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Abstract

We estimate a general microstructure model with transitory and permanent order flow price

impact written as a state-space model. We distinguish jumps in the price (observation)

equation and in the fundamental value (state) equation and introduce information about

the size and direction of the trades. We find that buy and sell orders have an asymmetric

price impact. Jumps barely affect the estimation of the microstructure parameters. Explicit

modeling of microstructure effects decreases the standard deviation of innovations and

therefore more jumps will be detected. On average we detect about one jump per day.

We obtain similar numbers of occurrences of both types of jumps with increased intensity

in the morning and the close. By casting the model in a Bayesian OLS setting with

intradaily volatility seasonality, we are able to estimate the intradaily evolution of market

characteristics.
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1 Introduction

In market microstructure, identifying latent equilibrium prices from noisy observations is impor-

tant for understanding price dynamics. For example, a better understanding of the dynamics of

the price process may be relevant for optimal trading strategies. Disentangling transitory from

permanent shocks may be relevant for algorithmic trading. Last, it may improve the pricing and

hedging of financial options.

In this paper, we investigate the transaction price dynamics on Euronext-Paris stocks in real

time.1 We estimate a state-space model for observed transaction prices and latent equilibrium

prices, accounting for tick-data stylized facts. Our modeling approach accounts for time-varying

volatility, periodic volatility, as well as jumps. We also include in the model information about

the size and direction of the trades, in the spirit of Sadka (2006), and about the duration between

trades, as described in Dufour and Engle (2000).2 Thus, we adopt a direct approach to deal with

microstructure effects, which are treated as microstructure noise in many other models. Such

a treatment allows for a finer detection of jumps. This methodology allows us to capture the

time-varying transitory and permanent effects of the order flow. In light of recent contributions

such as Hameed, Kang, and Viswanathan (2010), which recognize that sell orders may have a

different impact than buy orders, we allow for asymmetric effects of buy and sell orders on prices.

Our estimation strategy combines the advantages of parametric and non-parametric ap-

proaches to provide an original and parsimonious estimation of a real-time transaction data

model. It builds on Bayesian OLS (BOLS) regressions to estimate certain structural param-

eters, for which OLS is known to yield consistent estimates, and on a particle filter for the

estimation of the latent variables. We adapt the bootstrap filter (Gordon, Salmond, and Smith,

1993) to detect jumps. We do not model jumps parametrically, as it is done for instance in Jo-

hannes, Polson, and Stroud (2009). Instead, we use an outlier detection procedure that allows us

to detect jumps in real time both in the observation equation (called transitory jumps, observa-

tion jumps, or additive jumps) and in the state equation (called permanent jumps, fundamental

jumps, or innovation jumps), following the work of Maiz, Miguez, and Djuric (2009). With the

augmented particle filter (Pitt and Shephard, 1999) and the particle learning algorithm (Car-

valho, Johannes, Lopes, and Polson, 2010), we estimate the state and the uncertainty associated

with the innovations.3 This semi-parametric approach is convenient given the problem at hand

1The Paris market has been described and analyzed by Biais, Hillion, and Spatt (1995). More recently, this

market has been described by Foucault, Moinas, and Theissen (2007).
2This model builds on earlier work by Glosten and Harris (1988), Brennan and Subrahmanyam (1996), Mad-

havan, Richardson, and Roomans (1997), and Huang and Stoll (1997).
3See Liu and West (2001) and Storvik (2002) for competing parameter learning techniques. These techniques

are also reviewed in Lopes and Tsay (2011).
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and the rich dynamics of the process.

Jumps have been widely studied in financial econometrics, from a non-parametrically and a

parametrically perspective. For instance, the seminal papers of Barndorff-Nielsen and Shephard

(2004, 2006) have generated a copious literature on non-parametric detection of jumps through

bipower variation, using high-frequency data.4 On the parametric side, Johannes, Polson, and

Stroud (2009) filter latent states from a jump diffusion in a stochastic volatility model, by

combining particle filters with an Euler discretization. They focus on the filtering problem,

leaving aside parameter estimation, however. Bos (2008) estimates a diffusion with jumps and

stochastic volatility, using a Markov Chain Monte Carlo method. He estimates his model on

5-minute sampled exchange rate data. In this model, nor fat tails neither jumps are allowed in

the observation equation, which is what we study in this paper. Duan and Fulop (2007) also

relates to our study in that they aim to shed light on the nature of jumps. They estimate a

jump diffusion with noise (allowing fat tails). They set up a particle filter to extract latent

variables and use maximum likelihood (via the EM algorithm) to estimate parameters on 5-

minute sampled data for the IBM stock. With this fully parametric approach, they find that

ignoring noise would lead to an over-estimation of the jump intensity.

