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Abstract

Although both direct multi-step ahead forecasting and iterated one-step ahead forecasting are

two popular methods for predicting future values of a time series, it is not clear that the direct

method is superior in practice, even though from a theoretical perspective it has lower Mean

Squared Error (MSE). We first show that both methods are identical – if produced from the

same fitted model – when the information set is semi-infinite. Then we show how discrepancies

can arise when the sample is finite. Formulas for forecast error are derived, which are useful for

determining the real MSE when the forecasting model is misspecified.
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1 Introduction

There is considerable interest among econometricians in forecasting time series, and both direct

and iterated forecasting methods play a prominent role. Relevant literature includes Findley

(1983, 1985), Weiss (1991), Tiao and Xu (1993), Lin and Granger (1994), Tiao and Tsay (1994),

Clements and Hendry (1996), Bhansali (1996, 1997), Kang (2003), Chevillon and Hendry (2005),

and Schorfheide (2005). A recent study by Marcellino, Stock, and Watson (2006) made compar-

isons between the direct and iterated methods, with the surprising conclusion that in practice the

iterated method often performed better. Extensions of these results appear in Proietti (2011),

which considers a particular class of ARIMA models as the basis of the forecast functions.

To frame our discussion, we must highlight that either method – direct or iterated – involves not

only the use of forecast weights (or filters) peculiar to each method, but also model parameters fitted
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accordingly. Thus, the model parameters used in the direct method and the iterated method could

differ in practice. Hence, discrepancies in performance can arise from several sources: (1) different

models being used; (2) different fitting methods being used; (3) different forecasting functions being

used. By the third point, we refer to forecasting functions that differ even when the same models

and same parameter estimates are plugged in. To focus our results initially, we focus on this

scenario – namely that the models and fitting methods (Gaussian MLE in this case) are identical,

so that only the forecast functions may differ.

Given this framework, we wish to answer the question: in general, when are iterated one-

step ahead forecasts identical with multi-step ahead forecasts? To make the problem well-posed,

we consider forecasting formulas arising from difference stationary time series models (including

ARIMA models, for example) such that the resulting forecasts – under the assumption that the

Data Generating Process (DGP) has been correctly identified – have minimal Mean Squared Error

(MSE) given an information set not involving future values of the time series. For difference

stationary time series we provide explicit forecasting formulas for either procedure, for both a semi-

infinite information set and a finite information set. We also derive the forecast error processes

and determine the MSEs for each case, allowing for model misspecification and parameter error

(although uncertainty in parameter estimates is not quantified).

In the case of a semi-infinite past, the multi-step and iterative methods are identical – the

semi-infinite concurrent filters in each case are algebraically the same. Essentially this is due to

a property of nested conditional expectations. When a finite past is utilized, the forecast error

is mean zero in both cases, and explicit expressions for it give insight into the MSEs for either

method. We present the main mathematical results in Section 2. The numerical results of Section

3 suggest that the semi-infinite case is indicative of the general situation, in that the direct and

iterated forecast functions differ very little in the finite past case when the sample size is above

10 or so. This indicates that the main discrepancies in the methods – assuming the same model

is used, which is common enough – must arise due to the difference in fitting methods. We make

some further comments on this aspect in Section 4.

2 Mathematics of Direct and Iterative Forecasting

Some of the following material can be found in a variety of time series references, but we assemble

the mathematics here with a coherent notation. A related treatment of direct multi-step ahead

forecasting can be found in McElroy and Findley (2010). We begin by focusing on the case of a

semi-infinite past as the information set, and then treat a finite past in the following subsection.
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2.1 Semi-infinite Past

Suppose that the time series {Xt} is difference stationary with operator δ(B), such that Wt =

δ(B)Xt is covariance stationary with mean zero, and hence has a causal Wold representation

Wt =
∑

j≥0

ψjεt−j = Ψ(B)εt,

where the process {εt} is uncorrelated with variance σ2. This type of causal difference linear process

includes all ARIMA and SARIMA processes, and is fairly general. Suppose that at time t we are

interested in generating h-step ahead forecasts based on present and past information, denoted by

Xt: = {Xs : s ≤ t}. The problem is to compute E[Xt+h|Xt:] for some h > 0 under a Gaussian

assumption – or equivalently, to find the minimal MSE linear estimate of Xt+h given data up to

time t. This optimal estimate – denoted by X̂t+h|t – can be expressed as a causal filter operating

on the {Xt} time series, called Υh(B) =
∑

j≥0 υjB
j , namely X̂t+h|t = Υh(B)Xt. Because this filter

works in an optimal fashion, it may be called the Direct multi-step ahead forecasting filter (cf.

