iterated expectations and Bellman’s optimality principle then fail inter-temporally. The former

makes the formulation of models for forecasting and economic policy precarious, while the latter two

cause problems for models of inter-temporal optimizing behaviour.

1 Introduction

A difficulty faced by many disciplines that are concerned with future behaviour is not simply that un-

certainties occur, but also that there are often changes to the underlying relationships that are unantici-

pated. Such changes, or more precisely structural breaks, not only lead to difficulties in forecasting (see

Clements and Hendry, 2001), but also in the formulation of theories and models of the underlying be-

havioural relationships. The latter is not simply a matter of modeling in the face of structural breaks, but

confronts a deeper problem. The mathematical derivations involved in the implementation of theories in

empirical models fail to recognize that when there are unanticipated changes, conditional expectations

are neither unbiased nor minimum mean-squared error (MMSE) predictors, and that better predictors

can be provided by robust devices. As a consequence, the law of iterated expectations then does not hold

as an inter-temporal relation unless all distributional shifts are perfectly anticipated. Further, the Bell-

man optimality principle when applied to stochastic variables that are subject to unanticipated changes

no longer holds. Given the prevalence of such changes, learning about the post-change scenario is both

difficult, and itself generates further non-stationarities.

The paper is organized as follows. Section 2 notes the important role that expectations play in many

areas of decision making and forecasting, including economic policy. The relationship between the

∗We are grateful to Jennifer L. Castle, Gunnar Bärdsen, Søren Johansen, Bent Nielsen and Ragnar Nymoen for their valuable

comments. We have also benefitted from the comments of two referees on a previous version of the paper.
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process that generates the data we observe (DGP) and models thereof is discussed briefly in section 3,

as well as the effects of unanticipated changes in the DGP. In the context of the DGP the fact that the

conditional expectation is not an unbiased predictor and need not have minimum mean-squared error

when there are location shifts is proved in section 4. It is shown in section 5 that when there are such

shifts, the law of iterated expectations does not hold inter-temporally, and in section 6 that the Bellman

optimality principle does not apply in these circumstances. The implications of these results for economic

analysis and modeling are then discussed in section 7. Alternative approaches are therefore required, and

as an illustration the value of having a modeling methodology that can produce relevant, reliable, and

robust models generally but especially for policy analysis, is described in section 8, emphasizing the

important role that automatic model selection can play. Reference is made to the impressive results that

this approach to modeling has achieved in economics. Conclusions are provided in section 9.

2 Expectations

Expectations play an important role in many areas of human activity including economic, social, po-

litical, and trading (e.g. in commodity and financial markets) behaviour, as well as in the forecasting

of natural phenomena such as weather. Thus they are critical components of the theories of the asso-

ciated disciplines: economics, sociology, psephology and meterology. Forecasting variables as part of

systems that are subject to unanticipated changes is difficult as the recent experience of floods in Brazil

and Australia as well as early heavy snow in Europe in December 2010 illustrated for meteorology. Vul-

canologists and seismologists also experience difficulty in predictiong the magnitude and precise timing

of volcanic erruptions and earthquakes, as in Japan and New Zealand recently. Equally, the recent finan-

cial crisis illustrated the problem for economics. Central banks use interest rates for inflation ‘targets’

based on expected, or forecast, levels of inflation and related variables one or two years ahead. Never-

theless, it is unclear how accurate agents’ expectations of future variables are in practice, including even

sophisticated agents. For example, despite a substantive investment in modeling and forecasting – and a

committee of experts to advise it (the Monetary Policy Committee) – the Bank of England still signifi-

cantly mis-forecasts CPI inflation (see Bank of England, 2008, with inflation later rising well outside the

range in its ‘fan chart’). Equally, almost no oil price forecasts for 2008 included a price near the $147

high, nor below the $40 per barrel that eventuated. Although exchange rates are a key financial price,

Nickell (2009) shows the consensus forecast systematically mis-forecasting by a large margin over a long

time period. Equally, the near collapse of many of the world’s largest financial institutions in 2008–2009

reveals how inaccurate their expectations of asset values have proved to be. These examples show that it

is very difficult to form accurate expectations about future events, with the primary cause of such failures

being location shifts, when the means of future distributions differ from those of the current distribution

(see Clements and Hendry, 1998).

The converse is also true: it can be difficult to discern some breaks and harder still to determine

their source. Figure 1 illustrates six different types of break which all occur in practice, alter future

distributions when they do so, and require careful modeling to capture their effects. A trend break (panel

a) can take some time to detect, despite its immense long-run impact, partly because of the ‘noisiness’ of

economic time series from cycles and shocks, but also because such breaks must perforce be relatively

small. A shift from economic growth at a quarterly rate of 0.5 to one of 1.0 would double living standards

in 18 rather than 36 years, yet corresponds to a coefficient change from 0.005 to 0.01 on a linear trend in

a log-linear process, or in the intercept of a model expressed in I(0) variables. A step shift (panel b) is the

first difference of a trend break, and would be equally undetectable for such a small effect as a change in
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Figure 1: Six different breaks

growth, but could correspond to a general location shift of any magnitude, so is usually detectable, and in

Clements and Hendry (1998) is analytically derived as the main cause of forecast failure. Panel c shows

the first difference of a location shift, which can be conflated with a large shock, albeit that these have

very different implications for impulse-response analyses in the absence of a correct weak exogeneity

specification (as shown in Hendry and Mizon, 2000), and integrates to a location shift in I(1) processes.

