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Abstract

Financial series occasionally exhibit large changes. Assuming that
the observed return series consist of a standard normal ARMA-GARCH
component plus an additive jump component, we propose a new test
for additive jumps in an ARMA-GARCH context. The test is based
on standardised returns, where the first two conditional moments are
estimated in a robust way. Simulation results indicate that the test has
very good finite sample properties, i.e. correct size and much higher
proportion of correct jump detection than Franses and Ghijsels’s (1999)
test. We apply our test on the YEU-USD exchange rate and find twice
as much jumps as Franses and Ghijsels’s (1999) test.
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1 Introduction

It is well known that high-frequency returns of most financial assets exhibit

volatility clustering but also large jumps caused by big surprises (e.g. news an-

nouncements). Andersen, Bollerslev, and Diebold (2007), Harvey and Chakravarty

(2008) and Muler and Yohai (2008), among others, found that these jumps af-

fect future volatility less than what standard volatility models would predict.

In a realized volatility context, Andersen, Bollerslev, and Diebold (2007) show

that in an autoregressive (AR) model conditioning also on past jumps improves

the predictions of future realized volatility.

In a univariate GARCH context, Sakata and White (1998), Franses and

Ghijsels (1999), Carnero, Pena, and Ruiz (2007, 2008), Charles and Darné

(2005) and Muler and Yohai (2008) show that in the presence of additive jumps

Gaussian quasi-maximum likelihood (QML) estimates of GARCH models tend

to overestimate the volatility for the days following the jumps but also produce

upward biased estimates of the long-term volatility.

The impact of jumps has been modeled assuming a Poisson or a Bernoulli

jump distribution which when combined with a normal distribution for the

Brownian motion part leads to Poisson or Bernoulli mixtures of distributions

for financial returns (see e.g. Ball and Torous, 1983). Alternatively some

studies assume fat tail distributions such as the student-t or the generalized

error distribution to account for the occurrence of large changes in returns.

This literature was not aimed at jump detection and testing for jump.

The effect of jumps on multivariate GARCH models has also been investi-

gated recently by Boudt and Croux (2010) and Boudt, Dańıelsson, and Lau-

rent (2010b), respectively in the BEKK and dynamic conditional correlation

(DCC) frameworks. Boudt, Dańıelsson, and Laurent (2010b) show that the

unconditional and conditional correlations given by the constant conditional

correlation (CCC) model of Bollerslev (1990) and the DCC model of Engle

(2002) are strongly affected by these jumps. They also compare the condi-

tional covariance forecasts of obtained for various multivariate GARCH models

including the DCC and their robust version with ex post covariance estimates
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based on high-frequency data (i.e. the realized covariance of the EUR/USD

and Yen/USD exchange rates over the period 2004-2009). Using the model

confidence set methodology, proposed by Hansen, Lunde, and Nason (2010),

they find that their robust DCC model always belongs to the set of supe-

rior forecasting models. Moreover, for most forecast horizons, their covariance

forecasts are significantly better than all other models considered.

Our goal in this paper is to propose a new statistical test procedure to

detect additive jumps and to study its statistical properties. The performance

of the test is investigated by means of a Monte Carlo simulation and it is

compared with that of the test proposed by Franses and Ghijsels (1999). We

apply our and the Franses-Ghijsels tests to daily returns for the YEN-USD

exchange rate for the period January 2005 to May 2011.

The main advantages of the new test over the one of Franses and Ghijsels

(1999) are that

1. all jumps are detected at once in a single test;

2. critical values do not need to be simulated as the asymptotic distribution

of the test does not depend on nuisance parameters;

3. we can control for the type-I error (probability of rejecting the null of no

jump in the sample, under the null);

4. the proportion of correct jump detection is much higher, that is more

powerful than the procedure by Franses and Ghijsels (1999).

While being designed for data observed at lower frequencies, our test is

much in the spirit of the nonparametric test put forward by Lee and Mykland

(2009) for high frequency data. Similar to Lee and Mykland (2008), who use

standardize their nonparametric test for high frequency data by a consistent

estimate of instantaneous volatility (they use bipower variation to estimate

instantaneous volatility), we standardize our test using the conditional volatil-

ity based on a GARCH-model (in absence of jumps) and using a robustified

GARCH volatility estimate (in case jumps are likely to affect the GARCH
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process). Our test therefore incorporates the idea that when spot or instan-

taneous volatility is high (also in the absence of jumps), returns may also be

high, even as high as that due to jumps. Franses and Ghijsels (1999) standard-

ize their test statistics using unconditional residual variances estimates. Our

test is expected to be useful especially when intraday data are not available

and thus when realized volatility estimates cannot be computed.

Finally, Hotta and Tsay (1998) propose a Lagrange multiplier test for ad-

ditive levels outliers and for additive volatility outliers. Doornik and Ooms

(2005) propose a likelihood ratio test, to test first the occurrence and tim-

ing of an outlier and then in a second step to determine the type of additive

outlier, either in the mean or in volatility. As these types of tests require

the specification of a distribution of the data under the null hypothesis, they

are likely to be less robust than tests based on the Quasi-ML-method. Charles

and Darné (2005) extend the test for additive outliers proposed by Franses and

Ghijsels (1999) to take into account innovative outliers in a GARCH model,

that is outliers that reflect an endogenous change in a series and affect all

future realizations of the variable through the memory of its process.