Proietti, 2011). In contrast, we might consider applying Υ1(B) repeatedly, each time appending

the previous forecasts to the end of the series, and thereby attaining an Iterated multi-step ahead

forecasting filter. This will be denoted by Πh(B) =
∑

j≥0 π
(h)
j Bj , and is described below.

We begin the treatment with some results from Bell (1984) on nonstationary stochastic pro-

cesses. Let δ(z) = 1−∑d
j=1 δjz

j , and its reciprocal power series is ξ(z) = 1/δ(z) =
∑

j≥0 ξjz
j . One

can recursively solve for the {ξj} via ξ0 = 1 and ξj =
∑min(d,j)

k=1 δkξj−k for j ≥ 1. Moreover, certain

time-dependent coefficient functions Aj,t lying in the null space of δ(B) are defined via

Aj,t = ξt−j −
d−j∑

k=1

δkξt−j−k

for j = 1, 2, · · · , d and t ≥ 1. Then the process {Xt} can be represented at time t+h for any h ≥ 0

via

Xt+h =
d∑

j=1

Aj,d+hXt+j−d +
h−1∑

j=0

ξjWt+h−j .

Then the direct forecast filter is given by

Υh(B) =
d∑

j=1

Aj,d+hBd−j +
h∑

k=1

ξh−k[Ψ]∞k (B)F kδ(B)Ψ−1(B). (1)

Here the bracket notation is used to refer to that portion of the power series that is retained, namely

[Ψ]ba(B) =
∑b

j=a ψjB
j for integers a and b. The derivation is sketched in McElroy and Findley

(2010), but to prove its optimality it suffices to show that the error process is orthogonal to Xt:.
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The forecast error is

εt = Xt+h −Υh(B)Xt =
h−1∑

j=0

ξj

(
F h−j − [Ψ]∞h−j(B)F h−jΨ−1(B)

)
Wt

= F h
h−1∑

j=0

ξjB
j [Ψ]h−j−1

0 (B)Ψ−1(B)Wt.

It can be shown that
∑h−1

j=0 ξjB
j [Ψ]h−j−1

0 (B) = [Ψ/δ]h−1
0 (B) using simple algebra. Now when

the filter exactly matches the DGP, we have Ψ−1(B)Wt = εt, so that the error process is εt =

[Ψ/δ]h−1
0 (B)εt+h, which only depends on future innovations; hence the error process is orthogonal

to Xt:. More generally, our forecasting model may be misspecified such that

V ar(εt) =
1
2π

∫ π

−π

|[Ψ/δ]h−1
0 (z)|2

|Ψ(z)|2 f̃(λ)dλ, (2)

where z = e−iλ and f̃ is the true spectral density of {Wt}.
Now evaluating (1) for h = 1 produces the one-step ahead direct forecast filter. Applying its

iterative definition yields

Πp+1(B) = υ0Πp(B) + υ1Πp−1(B) + · · ·+ υp−1Π1(B) + F p[Υ1]
∞
p (B).

This is initialized with Π1(B) = Υ1(B). Iterative forecasting produces an h-step ahead estimate

X̃t+h|t = Πh(B)Xt, and it is not initially obvious whether this performs as well as the Direct

forecast filter. Now Πh(B) can be expressed compactly in terms of Υ1(B) as follows. Define the

degree k polynomials pk(B) recursively via p0(F ) = 1 and

pk+1(F ) =
k∑

j=0

υjpk−j(F ) + F k+1.

For example, p1(F ) = υ0 + F and p2(F ) = υ2
0 + υ1 + υ0F + F 2, etc. Then

Πh(B) = F h + ph−1(F ) [Υ1(B)− F ] . (3)

The proof of (3) is by induction. But this formula is also convenient, because it allows quick

calculation of the forecast error process. The iterated forecast error is

ηt = Xt+h −Πp(B)Xt =
(
F h −Πp(B)

)
Xt = ph−1(F )FΨ−1(B)Wt.

In the case that the filter exactly matches the DGP, the error process ηt = ph−1(F )εt+1, which is

orthogonal to Xt:. Hence the iterated forecasts are also optimal, and by uniqueness of the Gaussian

conditional expectation (i.e., the MSE optimal linear estimate) we must have Υh(B) = Πh(B). In

fact, we have

εt = ηt + (Υh(B)−Πh(B))Xt
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with the two quantities on the RHS orthogonal (this is because ηt is orthogonal to all linear functions

of Xt:). Thus the optimal MSE is equal to V ar(ηt) plus a non-negative quantity; by optimality,

this quantity must be zero, and it follows that Υh(z) = Πh(z) almost everywhere.