Panel d often surprises, as there is no obviously visible break in the data shown, which was generated

by a first-order bivariate vector autoregression (VAR(1)) where every coefficient was changed by 30-40

error standard deviations (σ) , and the intercepts by more than 100σ. Thus, some breaks can be very

difficult to detect, even when they are massive (see e.g., Hendry, 2000). Conversely, false perceptions

of breaks can also be induced: panel e shows an apparent break associated with forecast failure when

in fact the model in question is constant, and the break is in the collinearity between the conditioning

variables–see Castle, Fawcett and Hendry (2010). The final panel, f, is a much-studied data series where

the measurement of the opportunity cost of holding money was altered by legislative fiat, and induced

dramatic forecast failure in models that failed to use the new measure (as shown), whereas models which

shifted to the new measure maintained constant parameters: see e.g., Hendry (2006).

Thus, after a shift in the probability distribution needed to calculate future expectations, agents cannot

immediately ‘know’ the new form. Rather they have a complicated learning task to undertake, involving

a signal extraction problem as to what, if anything, has shifted, when it shifted, what aspects shifted, and

by how much they have shifted, requiring many observations after the break to ascertain. The difficulties

even of learning in a relatively constant environment are well known (see e.g., Evans and Honkapohja,

2001, and Young, 2004). Yet in the time taken to learn, the distribution could well have shifted again,
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further complicating an already difficult task. Since ‘crises’ occur with impressive frequency and are

rarely anticipated, any empirical modeling and forecasting methods that do not explicitly address breaks

are bound to be inadequate. A powerful justification for using expectations from models based on theory

is that conditional expectations minimize the forecast mean-squared error. However, in the presence

of unanticipated location shifts, among others, it is no longer the case that conditional expectations are

unbiased, nor MMSE 1-step ahead predictors, as we prove in section 4 after addressing the formulation

of conditional expectations in both models and DGPs.1

3 Conditional expectations in models and DGPs

Conditional expectations are the mean of the corresponding conditional distribution of one set of vari-

ables yt conditional on another set of variables zt, defined relative to the joint distribution of all these

variables xt = (yt, zt)
′. In addition, for practical applications of conditional distributions, a distinction

has to be made between calculations in the data generation process (DGP) and those in models thereof.

This latter distinction has been discussed by various authors (see inter alia Hendry, 1995, Mizon, 1995,

Spanos, 1986) and is relevant in the present context since the conditional expectations of interest are

those of the DGP, which is unknown and so analyses have to be conducted using models as approxima-

tions. In the absence of a meta-DGP that explains all changes, the existence of structural changes entails

that the problems analyzed in this paper occur in the DGP as well as models of aspects of it. Hence,

even in the DGP, conditional expectations, despite remaining constant for periods of time, will change

and thus not provide unbiased or MMSE predictors. A further problem arises with models that do not

provide a good description of the economy. One of the potential contributors to the latter problem lies in

the necessity of omitting some relevant variables (marginalization) and conditioning on others that may

not be weakly exogenous. Further, an economic or econometric model may provide a poor description

of the data we observe and so be non-congruent (see inter alia Hendry, 1995, Mizon, 1995, Bontemps

and Mizon, 2003). Even a model that does characterize the data well can be subject to structural change,

and that is the focus of this paper.

Adopting the notation that Et[·] is the expectation operator in the DGP at time t, and Et[·] is an

expectation with respect to the model at the same time t, a simple example illustrates the issue. Consider

the DGP in which yt is generated by yt = µ + αyt−1 + εt with εt ∼ IN[0, 1] and |α| < 1, where a

theory model also asserts that {yt} is generated by yt = µ + αyt−1 + ut with ut ∼ IN[0, σ2]. This

theory model would describe a data sample Y 1T = (y1, . . . , yT ) well, and its conditional expectation

ET [yT+1|Y 1T ] = µ+ αyT as a predictor of yT+1 would perform well when the DGP remained constant,

since ET [yT+1|Y 1T ] = µ+αyT also. However, if the DGP unexpectedly changed at time T +1 such that

yt = ν+αyt−1+εt for t > T with ν 6= µ, then ET+1[yT+1|Y 1T ] = ν+αyT 6= µ+αyT = ET [yT+1|Y 1T ],
so the model now predicts badly.

In the following three sections 4, 5 and 6 the analysis is for DGPs, for which it is seen unanticipated

distribution shifts cause problems. Although there are serious problems for analysis in the context of

DGPs when there are unanticipated changes, there are even more difficulties for empirical modeling in

which the DGP is unknown and so the resulting models are incomplete and maybe badly mis-specified.

However, there are modeling strategies, such as that described briefly in section 8, which can address

these difficulties with success. We note though that even DGPs are incomplete since they do not capture

1Given that we all live in a very large world, it is highly likely that there will be a few individuals who claim to foresee any

change: e.g., Nooriel Roubini, who gained the epithet Dr Doom for his views. Some also foresee changes that never eventuate.