In an application to the Yen-USD exchange rate, it appears that the jumps

that our test procedure detects ate related to news and interventions by the

Bank of Japan.

2 Model and test

2.1 Data generating process

The data generating process (DGP) assumes that the observed return series

r∗t (t = 1, . . . , T ) consist of a standard normal ARMA(p, q)-GARCH(1,1) com-

ponent rt and an additive jump component, i.e.

r∗t = rt + atIt (2.1)

φ(L)(rt − µ) = θ(L)εt where εt ≡ σtzt and zt
i.i.d.∼ N(0, 1) (2.2)

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1, (2.3)
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where at corresponds to the size of the jump, It is a dummy variable that takes

the value 1 if there is a jump at time t and 0 otherwise, L is the lag operator

while φ(L) = 1 −
∑p

i=1 φiL
i and θ(L) = 1 −

∑q
i=1 θiL

i with roots outside the

unit circle.

Let λ(L) = φ−1(L)θ(L) = 1 +
∑∞

i=1 λiL
i. Equation (2.2) can be rewritten

as follows

rt = µt + εt, (2.4)

µt = µ +

∞
∑

i=1

λiεt−i, (2.5)

where µt is the conditional mean of rt.

2.2 Jumps detection

2.2.1 Franses and Ghijsels (1999)

One of the most popular method for additive jumps detection in a GARCH

framework is the test proposed by Franses and Ghijsels (1999). They adapt

the procedure of Chen and Liu (1993) for additive outlier detection in ARMA

models to make it applicable for GARCH models.

Franses and Ghijsels (1999) consider that if a jump occurs at time t, instead

of observing rt, one observes the contaminated return r∗t , where the contam-

ination is defined through the squared error process, i.e. (ε∗t )
2 = (ε2

t + wtIt),

where wt, with −ε2
t < wt < +∞, is the size of the additive jump in the squared

residuals. From (ε∗t )
2 one can recover the contaminated returns by taking its

square root and like Franses and Ghijsels (1999) by further imposing that ε∗t

and εt have the same sign, i.e. ε∗t = sign(εt)
√

ε2
t + wtIt, where sign(x) = 1 if

x ≥ 0 and -1 otherwise. This yields the following DGP for the observed return

series r∗t :

r∗t = rt(1 − It) + (µt + ε∗t )It (2.6)

= (µt + εt) + (µt + ε∗t − µt − εt)It (2.7)

= rt + (ε∗t − εt)It, (2.8)
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where rt is defined as in (2.2)-(2.3). Note that Equation (2.8) is a particular

case of Equation (2.1), where at = ε∗t − εt.

The procedure of Franses and Ghijsels (1999) to test for additive outliers

in GARCH models is summarised here below:

1. Estimate an ARMA-GARCH(1,1) model by (Quasi-)Maximum likeli-

hood on the observed returns r∗t by neglecting the potential presence of

jumps in the data (i.e. by replacing rt in (2.2)-(2.3) by r∗t ) and compute

σ̂2
t and v̂t = (r∗t − µ̂t)

2 − σ̂2
t .

2. Compute

tξ̂(τ) = (1/ŝ)

(

T
∑

t=τ

x2
t

)−1/2( T
∑

t=τ

xtv̂t

)

∀τ = 1, . . . , T,

where xt = 0 for t < τ , xτ = 1 and xτ+k = −πk for k = 1, . . . and finally

π(L) = (1−β1L)−1(1− (α1 +β1)L) for a GARCH(1,1). tξ̂(τ) corresponds

to the t-statistic for the estimated slope coefficient ξ̂(τ) of the regression

of v̂t on xt while ŝ is an estimate of the variance of the error term of this

regression that is robust to the potential jump occurring at time t = τ .

See Franses and Ghijsels (1999) for more details.

3. Obtain tmax(ξ̂) ≡ max
1≤τ≤T

|tξ̂(τ)| and compare it with a critical value de-

noted by C. If tmax(ξ̂) > C, the observation for which the t-statistic

corresponds to tmax(ξ̂) (say t = τ̂) is defined as contaminated by an

additive outlier and is cleaned in the next step.

4. Franses and Ghijsels (1999) also propose to clean the original series for

the detected additive outliers by replacing r∗τ̂ by

µ̂τ + sign(ε̂τ)

√

(r∗τ − µ̂τ )2 − ξ̂(τ), where sign(x) = 1 if x ≥ 0 and -1

otherwise.

5. Return to step 1 and re-estimate model (2.1)-(2.3) on the cleaned returns.

6. Repeat steps 1-5 until tmax(ξ̂) no longer exceeds C.
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For the choice of the critical value, Franses and Ghijsels (1999) recommend

using C = 4 while simulation results reported in Franses and van Dijk (2000)

suggest that the choice of C is not so trivial. Indeed, they show that the

distribution of tmax(ξ̂) under the null of no additive outliers varies not only

with the number of observations T but also with the true but unknown values

α1 and β1. For instance, for T = 500, α1 = 0.1 and β1 = 0.5 the 95% quantile

of tmax(ξ̂) (based on 1,000 replications) equals 10.94 while for α1 = 0.2 and

β1 = 0.7 it is 16.93. For T = 250 these quantiles equal 9.67 and 13.96,

respectively.