A second derivation of the result stems from probability theory alone. From Theorem 1.2 of

Durrett (1996, p.226) within a conditional expectation we can always additionally condition on a

larger information set, since “the smaller σ-field always wins.” Thus for h > 1

E[Xt+h|Xt:] = E[E[Xt+h|Xt+h−1:]|Xt:]

= E[Υ1(B)Xt+h−1|Xt:]

=
h−2∑

j=0

υjE[Xt+h−1−j |Xt:] + [Υ1]
∞
h−1(B)Xt.

From here we use induction on h to prove that Πh(B)Xt = E[Xt+h|Xt:].

Comparing the alternative expressions for the error processes εt and ηt yields

[Ψ/δ]h−1
0 (B)F h−1 = ph−1(F ),

which is not easy to show algebraically (and is not obvious). In applications, we may want to

compute (2) for a given model and arbitrary DGP. In this case the LHS formula [Ψ/δ]h−1
0 (B) is

more convenient to work with, since the power series representation of Ψ/δ(z) up to a finite number

of terms is easily computed in R. The recursive polynomials ph−1 require knowledge of the first

h− 2 coefficients of Υ1(B), which requires a separate calculation.

2.2 Finite Past

Here we maintain the same basic assumptions on the process, but suppose that we are interested

in forecasts based on a finite information set X1:n, where n denotes the present observation time,

as well as the sample size. The conditional expectation E[Xn+h|X1:n] is the target of the direct

approach, and we begin by presenting matrix formulas for forecasting and the covariance of the

forecast error process. Although the treatment is standard (and some of the results can be found

in McElroy (2008) and other literature), we review all derivations for a cohesive treatment.

In the finite-sample treatment it is not necessary to utilize a causal Wold representation for

the differenced data process; we only require that the covariance function γh of the {Wt} process

be well-defined. We require the following notation. Let ∆m be the (square) differencing matrix

of dimension m such that the upper left d × d block is an identity matrix and the lower m − d

rows are given by the coefficients of δ(z) appropriately shifted. The jkth entry of ∆m for j > d

is given by the j − kth coefficient of δ(z) (by convention, a coefficient of δ(z) with index less than

zero or greater than d is just equal to zero). This differencing matrix is unit lower triangular, as is

its inverse. Likewise, the Toeplitz covariance matrix of dimension m for {Wt} is denoted Σm, i.e.,

[Σm]jk = γj−k.
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As a preliminary, we have a representation of X1:n in terms of initial values given as follows.

Interpreting X1:n as a column vector, we have ∆nX1:n = [X ′
1:d,W

′
d+1:n]′. Here subindices refer

to the collection of corresponding random variables, collected into a column vector. The first d

values X1:d are referred to as initial values in the forecasting and signal extraction literature. The

distribution of these initial values is typically not included in time series models, being an unknown

quantity, and it is common to assume the initial values are uncorrelated with the increment process

{Wt}. This assumption is ubiquitous in the time series forecasting literature, and is implicit in all

State Space Smoothing algorithms for forecasting and signal extraction. When deriving forecasting

results under this assumption, the filters do not depend on the distribution of the initial values,

and moreover the forecast error process is independent of the initial values themselves, which is a

nice feature.

Let X̂
(D)
n+h|1:n = E[Xn+h|X1:n] be the optimal direct h-step ahead forecast. We first derive this

formula and its properties, and then discuss the iterated forecast formulas. Letting en+h denote a

vector of length n + h that is zero except for a unit in the last entry, we claim that

X̂
(D)
n+h|1:n = e′n+h∆−1

n+h




1d 0d×n−d

0n−d×d Σn+h−d

[
1n

0h×n

]
Σ−1

n−d


 ∆n X1:n. (4)

Optimality is defined as having the property that the forecast error is uncorrelated with the sample,

which for Gaussian processes implies MSE optimality. We proceed to compute the forecast error

X̂
(D)
n+h|1:n −Xn+h. We first note that due to the special structure of ∆n+h, we have ∆n[1n 0n×h] =

[1n 0n×h]∆n+h. Therefore the direct forecast error X̂
(D)
n+h|1:n −Xn+h equals

e′n+h∆−1
n+h




1d 0d×n−d

0n+h−d×d Σn+h−d

[
1n

0h×n

]
Σ−1

n−d


 [∆n 0n×h]X1:n+h − e′n+hX1:n+h

= e′n+h∆−1
n+h







1d 0d×n−d

0n+h−d×d Σn+h−d

[
1n

0h×n

]
Σ−1

n−d


 [1n 0n×h]− 1n+h




[
X1:d

Wd+1:n+h

]