Hence ‘unanticipated’ refers to the views of the vast majority of individuals, not necessarily all.
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the “unknown unknowns" that distinguish the meta-DGP which explains all changes from the DGP.

4 Conditional expectations are not necessarily MMSE predictors

Since the primary causes of forecast failures are location shifts (see Clements and Hendry, 1998, 1999),

we prove that the usual claim that the conditional expectation is the unbiased minimum mean-squared

error predictor (MMSEP) is false for the case where the means of future distributions differ from the

current because unanticipated breaks occur. More precisely, given an information set, X1t−1, available

at time t − 1, the conditional expectation about a variable xt formed at time t − 1 for time t is de-

noted Et−1[xt|X1t−1], and Vt−1[et|X1t−1] denotes the corresponding conditional variance when et is the

prediction error defined in (1). The first subscript denotes the date of the distribution over which ex-

pectations are calculated, the | denotes conditioning, the subscript on xt denotes the period for which

the relevant expectation is formed, and X1t−1 denotes the conditioning information. Thus, Et[xt|X1t−1]
is a potentially different expectation, as is Et[xt+1|X1t−1], showing that three time subscripts are clearly

needed. The conditional distribution at time s of xt is denoted fs(xt|X1t−1) with s 6 t in the context of

forecasting.

Let:

et = xt − Et−1
[
xt | X1t−1

]
(1)

be the error from predicting xt by the conditional expectation of xt given X1t−1 formed at t− 1. Then:

Et−1
[
et | X1t−1

]
= Et−1

[
xt | X1t−1

]
− Et−1

[
xt | X1t−1

]
= 0 (2)

and:

Et−1
[
e2t | X1t−1

]
= Vt−1

[
xt | X1t−1

]
.

Thus, the usual claim that the conditional expectation is MMSEP seems correct.

However, when distributions shift, so that ft (·) 6= ft−1 (·), then Et[·] 6= Et−1[·] since:

Et−1
[
xt | X1t−1

]
=

∫
xtft−1

(
xt|X1t−1

)
dxt.

but:

Et
[
xt | X1t−1

]
=

∫
xtft

(
xt|X1t−1

)
dxt

Although (2) is true, that is unhelpful ex post as the realized average error will be:

Et
[
et | X1t−1

]
= Et

[(
xt − Et−1

[
xt|X1t−1

])
| X1t−1

]
= Et

[
xt | X1t−1

]
− Et

[
Et−1

[
xt|X1t−1

]
| X1t−1

]
=

∫
xt
[
ft
(
xt|X1t−1

)
− ft−1

(
xt|X1t−1

)]
dxt 6= 0 (3)

when ft (·) 6= ft−1 (·). Thus, the conditional expectation Et−1
[
xt|X1t−1

]
need not be unbiased for

Et
[
xt|X1t−1

]
, which is the relevant conditional mean at time t. Also:

σ2et = Et
[
e2t | X1t−1

]
= Et

[(
xt − Et−1

[
xt | X1t−1

])2 | X1t−1] . (4)

Hence the conditional expectation is the MMSEP of xt at t − 1, but need not be at t where it can be

biased and may not have the minimum variance.
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4.1 Static illustration

Even in the simplest setting with no dynamics, if:

xt ∼ IN
[
µt, σ

2
x

]
(5)

where xt = µt + εt then:

Et
[
xt | X1t−1

]
= µt

Et−1
[
xt | X1t−1

]
= µt−1

so that as in (3) when the mean changes, et = εt + µt − µt−1, so:

Et
[
et | X1t−1

]
= µt − µt−1 = ∇µt 6= 0 (6)

and from (4):

σ2et = Et
[
(µt + εt − µt−1)2 | X1t−1

]
= σ2x + (∇µt)

2 > σ2x (7)

Consequently, if the underlying process is wide-sense non-stationary, the conditional expectation based

on the current distribution is not an unbiased predictor of the next period mean, and could have a large

variance relative to the variance of the process.

As an alternative predictor, consider another function Gt−1
[
xt|X1t−1

]
, and analogously to (1) let:

ηt = xt − Gt−1
[
xt | X1t−1

]
. (8)

Then, for Ht−1
[
xt|X1t−1

]
= Gt−1

[
xt|X1t−1

]
− Et−1

[
xt|X1t−1

]
:

σ2ηt = Et
[
η2t | X1t−1

]
= Et

[(
xt − Gt−1[xt|X1t−1]

)2 | X1t−1]
= Et

[(
xt − Et−1[xt|X1t−1]−

{
Gt−1[xt|X1t−1]− Et−1[xt | X1t−1]

})2 | X1t−1]
= Et

[(
et − Ht−1[xt|X1t−1]

)2 | X1t−1]
= Et

[
e2t | X1t−1

]
+
(
Ht−1[xt|X1t−1]

)2 − 2Et [etHt−1[xt|X1t−1]]
= σ2et +

(
Ht−1[xt|X1t−1]