Our work thus complements parametric models such as Johannes, Polson, and Stroud (2009)

in that we use real-time data and take intradaily seasonality into account. Moreover, we remain

agnostic on the distribution of jumps, nor do we make any assumptions on their arrival rate.

Our estimation method is also relatively fast, which allows us to treat a database consisting of

two months of high-frequency data for 12 French companies in just a few hours. Our work also

complements non-parametric techniques, in that our detection of intra-day jumps is robust to

noise.5 Our contribution may therefore be viewed as standing at the crossroad of these various

literatures.

Even though our model may be seen as a discretized jump diffusion, the nature of the de-

tected jumps in tick time may well differ from those obtained using a non-parametric technique

using, say, returns computed over 15-minute intervals. The objectives behind both approaches

are similar, but jumps captured over 15-minute intervals may reflect other microstructure mech-

anisms than those detected in tick-time. The former may be due to the time needed to the

market to incorporate new information (Rasmussen, 2009). The latter, in the context of an

4See e.g. Andersen, Bollerslev, and Dobrev (2007), Jiang and Oomen (2008), Lee and Mykland (2008), and

Andersen, Dobrev, and Schaumburg (2010).
5This is unlike the large non-parametric literature on robust-to-noise integrated volatility estimation. See

for examples the reviews of Barndorff-Nielsen and Shephard (2007) and Bandi and Russel (2007). One notable

exception is the recent contribution of Lee and Mykland (2010), which provides a noise-robust detection of intra-

day jumps. Another study identifying jumps in the presence of noise is provided by Jiang and Oomen (2008),

who derive an i.i.d. noise-robust bipower variation. However, this technique detects jumps at a daily level.
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order-driven market, may be attributed to a large trade volume that walks the order book or to

a discontinuity in the order book that can trigger a large price change (Farmer, Gillemot, Lillo,

Mike, and Sen, 2004). Our model allows the identification of the source of these jumps, through

the inclusion of the size and direction of the trades. Finally, our methodology will differentiate

the impact of these variables on the transitory or permanent nature of jumps, i.e. whether they

are jumps in observed or equilibrium prices, respectively.

Inversely, the literature dealing with realized volatility produced overwhelming evidence for

the presence of jumps, which indicates that high-frequency models should take this stylized fact

into account. The proposed semi-parametric approach, combining a parametric microstructure

model with non-parametric jump detection, leads to a very general model that allows to (re-

)investigate several important questions related to price dynamics. From a microstructure point

of view, the estimation of such model parameters provide a natural metric for price discovery and

transaction costs (Madhavan, Richardson, and Roomans, 1997). By estimating a more general

model allowing for jumps or outliers, we provide robustness to such stylized facts. Engle and

Sun (2007) also consider such microstructure models and estimate them with Kalman filter to

take jumps into account. We improve upon this seminal work by including two types of jumps,

in the observation and the state equations, allowing us to distinguish between transitory and

permanent jumps. The use of Particle Filter (PF) techniques also allows us to update volatility

with each new observation. This means that GARCH type features do not need to be filtered

out, as we attach to each day a given volatility, besides the intradaily volatility. Our method

also allows to determine the asymmetric information component in prices as the day evolves.

In this paper, we use extensively PF techniques. Recent surveys on these techniques are

provided in Doucet and Johansen (2009) or Lopes and Tsay (2011). The usual reason for using

PF techniques is that they allow to handle the non-normality of the innovations and the possible

non-linearity of the relation between the dependent and the explanatory variables. Here, the

reason for using the particle filter instead of the Kalman filter is that it is a very convenient

technique to update with each new observation all relevant parameters inclusive the state. This

feature, already emphasized in Kitagawa (1998), appears to hold as long as one may express

the parameter estimates in terms of sufficient statistics. The detection of jumps is also natural

because, at each step of the algorithm, a density is generated to which the dependent variable

should belong. If the likelihood is too small, then the observation would be classified as a jump.