= e′n+h∆−1
n+h




0d 0d×n+h−d

0n+h−d×d Σn+h−d

[
1n

0h×n

]
Σ−1

n−d [1n 0n×h]− 1n+h−d




[
X1:d

Wd+1:n+h

]

= e′n+h∆−1
n+h




01:d(
Σn+h−d

[
1n

0h×n

]
Σ−1

n−d [1n 0n×h]− 1n+h−d

)
Wd+1:n+h


 ,

which shows that the initial values are not present in the forecast error. To show optimality,
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consider the covariance of this forecast error with the data ∆−1
n [X ′

1:d, W
′
d+1:n]′; we obtain

e′n+h∆−1
n+h




0d 0d×n+h−d

0n+h−d×d

(
Σn+h−d

[
1n

0h×n

]
Σ−1

n−d [1n 0n×h]− 1n+h−d

)
Σn+h−d

[
1n

0h×n

]

 ∆†

n

= e′n+h∆−1
n+h




0d 0d×n+h−d

0n+h−d×d Σn+h−d

[
1n

0h×n

]
Σ−1

n−d

(
[1n 0n×h] Σn+h−d

[
1n

0h×n

]
− Σn−d

)

 ∆†

n,

which is identically zero. Similarly, the variance of the forecast error (i.e., the forecast MSE) is

equal to

e′n+h∆−1
n+h




0d 0d×n+h−d

0n+h−d×d Σn+h−d − Σn+h−d [1n 0n×h] Σ−1
n−d

[
1n

0h×n

]
Σn+h−d


 ∆†

n+hen+h. (5)

This assumes that the model is correctly specified and precisely known (no parameter error);

otherwise the formula is slightly more complex, because the covariance matrix of Wd+1:n+h is

no longer equal to Σn+h−d.

Both (4) and (5) are very easy to program. We now proceed to discuss iterative forecasting.

Let X̂
(I)
n+h|1:n be the iterative forecast obtained by inductively applying the one-step ahead direct

forecast filter, as described above. Let η′ denote the row vector of coefficients yielding X̂
(D)
n+1|1:n

from the data, i.e.,

η′ = e′n+1∆
−1
n+1




1d 0d×n−d

0n−d×d Σn+h−d

[
1n

0h×n

]
Σ−1

n−d


 ∆n.

The iterative procedure amounts to appending the most recent forecast to past data and forecasts,

which may be formalized in matrix notation as follows. Define

J =

[
01:n−1 1n−1

η′

]
,

so that JX1:n consists of data values X2:n with the one-step ahead forecast appended. Then

X̂
(I)
n+h|1:n = e′nJhX1:n. Note the similarity to results in Proietti (2011), although the matrix power

here involves matrices of full dimension n rather than just the model order. It is possible to prove

that the iterative forecasts result in a forecast error process that does not depend on initial values,

and moreover explicit formulas for the forecast MSE can be derived. The forecast error can be
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written

X̂
(I)
n+h|1:n −Xn+h = η′Jh−2 (J [1n 01:n]− [01:n 1n])X1:n+1

+ · · ·+ η′ (J [1n 01:n]− [01:n 1n])Xh−1:n+h−1

+
(
[η′ 01:n]− e′n+1

)
Xh:n+h.

This expansion is established by telescoping the sum. Now J [1n 01:n]− [01:n 1n] has the first n− 1

rows identically zero and the final row equal to [η′ 0]− e′n+1. But this is the forecast error “filter”

for 1-step ahead direct forecasting. Let

K = Σn+1−d

[
1n

01×n

]
Σ−1

n−d [1n 0n×1]− 1n+1−d

by definition, so that

(
[η′ 01:n]− e′n+1

)
X1:n+1 = e′n+1∆

−1
n+1

[
0d 0d×n+1−d

0n+1−d×d K − 1n+1−d

] [
X1:d

Wd+1:n+1

]
.

Hence the iterative forecast error does not depend on initial values, and the forecast error can be

written

X̂
(I)
n+h|1:n −Xn+h = η′Jh−2

[
0n−1×n+h−d

µ′ (K − 1n+1−d) [1n+1−d 0n+1−d×h−1]

]
Wd+1:n+h

+ · · ·+ η′
[

0n−1×n+h−d

µ′ (K − 1n+1−d) [0h−2×n+1−d 1n+1−d 0n+1−d×1]

]
Wd+1:n+h

+ µ′ (K − 1n+1−d) [0h−1×n+1−d 1n+1−d]Wd+1:n+h,

where µ′ corresponds to the final row of ∆−1
n+1, with the first d entries omitted, i.e., µ′ = e′n+1∆

−1
n+1[1d 0]′.