)2 − 2Et [etHt−1[xt|X1t−1]]
When Et 6= Et−1, the best ex post predictor of xt in MSE terms need not be Et−1[xt|X1t−1] as it is

possible for σ2ηt < σ2et . That cannot occur when Et = Et−1 as then et = εt and Et[εtHt−1[xt|X1t−1]] = 0,

whereas more generally (6) shows:

Et
[
etHt−1[xt|X1t−1] | Xt−1

]
= Et

[
(∇µt + εt)

(
Gt−1[xt|X1t−1]− µt−1

)
| X1t−1

]
= ∇µt

(
Gt−1[xt|X1t−1]− µt−1

)
(9)

Again in the special case of (5) let:

Gt−1 [xt | Xt−1] = µt−1 + δ

which might be an intercept-corrected forecast, then:

Ht−1 [xt | Xt−1] = δ
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and so:

Et [etHt−1 [xt | Xt−1]] = δ (µt − µt−1) = δ∇µt.

Consequently:

σ2ηt = σ2et + δ
2 − 2δ∇µt (10)

so σ2ηt < σ2et if (say) δ > 0 and:

δ − 2∇µt < 0. (11)

Hence, when ∇µt > 0 then σ2ηt < σ2et , provided that δ > 0 and δ < 2∇µt. Therefore, if the

modification to the conditional mean is in the correct direction, but does not seriously overshoot, then the

it results in a lower MSE than the conditional mean predictor. Note that when ∇µt > 0, then σ2ηt > σ2εt
whenever the mean adjustment is in the wrong direction, i.e., δ < 0. Alternatively, when ∇µt < 0, then

σ2ηt < σ2et provided that δ < 0 and |δ| < 2|∇µt|. In summary, it follows that σ2ηt < σ2et whenever ∇µt
and δ have the same sign (i.e., the modification is in the correct direction) and |δ| < 2|∇µt| (i.e., the

modification is not too large).

4.2 Dynamic illustration

As a more realistic illustration of these formulae, consider a stationary first-order autoregressive DGP:

yt = γ + ρyt−1 + εt where εt ∼ IN
[
0, σ2ε

]
(12)

with |ρ| < 1 that holds for t = 1, 2, . . . , T − 1. Then expectations are constant over that period, so that:

E [yt] = µ = γ + ρE [yt−1] + E [εt] = γ + ρµ (13)

and hence µ = γ/(1−ρ) is the equilibrium mean of {yt} over that sample. The conditional expectation,

given the history of the process is:

E [yt | yt−1] = γ + ρyt−1 + E [εt | yt−1] = γ + ρyt−1 (14)

and in this setting, E [yt|yt−1] is an unbiased, MMSE predictor of yt:

yt − E [yt | yt−1] = εt

with:

E [εt] = 0 and V [εt] = σ2ε

which is the smallest obtainable.

Next, for t = T, T + 1, . . . the structural change is denoted:

yt = γ∗ + ρ∗yt−1 + εt (15)

where εt ∼ IN
[
0, σ2ε

]
as before (changing that distribution adds to the conclusion) and |ρ∗| < 1 still.

Now expectations must be dated to avoid incorrect calculations, so we write ET−1 [·], ET [·] etc., where

the subscripts denote the pre-break and post-break distributions determined by (12) and (15) respectively.

From (15):

ET [yT ] = γ∗ + ρ∗ET [yT−1] + ET [εT ] = γ∗ + ρ∗µ (16)
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which in general is not equal to µ if either parameter differs between (12) and (15).2 Moreover:

ET+1 [yT+1] = γ∗ + ρ∗ET+1 [yT ] + ET+1 [εT+1] = γ∗ + ρ∗ (γ∗ + ρ∗µ) = γ∗ (1 + ρ∗) + (ρ∗)2 µ (17)

which keeps changing, and although it converges on µ∗ = γ∗/(1− ρ∗), does not equal µ∗ for a number

of periods.

However, at T − 1, it is not known that the break will occur, so agents forming conditional expecta-

tions about yT given yT−1 must perforce use the distribution at that time, leading to:

ET−1 [yT | yT−1] = γ + ρyT−1 + ET−1 [εT | yT−1] = γ + ρyT−1 (18)

Thus, their conditional expectations error is:

yT − ET−1 [yT | yT−1] = γ∗ + ρ∗yT−1 + εT − γ − ρyT−1
= (γ∗ − γ) + (ρ∗ − ρ) yT−1 + εT
= ∇γ +∇ρ yT−1 + εT .

On average (i.e., unconditionally), that error will transpire to be:

ET [yT − ET−1[yT |yT−1]] = (γ∗ − γ) + (ρ∗ − ρ)ET [yT−1] = ∇γ +∇ρµ

so the prediction is biased. Moreover, unless the agents are omniscient and instantly discover their

mistake (somehow ‘learning’ two parameters from the one error), then they will make a similar mistake

in the next period, so the bias persists. For example, if agents keep the in-sample parameter values, but

update the data, so use:

ET−1 [yT+1 | yT ] = γ + ρyT + ET−1 [εT+1 | yT ] = γ + ρyT

this leads to the average error:

ET+1 [yT+1 − ET−1 [yT+1 | yT ]] = ET+1 [(γ∗ − γ) + (ρ∗ − ρ) yT + εT+1]
= ∇γ +∇ρ (γ∗ + ρ∗µ) .