2.2.2 Our jumps detection rule

The intuition behind our jump test is similar to the one proposed simulta-

neously by Andersen, Bollerslev, and Dobrev (2007b) and Lee and Mykland

(2008). Let us denote by µ̃t and σ̃2
t estimates of µt and σ2

t in model (2.1)-

(2.3) that are robust to the potential presence of the additive jumps atIt (see

Sections 2.3, 2.4 and 2.5).

Denote by J̃t =
r∗
t
−µ̃t

σ̃t
the standardised return on day t. If It = 0 on day t,

J̃t should be standard normally distributed and thus standardised returns J̃t

that are too large to plausibly come from a standard normal distribution must

reflect jumps.

This suggests the following jumps detection rule:

Ĩt = I
(

|J̃t| > k
)

, (2.9)

where I(·) is the indicator function and k is suitable critical value defined

below. The rule described in (2.9) implies that Ĩt = 1 when a jump is detected

at observation t and Ĩt = 0 otherwise. Ĩt is thus an estimate of the unknown

quantity It in Equation (2.1).

A straightforward jump detection rule is that return r∗t is taken as being

affected by a jump if |J̃t| exceeds the quantile δ(> .5) of the standard Gaussian

distribution. This rule has a probability of type I error (detect that r∗t is

affected by jumps, if in reality r∗t is not) equal to (1− δ). But its disadvantage
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is that the expected number of false positives over the whole estimation sample

is equal to (1 − δ)T under the null of no jump which can be large for large

T . For instance, with T = 1000 and δ = 0.95, 50 spurious jumps are expected

under the null of no jump. Lee and Mykland (2008) call these false positives

“spurious jump detections”.

Andersen, Bollerslev, and Dobrev (2007b) use a Bonferroni correction to

control for the number of spurious jumps detected. This corresponds to choos-

ing a higher quantile of the standard normal distribution, e.g. δ = 0.999 or

0.9999. Instead, we propose to follow Lee and Mykland (2008) and control

for the size of the multiple jump tests using the extreme value theory result

that the maximum of T i.i.d. realizations of the absolute value of a standard

normal random variable is asymptotically (for T → ∞) Gumbel distributed.

More specifically, in the absence of jumps, the probability that the maximum

of any set of T independent J-statistics |J̃t| exceeds

gT,δ = − log(− log(δ))bT + cT , (2.10)

with bT = 1/
√

2 log T and cT = (2 log T )1/2− [log π+log(log T )]/[2(2 log T )1/2],

equals 1 − δ. All returns for which the |J̃t| exceeds gT,δ should be declared as

being affected by jumps.

As mentioned above, |J̃t| requires estimates of µt and σ2
t that are robust to

jumps. Sections 2.3, 2.4 and 2.5 deal precisely with this.

2.3 BIP-ARMA

Muler, Pena, and Yohai (2009) (MPY) introduces a new class of estimates for

ARMA models (i.e. for µt) that is robust to additive jumps. To robustify the

estimation of the ARMA model, MPY propose to replace Equation (2.4)-(2.5)
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by a family of auxiliary models for the (potentially) contaminated returns r∗t :
1

r∗t = µt + εt + atIt, (2.11)

µt = µ +
∞
∑

i=1

λiσt−iw
MPY

kδ
(Jt−i) , (2.12)

where Jt−i =
r∗
t−i

−µt−i

σt−i
.

The weight function wMPY

kδ
(·) in Equation (2.12) plays a key role in the

robustification of the ARMA model. To obtain robust and efficient estimates

of the ARMA coefficients, MPY show that wMPY

kδ
(·) needs to be bounded. More

specifically, they propose the following weight function

wMPY

kδ
(u) = sign(u) min (|u|, kδ) . (2.13)

Model (2.11) with the estimator of µt in (2.12) and weight function (2.13)

is called Bounded Innovation Propagation (BIP)–ARMA since the effect of It

on future values of µt is bounded.

Since Jt−i is standard normally distributed in absence of jumps at time

t − i, it is natural to suspect the presence of a jump in r∗t−i if |Jt−i| exceeds

kδ, the δ quantile of the standard normal distribution. Typical values for δ

are 0.95 and 0.975. Note that we expect T (1 − δ) residuals in each sample

of size T to be downweighted even if there is no jump. An alternative would

be to compare |Jt−i| with the critical value of the Gumbel distribution like in

the previous section. We did not pursue this direction because Monte-Carlo

simulation results (not reported here to save place) suggest that downweigthing

too many observations is less damageable for the efficiency of this method than

neglecting some small jumps.

2.4 BIP-GARCH

A similar idea is used by Muler and Yohai (2008) (MY) to limit the effect of

atIt on the estimation of the parameters of the GARCH model.