Thus this forecast error is equal to some a′Wd+1:n+h, with

a′ = η′Jh−2

[
0n−1×n+h−d

µ′ (K − 1n+1−d) [1n+1−d 0n+1−d×h−1]

]

+ · · ·+ η′
[

0n−1×n+h−d

µ′ (K − 1n+1−d) [0h−2×n+1−d 1n+1−d 0n+1−d×1]

]

+ µ′ (K − 1n+1−d) [0h−1×n+1−d 1n+1−d].

Then the MSE is a′Σn+h−da, which must be greater than (5). When the model is incorrectly

specified, substitute the true DGP covariance matrix for Σn+h−d in the above quadratic form.

In general, direct and iterative forecasting utilize different formulas that are only identical in

special cases. With explicit formulas, it is simple to compare forecast filters numerically. The direct

filters are optimal when the DGP is correctly specified and parameters are estimated perfectly.

However, in practice there is parameter estimation error and model misspecification. Thus it can

happen that the iterated forecasts are actually superior.
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3 Numerical Studies

We then examined forecast coefficients for various ARIMA models, as a function of h and n, for

both the direct and iterated methods. First note that in simple cases like an ARIMA(1,0,0) or

ARIMA(1,1,0) the forecast coefficients are the same, but more generally can be different. For

ARMA and MA processes (with d = 1, 2) we observed that filter coefficients can be quite different

when n and h are quite low. Of course as n increases, we expect movement towards the results

for the semi-infinite past, and hence the discrepancies will disappear. This behavior manifested

with n as low as 6 in many cases. Also, increasing h eventually makes the two methods coincide

numerically. Figures 1, 2, and 3 display results for an ARIMA(0,1,2) model with (noninvertible)

MA polynomial 1 + .8B + .2B2.

4 Conclusions

The work of Marcellino, Stock, and Watson (2006) provides the interesting conclusion that iterative

forecasting actually works better out-of-sample for many time series. However, we caution the

reader that their analysis is confined to the use of ARIMA(p,d,0) models fitted using OLS, according

to either a one-step or multi-step ahead criterion, for iterated and direct methods respectively. The

actual forecast functions used correspond to those of Section 2.1 (their equation (2.3) corresponds

to our (1) when h = 1), which in this special case (because the model is autoregressive) does not

involve an infinite span of data. Therefore the results of this paper indicate that the discrepancies

in performance they observed were mainly due to the difference in parameter estimates between

the two methods.

The work of Proietti (2011) formalized a way to compare forecast MSE for competing methods.

This suggests a test statistic, computed as the difference of forecast MSEs for each method, with

their respective parameter estimates plugged in. In order to isolate the unimportant finite-sample

effects on the forecast filters, one could proceed by considering the semi-infinite past forecast MSEs,

where the differences chiefly arise from the different parameter values used. Intriguingly, there is

a further connection that can be made between these forecast MSEs and parameter estimation,

discussed below.

If fitting via Gaussian MLE, this is equivalent to minimizing the one-step ahead forecast MSE

function – take (2) with h = 1 and the periodogram substituted for the unknown spectrum f̃ to get

the Whittle likelihood, up to a term involving the logged innovation variance. Likewise, one might

define a multi-step ahead fitting criterion based on the h > 1 case; this is developed at length in

McElroy and Wildi (2011). Hence, if we obtain parameters for the direct and iterated methods

in this way – not via the regression formulas of Marcellino, Stock, and Watson (2006) – then

they automatically form zeroes of the gradients of the forecast MSE functions, indicating that the
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resulting test statistic (for significant differences between direct and iterated forecast performance)

may have some sort of χ2 distribution. Future work should focus on this development.

To summarize, one may fix model and model estimation technique to be the same between

the forecasting methods, and then their performance is extremely similar, even in finite sample.

However, it is more common to use different fitting criteria (and the same model) in econometric

practice, in which case the forecast weights can differ substantially (and iterative often performs

better). Now, it could happen that – even though the parameter-fitting methods differ – the forecast

weights come out pretty similar. We would like to know if their is a significant discrepancy in their

performance, ahead of time. A test statistic involving forecast MSEs would cater to this need.
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Figure 2: Forecast weights for the direct and iterated methods, for an ARIMA(0,1,2) model with
forecast horizon h = 3 and n = 3 (left panel) or n = 4 (right panel) data points.
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Figure 3: Forecast weights for the direct and iterated methods, for an ARIMA(0,1,2) model with
forecast horizon h = 6 and n = 3 (left panel) or n = 4 (right panel) data points.
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