If expectations were undated, then it is unclear what E [yT+1] might be, but if any aspect of the

in-sample model’s parameters has shifted, the correct unconditional expectation is never:

E [yT+1] =
γ∗

1− ρ∗ nor E [yT+1] =
γ

1− ρ.

Now consider the alternative predictor to the conditional mean given by KT−1[yT |yT−1] and analo-

gously to (1) and (8), define:

ψT = yT − KT−1[yT |yT−1].

Let:

JT−1[yT |yT−1] = KT−1[yT |yT−1]− ET−1[yT |yT−1]

and

ut = yT − ET−1[yT |yT−1] = ∇γ +∇ρ yT−1 + εT
2If the process remains stationary then it would be possible for the equilibrium to remain constant, but it would need both

of γ∗ and ρ∗ to change with 0 < γ∗/γ = (1− ρ∗)/(1− ρ) <∞.
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so that for ET [u
2
T |yT−1] = ET [u2T ] = σ2uT :

σ2ψ
T
= ET

[
ψ2T | yT−1

]
= ET

[
(yT − KT−1[yT |yT−1])2 | yT−1

]
= ET

[
(yT − ET−1[yT |yT−1]− {Kt−1[yT |yT−1]− ET−1[yT |yT−1]})2 | yT−1

]
= ET

[
(uT − JT−1[yT |yT−1])2 | yT−1

]
= σ2uT + (JT−1[yT |yT−1])

2 − 2ET [uT JT−1[yT |yT−1]] .

When ET 6= ET−1, the best ex post predictor of yT in MSE terms need not be ET−1 [yT | yT−1]
as it is possible for σ2ψT < σ2uT . That cannot occur when ET = ET−1 as then σ2uT = σ2ε and

ET [uT JT−1[yT |yT−1]] = ET [εT JT−1[yT |yT−1]] = 0, whereas in general:

ET [(uT JT−1[yT |dyT−1]) | yT−1]
= ET [(∇γ +∇ρ yT−1 + εT ) (KT−1[yT |yT−1]− (γ + ρyT−1)) | yT−1]
= ET [uTKT−1[yT |yT−1] | yT−1]− γ∇γ − (ρ∇γ + γ∇ρ)yT−1 − ρ∇ρy2T−1
6= 0.

In the case of (12) let:

KT−1 [yT | yT−1] = γ + ρyT−1 + δ

which might be an intercept-corrected forecast, then:

JT−1 [yT | yT−1] = δ

and so:

ET [uT JT−1 [yT | yT−1]] = δET [uT | yT−1] = δ(∇γ +∇ρ yT−1).

Hence:

σ2ψ
T
= σ2uT + δ

2 − 2δ(∇γ +∇ρ yT−1)

which for example illustrates that an intercept adjusted forecast might have a lower forecast error variance

than the conditional mean since σ2ψT < σ2uT is possible. Noting that (∇γ + ∇ρ yT−1) is the forecast

error of the conditional mean predictor (apart from εT which has a zero mean) it is clear that this result

is analogous to (10) of the static case.

The difficulties described in this section arise in the DGP and do not involve any subjective proba-

bilities that might arise in an empirical model. Hence when attention is turned to the practical problem

of forecasting using empirical models the difficulties multiply. For example, the possibility exists that a

badly mis-specified model might by chance forecast accurately. However, a biased forecast is unlikely

to be the most rational basis for forecasting. We now consider a further implication of these results.

5 The law of iterated expectations and unanticipated change

When expectation distributions are unaltered the law of iterated expectations often is written:

Ez [Ey [y | z]] = Ey [y] (19)
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and proved by:

Ez [Ey [y | z]] =
∫
Z

(∫
Y
yf (y|z) dy

)
g (z) dz =

∫
Z

∫
Y
yf (y|z) g (z) dzdy

=

∫
Y
y

(∫
Z
h (y, z) dz

)
dy =

∫
Y
yp (y) dy = Ey [y]

where h(y, z) = f(y|z)g(z) = p (y)ψ (z|y) is the joint distribution of (y, z) and:∫
Z
h (y, z) dz = p (y) .

When the variables correspond to a common set at different dates drawn from the same distribution,

then (19) becomes:

Ext
[
Ext+1 [xt+1 | xt]

]
= Ext+1 [xt+1] .

The formal derivation is close to that in (19), namely:

Ext
[
Ext+1 [xt+1 | xt]

]
=

∫
xt

(∫
xt+1

xt+1f (xt+1|xt) dxt+1

)
p (xt) dxt

=

∫
xt

∫
xt+1

xt+1f (xt+1|xt) p (xt) dxtdxt+1

=

∫
xt+1

xt+1

(∫
xt

h (xt+1, xt) dxt

)
dxt+1

=

∫
xt+1

xt+1p (xt+1) dxt+1 = Ext+1 [xt+1] (20)

Thus, if the distributions remain constant, the law of iterated expectations holds.

However, the law of iterated expectations need not hold when distributions shift, as the factorization

h (xt+1, xt) = f (xt+1|xt) p (xt) of the joint density is not achieved by the law of iterated expectations.