1Note that in MPY, σt−i is assumed to be constant and replaced by a robust M-scale
estimate of εt.
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In this case the Gaussian QML is not appropriate because at−1It−1 has

no impact on σ2
t while assuming a GARCH(1,1) for r∗t would imply (if for

simplicity µt = 0) σ2
t = ω + α1(rt−1 + at−1It−1)

2 + β1σ
2
t−1, i.e., a large and

slowly decaying effect of at−1It−1 on future volatility predictions.

MY propose the following auxiliary GARCH(1,1) model with weights on

extremes:

σ2
t = ω + α1σ

2
t−1w

MPY

kδ
(Jt−1)

2 + β1σ
2
t−1. (2.14)

Model (2.14) is called Bounded Innovation Propagation (BIP)–GARCH(1,1).

Note that extensions of the BIP-GARCH to higher GARCH orders or other

more general GARCH-type specifications are trivial and not discussed here to

save space.

Using the same reasoning as for the BIP-ARMA, (squared) residuals that

are suspected to be contaminated by additive outliers are downweighted in the

BIP-GARCH equation. Again, typical values for δ are 0.95 and 0.975.

Boudt, Dańıelsson, and Laurent (2010b) propose a slightly different weight

function than wMPY

kδ
(·) in a GARCH context that ensures the conditional ex-

pectation of the weighted squared unexpected shocks to be the conditional

variance of r∗t in absence of jumps, i.e.

wBDL

kδ
(u) = c

1/2
δ wMPY

kδ
(u). (2.15)

Boudt, Dańıelsson, and Laurent (2010b) report the following values for cδ:

1.0185, 1.0465, 1.0953, 1.2030 (for δ = 0.99, 0.975, 0.95, and 0.90 respectively).

2.5 Estimation

MPY and MY show that QML estimation of BIP-ARMA and BIP-GARCH

models are not efficient in presence of large outliers (jumps).

They recommend using a M–estimator that minimizes the average value

of an objective function ρ(·), evaluated at the log–transform of squared stan-
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dardised returns, i.e. in our case

θ̂M = argminθ∈Θ

1

T

T
∑

t=1

ρ

(

2 log

∣

∣

∣

∣

r∗t − µt

σt

∣

∣

∣

∣

)

, (2.16)

where µt and σ2
t are given respectively in (2.12) and (2.14).

For robustness, this ρ–function needs to downweight the extreme obser-

vations and hence the jumps. The choice of ρ(·) trades off robustness vs.

efficiency. MY recommend ρ1(z) = 0.8m(g0(z)/0.8), where the m–function

is a smoothed version of m1(x) = xI(x ≤ 4) + 4I(x > 4) and g0(z) =
1√
2π

exp[−(exp(z) − z)/2].

Based on a comparison of several candidate ρ–functions Boudt, Dańıelsson,

and Laurent (2010a,b) recommend the one associated with the Student t4

density function:

ρt4(z) = −z + 0.8260ρt4(exp(z)),

where

ρtν (u) = (1 + ν) log

(

1 +
u

ν − 2

)

. (2.17)

To sum up, we perform the estimation of the BIP-ARMA–BIP-GARCH

model in one step by minimising the objective function (2.16) with δ = 0.975

in the weight function wMPY

kδ
(·) and ρ(·) = ρt4(·). We denote by µ̃t and σ̃2

t the

robust estimates of µt and σ2
t obtained by this method.

Given µ̃t and σ̃2
t , one can apply the test for additive jumps described in

(2.9) for k = gT,δ and then obtain Ĩt, an estimate of It.

We propose a second robust estimation method that uses the extra infor-

mation contained in Ĩt about the additive jumps.

Let us denote by r∗∗t the filtered return series obtained by replacing the

returns r∗t for which we detected a jump by a robust estimate of the conditional

expectation of r∗t − atIt, i.e. r∗∗t = r∗t (1 − Ĩt) + µ̃tĨt.

For the M-estimators for GARCH models which minimize the average value

of the objective function in (2.16), MY have shown consistency for stationary

GARCH-processes. Normality of the data is not required. These M-estimates

are less sensitive to outliers than the QML-estimate and they satisfy Huber
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(1981)’s first requirement for a robust estimate, that is the estimate should be

highly efficient when the observations are not subject to outliers. MY propose

a modification of the M-estimator, called bounded M-estimator (BM). The

BM-estimator includes an additional mechanism that bounds the propagation

of the effect of an outlier on the subsequent predictions of the conditional

variance. The BM-estimator is also consistent and asymptotically normally

distributed. In addition to satisfying Huber (1981)’s first requirement for M-

estimators, it also satisfies his second requirement that replacing a small frac-

tion of observations by outliers should produce a small change in the estimator.

Therefore, as shown by MY, the BM-estimator has a high efficiency. In view

of their findings, the second robust method that we propose is expected to be

more efficient that our first method.

MPY propose robust (M-) estimates for ARMA models. On p. 826, they

write ‘We conjecture that similar results, consistency and asymptotic normal-

ity, hold when the observations follow a BIP-ARMA model.’ Similar properties

are expected to be found for the BIP-GARCH proces. They would underpin

the proposed use an an ARMA-GARCH model for filtered return.

3 Simulation

3.1 Data Generating Processes (DGP)

In the Monte-Carlo simulation study we simulate 5000 samples of size T =

500, 1000, 2000 or 3000 following an AR(1)-GARCH(1,1) model with additive

jumps as described in Equations (2.1)-(2.3), with p = 1 and q = 0, µ =

0.05, φ1 = 0.3, ω = 0.3, α1 = 0.2 and β1 = 0.7.

The size of the jump process at in Equation (2.1) is specified as follows:2

at = sign(rt)mσt, (3.1)

2We also considered the case where at = (ε∗
t
− εt), with ε∗

t
= sign(εt)

√

ε2
t
+ wtIt and

wt = m2σ2

t
to simulate jumps in the spirit of Franses and Ghijsels’s (1999) DGP (see

Equation (2.8)). Results were found to be qualitatively the same and thus not reported to
save space.
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i.e. m times the conditional standard deviation of rt (i.e., σt), where m takes

any integer value between 0 and 8 to simulate very small jumps to large jumps.

Note that either m = 0 or It = 0∀t correspond to the case of no jump.

For the dummy variable It determining the arrival time of the jumps, we

consider either a Poisson distribution with constant intensity or fixed the ar-

rival times ex-ante such that jumps are equidistant and do not happen at the

very beginning or the end of the sample. Results being qualitatively the same

we only report those for the equidistant jumps in order to save place. The

number of jumps per sample of T observations is set to 1, 2, 5, 10 or 20.

3.2 Global spurious detection of jumps

Monte-Carlo simulation results reported in Franses and van Dijk (2000) state

that the 95% quantile of tmax(ξ̂) under the null assumption of no jump in a

sample of T = 500 observations equals 16.93 when α1 = 0.2 and β1 = 0.7.

Our own Monte-Carlo simulations support this finding. For T = 1000, 2000

and 3000 we obtained the following values critical values (C): 21.60, 27.13 and

31.41.

These critical values are chosen such that one expects to reject

H0 : atIt = 0 ∀t for t = 1, . . . , T

in 5% of the cases (type I error) when the null is true. The percentage of global

spurious detection under the null of no jump (type I error) is in this case 5%.

The main drawback of this approach is that the critical values depend

on T (which is known) but also on unknown parameters (α1 and β1 in the

GARCH(1,1) case) with the undesirable consequence that on real data one

cannot control the type I error (false detections).

To get the same expected type I error for our proposed test in (2.9), we

set k to gT,0.95, i.e. 3.95, 4.10, 4.25 and 4.34 for T = 500, 1000, 2000 and 3000

respectively. The rejection frequencies of H0 over the 5000 replications for our

test are 5.80, 5.42, 5.46 and 5.58% for these four considered sample sizes.3 This

3Results reported in this paper are based on programs written by the authors using Ox
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suggests that there is no evidence of ‘size’ distortion for our proposed test.

3.3 Ability to detect actual jumps

Another question of interest is whether the two tests have sufficient ‘power’

to detect actual jumps. We define the proportion of correct (resp. false)

jump detections as the average number (over the 5000 replications) of correctly

(falsly) detected jump days.

Figures 1 plots the proportion of correct jump detections as a function of

m (jump size) for T = 500 and 2000 (the figures corresponding to T = 1000

and 3000 are available upon request but are not reported here to save space).

Recall that jumps are equally spaced and the number of jumps per sample

equals 1, 2, 5, 10 or 20.

This figure clearly suggests that our test (right side) has a much higher

power to detect the actual jumps than Franses and Ghijsels’s (1999) test (left

side).

For instance, when T = 500 (upper panel) the proportions of correct jump

detection in presence of one additive jump of size of 3 and 4 standard deviation

(m = 3 and 4) equal respectively 32.98% and 88.90% for our test. These

proportions equal 8.53% and 23.56% for Franses and Ghijsels’s (1999) test.

Note that choosing a smaller quantile δ to determine the critical value gT,δ

would naturally lead to a higher proportion of correct jump detection, e.g.

62.10% and 77.10% instead of 32.98% for g500,0.75 and g500,0.50 respectively

when m = 3.

Furthermore, it emerges from these figures that unlike Franses and Ghi-

jsels’s (1999) test, our test is not sensitive to the actual number of jumps.

Indeed, the proportion of correct jump detections of Franses and Ghijsels’s

(1999) test declines sharply with the number of jumps in the sample and even-

tually tends to zero when the number of jumps is sufficiently large (problem

known in the robust statistical literature as outlier masking as in the presence

of jumps the estimated standard-errors are large compared to the estimate of

version 6.0 (Doornik, 2009) and G@RCH version 6.0 (Laurent, 2009).
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at rendering the test insignificant).

In the previous section we studied the size property of our test by computing

the percentage of global spurious detection (i.e. no jump in the sample) under

the null of no jump. Figure 2 plots the proportion of false jump detections.

This figure suggests that the proportion of false jump detections for our test

(right panel) is close to 5% irrespectively of the number of jumps. Franses and

Ghijsels’s (1999) test is found to be too conservative when the number and/or

magnitude of jumps increases, explaining the low proportion of correct jump

detections in these cases. For the test statistic Ĩt however, the proportion of

correct jump detection is close to 100% when m ≥ 4.