This problem arises when the distribution shifts between t and t+ 1 as follows. First, note that:

Ext [xt+1 | It] and Ext [xt+1 | It−1]

are different entities when It and It−1 are information sets at t and t − 1 respectively. Similarly when

distributions shift we have:

Ext [xt+1 | It] 6= Ext+1 [xt+1 | It]

the former of these being needed for an unbiased conditional prediction as shown in the previous section.

Now, however:

Ext
[
Ext+1 [xt+1 | xt]

]
6= Ext+1 [xt+1]
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since:

Ext
[
Ext+1 [xt+1 | xt]

]
=

∫
xt

(∫
xt+1

xt+1fxt+1 (xt+1|xt) dxt+1

)
pxt (xt) dxt

=

∫
xt

∫
xt+1

xt+1fxt+1 (xt+1|xt) pxt (xt) dxtdxt+1

=

∫
xt+1

xt+1

(∫
xt

fxt+1 (xt+1|xt) pxt (xt) dxt

)
dxt+1

6=
∫
xt+1

xt+1pxt+1 (xt+1) dxt+1 = Ext+1 [xt+1] (21)

The reason the law of iterated expectations does not hold in this case is that fxt+1 (xt+1|xt) pxt (xt) 6=
fxt+1 (xt+1|xt) pxt+1 (xt) = ht+1 (xt+1, xt) unlike the situation in (20) where there is no shift in distrib-

ution.

Thus, when distributions shift over time as in (5) expectations are affected by their timing:

Ext [xt+1|xt] = µt 6= Ext+1 [xt+1] = µt+1

Ext+1 [xt+1|xt] = µt+1

noting that xt and xt+1 are independent in this example. Thus in this case we have:

Ext
[(
Ext+1 [xt+1|xt]

)]
= Ext [µt] = µt 6= µt+1 = Ext+1 [xt+1] .

Equally, for the analogous model to (12):

Ext [xt+1|xt] = γ + ρxt 6= Ext+1 [xt+1] = γ∗ + ρ∗µ∗

and

Ext
[(
Ext+1 [xt+1|xt]

)]
= Ext [γ

∗ + ρ∗xt] = γ∗ + ρ∗µ 6= Ext+1 [xt+1] = µt+1

when µ = γ/(1− ρ) and µ∗ = γ∗/(1− ρ∗). Finally note that with consistent dating it remains true that:

Ext [(Ext [xt+1 | xt])] = Ext [xt+1] = µt.

More generally, there are two sources of updating from, say, Ext [xt+1|xt−1] to Ext+1 [xt+1|xt]: new

information is embodied in xt−1 becoming xt; and shifts in the distribution implied by a change from

Ext to Ext+1 . Much of the economics literature (see e.g., Campbell and Shiller, 1987) assumes that the

former is an unanticipated change, written as E [xt+1|xt] − E [xt+1|xt−1], which is an innovation, νt,
and the relevant information becomes known one period later. That is not true of the latter, where the

new distribution has to be learned over time–and may have shifted again in the meantime. Even if the

distribution, denoted ft+1 (xt+1|xt), became known one period later:

Ext+1 [xt+1 | xt]− Ext [xt+1 | xt−1] = Ext+1 [xt+1|xt]− Ext+1 [xt+1|xt−1]
+
(
Ext+1 [xt+1|xt−1]− Ext [xt+1|xt−1]

)
= νt +

∫
xt+1ft+1 (xt+1|xt−1) dxt+1 −

∫
xt+1ft (xt+1|xt−1) dxt

= νt + (µt+1 − µt)

where the last line uses (5). In practice, both means need to be estimated, a nearly intractable task for

agents–or statisticians and econometricians–when distributions are shifting.
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6 Bellman principle of optimality and unanticipated change

Analogous to the law of iterated expectations not holding, the recursive method of solving stochastic

inter-temporal optimization problems, known as the Bellman principle of optimality (see Bellman, 1957),

does not apply when there are unanticipated changes. The basic principle is described by Kreps (Kreps,

1990, page 798) in the following way:

If a strategy is optimal for each point in time at that point in time, given that an optimal strategy

will be used thereafter, then the strategy is optimal.

However, when the future distribution of the state variables xt in a non-stationary context is not

known because it is subject to unanticipated changes the optimal strategies in the future are likely to be

different from the present perception of them. Hence the existence of an invariant optimal strategy over

the whole time horizon is unlikely in a potentially ever changing environment.

Consider a decision problem in which at time t an action at has to be taken from a set of feasible

actions A(xt) that depends on the observed state variable (e.g. state of the economy) xt. Initially let xt
be non-stochastic and determined according to xt = ft(xt−1, at−1). Then for the value function V (xt)
over the horizon h with discount factor 0 < β < 1 and return function r(xt, at) following decision at
the decision problem can be written as:

V (xt) = max
aτ∈A(xτ )

t+h∑
τ=t

βτr(xτ , aτ ) (22)

Noting that the first decision at can be separated from all future decisions (22) can be re-written as:

V (xt) =

{
r(xt, at) + max

aτ∈A(xτ )
β

t+h∑
τ=t+1

βτ−1r(xτ , aτ )

}
thus revealing the recursive nature of the decision problem and leading to the Bellman equation for this

non-stochastic discrete case:

V (xt) = max
at∈A(x t)

{r(xt, at) + βV (xt+1)} (23)

In many decision problems of this type the state variable xt is stochastic and so its future values are

unknown and replaced by expectations. Let F (λ) = Prob(xt+i ≤ λ |xt, at) for i = 1, 2, ...h be the

conditional distribution function for xt+i then when xt is stationary

V (xt) = max
at∈A(x t)

{r(xt, at) + βE[V (xt+1) | xt, at]}.

However, when F (λ) is subject to unanticipated changes, as is commonly the case in many areas of

application such as economics, the expectation must also be dated yielding:

V (xt) = max
at∈A(x t)

{r(xt, at) + βEt[V (xt+1) | xt, at]}. (24)

Note that at time t the future distributions and hence expectations are not known and so the expectation in

(24) can only be Et. Since Et+h 6= Et with unanticipated change the decisions arising from the Bellman

equation (24) are not necessarily optimal precisely as with the law of interated expectations.

The main results of Sections 4, 5 and 6, namely that when distributions shift the conditional expecta-

tion is not the unbiased MMSE predictor and the law of iterated expectations plus the Bellman equation

do not hold, mean that the mathematical derivations commonly underlying inter-temporal optimization

theory are invalid if any location shifts have occurred.
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7 Implications for economic analysis and modeling

The analysis in the previous sections was for DGPs, but when we consider economic analysis and mod-

eling economic theory and empirical models are the available entities since DGPs are unknown. Hence a

major objective in practice must be to have the best available theory, model or forecast for the particular

problem being analysed. Economic theories, models and forecasts that are relevant to the phenomena of

interest, reliable in that they are not sensitive to minor variations (e.g. as a result of not having exploited

all available relevant information), and robust in the face of unanticipated changes, are important ingre-

dients in economic analysis and modeling, including economic policy analysis. We now describe some

areas of economic analysis and modeling where unanticipated changes cause difficulties. Ultimately

though, when the DGP is not known what is required of theoretical and empirical models is that they be

the best available for analyzing the phenomenon of interest.

It is notoriously difficult to forecast economic variables with the many forecast failures serving to

emphasize that economies are non-stationary and evolving. There is a long history of economic models

suffering forecast failure and being out-performed by so-called ‘naive devices’. A major reason for this

failure is the fact that almost no forecasting models allow for unanticipated location shifts (changes in

the previous means of the variables under analysis), although these clearly occur empirically.

Forecast failure is due to unanticipated location shifts (see Clements and Hendry, 1999, 1998). Lo-

cation shifts induce systematic mis-forecasting in all forms of equilibrium-correction models, which

comprise most macro-econometric systems in use. Conversely, every parameter in the data generation

process can be shifted without any noticeable effect on the data or a model thereof when there is no

location shift as illustrated in section 2. Similarly, any location shift effect can be created by many dif-

ferent combinations of DGP parameters shifting, but which ones changed may not be discernable from

the evidence till long after the occurrence of forecast failure. Thus, the verisimilitude of a model cannot

be reliably checked by its forecasting success or failure.

Systematic mis-forecasting can be mitigated by using the differences of the econometric system,

retaining precisely the same estimates, even when the DGP parameters involved have changed. The

costs of unnecessary differencing when there is no location shift are relatively small. In both cases, the

policy implications of the structural system are the same, but may or may not be useful depending on the

unknown source and form of the location shift. In neither case will the systems considered here, or their

differences, forecast future location shifts: a different class of model seems to be needed for that, based

on different information (see e.g., Castle et al., 2010, Castle, Fawcett and Hendry, 2011). Nevertheless,

at least avoiding systematic forecast failure is crucial if policy is to be well based on what the future

might bring forth.

An implication of the results in sections 4 and 5 is that the existence of unanticipated changes leads

to difficulties for models based on inter-temporal optimization and conditional expectations. DSGE

models have rational expectations (RE), construed as the pre-existing conditional expectation, built into

them and this presents a problem. Hall (1978) pointed out an important implication of RE, namely that

et+1 = xt+1 − Et [xt+1|Xt] is unpredictable given Xt, and so when there are structural breaks serious

forecast errors will arise. This presents a problem for economic theory-led models, such as DSGE

models, whenever there is a structural change.

In practice, no agent can possibly know even the current distribution to compute its conditional ex-

pectation, which instead has to be estimated in some way from the information available to that agent.

That requires a minimum of a sample of observations, formulated in a model, from which the esti-

mated conditional expectation is then calculated–and when distributions are shifting, that task borders

on the impossible. Historically, most of the theory of rational expectations was developed for stationary
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processes, and while learning introduced a form of non-stationarity as in Evans and Honkapohja (2001),

the theory has not been updated to a wide-sense non-stationary world, partly because it is not obvious

what a rational forecast would be when location shifts occur, as they manifestly do. Since their deriva-

tions rely on solving inter-temporal optimization problems, assuming agents form their expectations

of the unknown future events using their current conditional expectations, DSGEs must be intrinsically

non-structural when the distributions underlying those expectations alter. Thus, the Lucas (1976) critique

applies automatically to the basic form of DSGE because their very derivations necessitate that expecta-

tions distributions never change. Muellbauer (2009) presents a similar critique of the use of DSGE with

rational expectations in the particular context of personal sector consumption and housing.