3.4 Bias, MSE and 95% coverage probability

In this subsection we investigate the finite sample properties of four estimation

methods both in presence and absence of jumps, i.e.

• Gaussian quasi-maximum likelihood;

• Gaussian maximum likelihood on filtered returns using the jump test of

Franses and Ghijsels (1999);

• M-Estimation of the BIP-ARMA–BIP-GARCH as previously discussed

in Sections 2.3, 2.4 and 2.5;

• Gaussian maximum likelihood estimation on filtered returns r∗∗t using

our proposed jump test Ĩt.

In order to save space we only report the results for T = 500 in presence

of 1 jump or 5 jumps (per sample) of magnitude mσt with m = 0, 1, . . . , 8.

Figures 3 and 4 plot the empirical bias of µ, φ1, ω, α1 and β1 over the 5000

replications as a function of the jump size m (see Section 3.1). The empirical

bias of parameter θ is defined as 1
5000

∑5000
i=1 (θ0 − θ̂i), where θ0 denotes the

true parameter value and θ̂i its estimate obtained at the ith iteration. We

observe that the M-Estimator of the BIP-ARMA–BIP-GARCH (denoted BIP)

and the Gaussian maximum likelihood on filtered returns using our proposed

15



jump test (denoted ML on filtered returns) are more robust than the others.

Interestingly, for these two methods, the bias is found to be limited for each

parameter and independent of the magnitude of the jumps. In the presence

of 1 jump, the bias associated with the MLE of Franses and Ghijsels’s (1999)

filtered returns is also limited but this method is found to be as non-robust as

the QML in presence of 5 (or more) jumps.

Figures 5 and 6 plot the mean square errors (MSE) of each parameter

over the 5000 replications as a function of the jump size m for DGP1 as well.

The MSE of parameter θ is defined as 1
5000

∑5000
i=1 (θ0 − θ̂i)

2. These two figures

also suggest that the M-Estimator of the BIP-ARMA–BIP-GARCH and the

Gaussian maximum likelihood on filtered returns using our proposed jump test

perform better. The loss of efficiency compared to the (Q)ML is very limited in

absence of jumps and they appear to be much more efficient than the other two

methods in presence of jumps when m ≥ 4 as expected given the theoretical

properties of the estimators obtained by MY.

Finally, Figures 7 and 8 plot the 95% coverage probabilities for the five

parameters as a function of m. The 95% coverage probability of parameter θ

corresponds to the number of times the true value θ0 falls within the confidence

interval θ̂i ± 1.96

√

var(θ̂i) divided by the number of replications (5000 in our

case). Muler and Yohai (2008) have proved the asymptotic normality of the M-

Estimator of the BIP-GARCH(1,1) model and derived the asymptotic variance

in the particular case of zero conditional mean and no jump. Our simulation

set-up being more general (because µt 6= 0 and at 6= 0), we therefore do not

report the 95% coverage probabilities for this estimation method.

These two figures suggest that the Gaussian maximum likelihood estima-

tion on filtered returns r∗∗t using our proposed jump test Ĩt has a 95% coverage

probability close to the theoretical value of 95% for each parameter, irrespec-

tive of the size of the jumps and the number of jumps in the sample.4 As

expected the 95% coverage probabilities of the QML deviate from their theo-

retical value when m increases, even in presence of 1 jump in the sample. The

4We obtained similar figures for 2, 10 and 20 jumps per sample and different sample size.
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Gaussian maximum likelihood estimation on filtered returns using Franses and

Ghijsel’s (1999) test has a 95% coverage probability close to the theoretical

value of 95% for each parameter in presence of 1 jump but these confidence

intervals are found to be too conservative in presence of more jumps and thus

any statistical inference based on this method would be misleading.

4 Application

In this section we apply the two tests for additive jumps in ARMA-GARCH

models described in Section 2.2. Our objective is to examine whether tmax(ξ̂)

and Ĩt behave differently when applied on real data and whether the detected

jumps have an economic explanation.

The analysis has been carried out on the Japanese yen US dollar (Yen-

USD) exchange rate over the period January 2005 - May 2011 (i.e. T =

1598 observations). The data have been downloaded from the FRED (Federal

Reserve Economic Data) website. We choose the Yen-USD exchange rate for

our empirical analysis for two main reasons. First, exchange rates have known

frequent and large discontinuities during the considered period and especially

during the sub-prime crisis in 2008-2009 as described by the size of the different

jumps selected by our method in Table 1. Second, the literature on jumps and

announcements (see the survey of Neely, 2011 for this) concludes that many

jumps appear to correspond to macroeconomic announcement news. One type

of news that causes discontinuities in exchange rate prices is the occurrence

of central bank interventions in the FX market as shown by Fair (2002) and

Gnabo, Laurent and Lecourt (2009). Because this type of event is unexpected

by the market, it leads market participants to adjust their trading behavior,

conducting to some discontinuities in prices. Unlike other central banks, The

Bank of Japan has continued to intervene actively during these last ten years

and very recently.