The Bellman optimality principle has been applied in many areas of economic theory (see e.g. Stokey

and Lucas, 1989 for an early overview). Areas of application include: consumption theory, the inter-

temporal capital asset pricing model of Merton (1973), resource extraction (see e.g., Gilbert, 1979),

public finance (see e.g., Kydland and Prescott, 1980), industrial organization (see e.g., Doraszelski and

Pakes, 2007), and many others. The results in section 6 imply that unless these models can account for

the unanticipated changes that affect most areas of the economy they too will fail to capture a common

feature of observed behaviour.

However, economic analysis and economic policy analysis require more than just capturing a mean

shift. Tempting though it may be to identify variables that ‘explain’ such shifts in-sample and include

them in the model, this will improve forecasts only if it is possible to accurately forecast their shifts.

A structural model is required for reliable analysis, but more realistically, one might seek an ability to

quickly: (a) identify a new regime’s characteristics, and (b) develop a model of that regime. Precisely

how this can be done within the framework of models similar to DSGEs is unclear, but the modeling

strategy outlined in the next section may be more promising in a world of intermittent unanticipated

location shifts. Further discussion of these and related points is contained in Hendry and Mizon (2011b).

8 Modeling methodology

Although there are alternative ways of developing empirically well founded and policy-relevant mod-

els, there are few that have been able to successfully deal with the problems arising from unanticipated

change described above. Given that unanticipated changes are by definition unknown before they occur

it is imperative to have methods that react quickly once the changes have taken place. One approach

to this problem that has proved to be highly successful is the incorporation of impulse indicator satura-

tion (IIR) (see Hendry, Johansen and Santos, 2008) in a general-to-simple model selection procedure.

General models designed to embrace a range of theories, different functional forms, and provide a good

characterization of the data, including possible regime changes, are essential – no current theories are

structural in the sense of being invariant to all relevant regime change. Attention can then be paid to

valid conditioning and marginalization, which is crucial, particularly when models are being developed

for policy analysis. Equally, it provides a framework to distinguish behaviourally relevant dynamics

from proxy dynamics that often arise to accommodate regime change and expectations. The choice of

the general unrestricted model (GUM) is very important, and involves much human input based on ex-

perience, relevant theory, institutional knowledge, the purpose for which the modeling is being done,

and the known properties of the data, including its quality. Once the GUM has been specified, the major

task is that of selecting a model from the large number of possible sub-models that are embedded in the

GUM, such that the final selection is coherent with the data characteristics (congruent), and achieves

this parsimoniously at least as well as the alternative models within the GUM (encompassing). By fo-
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cusing on selecting variables rather than models, recent developments in the automation of this selection

process have produced remarkable results, extending to handling potentially more candidate variables

than observations, and jointly selecting variables, functional forms, multiple breaks, and data contamina-

tion. Hendry and Johansen (2011) show that if the theory variables are not selected over when the theory

model is a complete and correct representation of the data evidence, then the distributions of the para-

meter estimates after selection, possibly over more candidate variables than observations, are identical

to those obtained by direct estimation of the theory model. Thus, the search costs are essentially zero.

Conversely, if the theory model is incomplete or incorrect, but a sufficiently general GUM nests the DGP,

then a viable representation of that DGP will be retained after selection even when the theory variables

are maintained. Finally, if the theory is incomplete and the GUM does not nest the DGP, selection can

still deliver a far better model, avoiding serious non-constancies and providing smaller MSEs for the

parameters of interest in the correct specification (see Castle and Hendry, 2010). Consequently, selec-

tion provides a near Pareto optimal approach for all these realistic settings. For general discussions of

the achievements of the new approach to automatic model selection, see inter alia, Castle, Doornik and

Hendry (2011, 2009). The results of this large body of research are embodied in the software package

Autometrics (see Doornik, 2009). Hendry and Mizon (2011a) provide an example of this approach to

modeling in the context of a re-examination of Tobin’s model of the demand for food in the USA (Tobin,

1950) using an extended data set.

9 Conclusions

Expectations of future events are important in many areas of human behaviour and the natural environ-

ment. However, almost none of the relevant time series is stationary, either weakly or strictly: distribu-

tions shift. This causes problems for the analysis of these series. In particular, it cannot be proved that

conditional expectations based on contemporaneous distributions are minimum mean-square error 1-step

predictors when unanticipated breaks occur, and consequentially, the law of iterated expectations and the

Bellman equation fail inter-temporally. Although no model is perfect, choosing amongst the available

models on the basis of theory coherence, no matter how inconsistent the result is with empirical evidence,

has little to recommend it for policy analysis and forecasting. Modeling is an evolutionary process, and

it is important to have criteria that enable selection to lead to models that will survive challenges from

all sources of information, rather than models that become extinct following successive failures to ac-

curately capture the unfolding of events in the economy. To offset the negative results on expectations,

we have briefly described a modeling methodology that offers exciting prospects, and has an excellent

record to date.
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