Figure 9 plots the daily returns in % of the Yen-USD exchange rate (solid

line) and the detected jumps. Returns being identified as contaminated by an

additive jump by the tmax(ξ̂) (resp. Ĩt) statistic are highlighted by a square
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(resp. triangle). Returns being identified as contaminated by an additive jump

by the two methods are highlighted by a circle. For the tmax(ξ̂) statistic, we

chose a critical value of C = 10 which corresponds almost to the 50% quantile

of tmax(ξ̂) for T = 1598, α = 0.043181 and β = 0.949687 (the M-estimates of

the BIP-ARMA–BIP-GARCH(1,1) model).5 The critical value of Ĩt giving the

same type-I error is g1598,0.5 = 3.52724. Note that the probability of finding

at least one spurious additive jump while there is no jump in the data is thus

50% for both tests.

Table 1 reports the dates of all the detected jumps, the jump statistics

tmax(ξ̂) and Ĩt as well as an indication about the significance of these two

statistics. The last column, labelled ‘Event’, reports real-time financial news

and information released around jump arrival days using the Factiva database

in order to examine their association with jump arrivals.6 Sources used in the

Factiva search include Dow Jones and Reuters newswires.

The main findings are that our test identifies twice as many jumps as

the tmax(ξ̂) statistic for the same expected level of type-I error and that all

jumps detected by the latter are also detected by the former. Importantly all

the detected jumps have been largely documented by the newswires services

and all news reports extracted the same day than jump arrivals correspond

with economic events. One important event is for example the intervention of

the Japanese monetary authorities in the FX market, unilaterally the 15th of

September 2010 and jointly with the G7 very recently, on the 18th of March

2011. The Biggest jumps detected in 2008 are related to the credit crisis

period. This suggests that jumps detected by our method are likely not to be

spurious.

5We found that over 1000 replications, the 50% quantile of tmax(ξ̂) under the null of no
jump is 9.975 for this sample size and these parameter values.

6The purpose of this exercise is not to identify the direction of the causality between
jumps and these news, i.e. whether the created the jumps or vice-cersa. For this, we would
need the timing of the discontinuities that create jumps and compare this with the timing
of the arrival of these news.
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5 Conclusion

It is well known that high-frequency returns of most financial assets exhibit

volatility clustering but also large jumps caused by big surprises. However,

these jumps affect future volatility less than what standard volatility mod-

els would predict (see Andersen, Bollerslev, and Diebold, 2007; Harvey and

Chakravarty, 2008; Muler and Yohai, 2008 among others).

Building upon the BIP-ARMA and BIP-GARCH models of respectively

Muler, Pena, and Yohai (2009) and Muler and Yohai (2008), we proposed

a new test for additive jumps in ARMA-GARCH models. The distribution

under the null hypothesis of the proposed test follows from the consistency

and asymptotic normality of the parameters estimators as proved by Muler

and Yohai (2007). Our Monte-Carlo simulation study suggests that the test

does not suffer from any size distortion and has a much higher power to detect

the actual jumps than Franses and Ghijsels’s (1999) test in finite samples.

Besides that, unlike Franses and Ghijsels’s (1999) test, the critical values of

our test do not depend on the unknown parameters of the GARCH model and

the power of the test does not seem to depend on the number of jumps in the

sample.

It is interesting and of importance that in our application the detected

jumps for the Yen-US Dollar exchange rate appear to be related to economic

events (news and interventions by the Bank of Japan) that are reported by

Dow Jones and Reuters newswires. Issues for future research are a better

theoretical underpinning of the robustness of our findings for the power of

the test. It would also be interesting to investigate the properties of our test

for other types of models, jumps (e.g. innovative outliers) and observation

frequencies.
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Figure 1: Proportion of correct jump detections in function of m
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Figure 2: Proportion of false jump detections in presence of jumps
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Figure 3: Bias as a function of the jump size m for the AR(1)-GARCH(1,1)
with parameter values µ = 0.05, φ1 = 0.3, ω = 0.3, α1 = 0.2 and β1 = 0.7 and
1 jump per sample of T = 500 observations
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Figure 4: Bias as a function of the jump size m for the AR(1)-GARCH(1,1)
with parameter values µ = 0.05, φ1 = 0.3, ω = 0.3, α1 = 0.2 and β1 = 0.7 and
5 jumps per sample of T = 500 observations
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Figure 5: MSE as a function of the jump size m for the AR(1)-GARCH(1,1)
with parameter values µ = 0.05, φ1 = 0.3, ω = 0.3, α1 = 0.2 and β1 = 0.7 and
1 jump per sample of T = 500 observations
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Figure 6: MSE as a function of the jump size m for the AR(1)-GARCH(1,1)
with parameter values µ = 0.05, φ1 = 0.3, ω = 0.3, α1 = 0.2 and β1 = 0.7 and
5 jumps per sample of T = 500 observations
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Figure 7: 95% coverage probabilities as a function of the jump size m for the
AR(1)-GARCH(1,1) with parameter values µ = 0.05, φ1 = 0.3, ω = 0.3, α1 =
0.2 and β1 = 0.7 and 1 jump per sample of T = 500 observations
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Figure 8: 95% coverage probabilities as a function of the jump size m for the
AR(1)-GARCH(1,1) with parameter values µ = 0.05, φ1 = 0.3, ω = 0.3, α1 =
0.2 and β1 = 0.7 and 5 jumps per sample of T = 500 observations

1 2 3 4 5 6 7 8

0.
6

0.
8

1.
0 µ

   
 9

5%
 c

ov
er

ag
e 

pr
ob

ab
ili

ty

jump size (m)
1 2 3 4 5 6 7 8

0.6

0.8

1.0 φ1

jump size (m)

1 2 3 4 5 6 7 8

0.
25

0.
5

0.
75

1 ω

   
 9

5%
 c

ov
er

ag
e 

pr
ob

ab
ili

ty

jump size (m)

1 2 3 4 5 6 7 8
0.50

0.75

1.00 α1

jump size (m)

Franses and Ghijsels (1999) 
QML 
ML on filtered returns 

1 2 3 4 5 6 7 8

0.
25

0.
5

0.
75

1 β1

   
 9

5%
 c

ov
er

ag
e 

pr
ob

ab
ili

ty

jump size (m)

Franses and Ghijsels (1999) 
QML 
ML on filtered returns 

27



Figure 9: Daily returns in % of the YEN-USD exchange rate over the period
January 2005 - May 2011 and detected jumps
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Table 1: Detected jumps
Date Returns tmax(ξ̂) Ĩt tmax(ξ̂) > 10 Ĩt > 3.527 Event

2005-07-21 -2.635 - 4.729 no yes The dollar fell sharply against the yen in Europe Thursday on news that China
has revalued its currency, the yuan (Dow Jones, 21/07/2005).

2005-12-14 -2.786 - 6.117 no yes The dollar tumbled after a shift in rhetoric by the Federal Reserve following its interest
rate rise on Tuesday signaled that the central bank was one step closer to ending its
18-month credit tightening streak. A slightly weaker-than-expected Bank of Japan tankan
survey of business confidence gave the dollar a slight boost at first, but then an array
of investors stepped in to sell, particularly against the yen (Reuters, 14/12/2005).

2006-04-24 -1.708 - 3.595 no yes The dollar fell to a fresh three-month low against the yen on Monday, extending losses
after the Group of Seven powers stepped up pressure on China to let its yuan currency
appreciate (Reuters, 24/04/2006).

2007-02-27 -1.746 - 3.751 no yes Dollar/yen rebounds to Y118.20 after a massive yen short-covering sends the pair
to Y117.50 in the previous session. Traders say expectations for Japanese corporate
month-end dlr buying make speculators to trim short positions in early Tokyo trading
(Reuters news, 27/02/2007).

2007-08-16 -2.733 - 4.893 no yes Yen vols soar as investors scramble for protection. Edge funds and portfolio managers are
flocking to currency options for protection against bigger yen gains as market players
abandon carry trades on the deepening problems in the credit market (Reuters,16/08/2007).

2008-03-17 -3.369 12.457 4.324 yes yes Asia Forex: Dlr Falls Again As Fed Fails To Calm Markets. The dollar tumbled to its
lowest point in more than 12 1/2 years, hitting Y95.77 in Asia on Monday as the Fed’s
discount rate cut failed to calm markets amid growing fears of more U.S. bank write-downs
to come (Dow Jones, 17/03/2008).

2008-10-06 -4.348 19.703 6.086 yes yes Yen holds hits huge gains against major currencies – posting biggest 1-day
rise vs USD since the 1998 carry trade unwind – as the credit crisis reaches
a panic stage across global markets, spurring a massive unwind of carry
trades and rush to the safe-haven currency (Reuters news, 7/10/2008).

2008-10-24 -5.216 23.374 5.264 yes yes The yen jumped to a 13-year high against the U.S. dollar and a nearly six-year high versus
the euro in Tokyo on Friday, as Asian stocks tumbled on worries of a prolonged global
recession, leading investors to buy back the yen in a hurry to offload high-risk investments
(Dow Jones, 24/10/2008).

2009-03-19 -4.409 18.615 5.176 yes yes US dollar slides to 2-month low after Fed move. The U.S. dollar hit a two-month low on
Thursday after its biggest one-day fall in at least 25 years when the U.S. Federal Reserve
announced it would buy long-dated debt, a move that also lifted stock markets sharply
(Reuters, 19/03/2009).

2010-05-06 -2.230 - 3.672 no yes The U.S. dollar extended losses against the Japanese yen Thursday to trade at a session
low, amid persisting fears of financial contagion in Europe (6/05/2010, Reuters news).

2010-09-15 3.059 10.733 5.244 yes yes The yen fell sharply against the dollar Wednesday after Japan intervened in currency
markets for the first time in more than six years (Dow Jones, 15/09/2010).

2011-03-18 3.002 10.393 4.367 yes yes The dollar spiked about 2 yen to above 81 yen on Friday, after the G7 agreed on joint
intervention in the wake of the yen’s surge to a record high the previous day
(Reuters news, 18/03/2011).
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