This idea was first expressed in Maiz, Miguez, and Djuric (2009).

In the following section, we describe the general model. In Section 3, we describe how we

adapt the BOLS, the PF algorithm and the jump detection technique to the problem at hand. In

a short Section 4, we use a simulated setting to demonstrate how the jump detection algorithm

operates in practice. In Section 5, we discuss our empirical results on French stocks. In a last
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Section 6, we conclude and give hints for future research.

2 A Microstructure Model for Prices

2.1 A General Model

In this section, we describe the general microstructure model that we use for the jump detection.

A key feature of this model is that we consider two types of jumps. In the literature dealing

with robust estimation of either ARMA process (Rousseeuw and Leroy, 1988) or state-space

models (Hürzeler and Künsch, 1998, Ruckdeschel, 2010, and Cipra and Romera, 1997), such a

distinction existed already for a substantial time. Following (Fox 1972), jumps with a transitory

impact are called additive outliers, whereas jumps with permanent impact are called innovation

outliers. We borrow from this literature and introduce both transitory (or additive) jumps and

permanent (or innovation) jumps. One important issue will be the detection and treatment of

those jumps, an issue that will be addressed in the next sections.

Formally, we denote by tk the instant of the kth trade on a given day. A priori, observations

are randomly spaced through time. For this reason, we introduce τk = tk − tk−1, the duration

between trades k − 1 and k. In other words, our model is designed for actual data instead

of subsampling from actual data and then interpolation or extrapolation.6 We assume that the

dynamic of the scaled log-price at trade k, yk = 100×log(pk), is given by the following equations:

yk = xk + Z1,kβy,k + σy,kεy,k + Jy,k, (2.1)

xk = µ τk + xk−1 + Z2,kβx,k + σx,k
√
τkεx,k + Jx,k, (2.2)

where xk denotes the (unobservable) fundamental value of the stock, Z1,k and Z2,k capture

private information, Jy,k and Jx,k denote the transitory and permanent jumps, εy,k and εx,k the

innovation terms with V [εy,k] = V [εx,k] = 1, and σ2
y,k and σ2

x,k the variance of the continuous

shocks.

The model is in line with the microstructure literature, which documents temporary and

permanent price impacts. See Glosten and Harris (1988), Madhavan, Richardson, and Roomans

(1997), or Sadka (2006). The explanatory variables, Z, capture the private information through

the order flow. Accordingly, we decompose the total order flow into the trade size and the trade

direction. Therefore, the parameters βx in equation (2.2) measure the permanent impact of

6Typically, if data is sampled at some discrete frequency, one would either perform a linear interpolation

between prices so that a virtual price series at equally spaced times becomes available; or one would take the

last available prices. Obviously, both techniques would introduce a bias. If an asset is very liquid, in the limit,

the approximation may be neglected. For illiquid stocks, both schemes may lead to significant biases.
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order flow surprises, i.e., the degree of information asymmetry (in line with Glosten, Lawrence,

and Milgrom, 1985). This parameter is equal to zero in markets with symmetric information.

Public information is then captured by the innovation εx,k and the jump Jx,k. The jump rep-

resents “exceptional” public news that induce an equilibrium price change, which cannot be

captured by usual innovation εx,k, even with a fat-tailed distribution. Although jumps are often

considered in the continuous-time literature, this stylized fact is in general ignored in the market

microstructure literature. We show that not only decomposing the public information into εx,k

and Jx,k is relevant, but it cannot be ignored as filtering techniques are sensitive to outliers.

On the other hand, the parameters βy in equation (2.1) measure the transitory effect of

order flow variables Z1,k. These variables capture the difference between the transaction and the

equilibrium price and thus mostly reflect transaction costs. Other sources of noise are captured

by εy,k + Jy,k. The term εy,k reflects usual noise effects, such as rounding errors. Jy,k captures

the effect of unusual noise. It could be due to a large market order traded for liquidity reasons,

unrelated to fundamental information, but it could also reflect pricing errors, or any kind of

error that would lead to register an unusual transaction price. The source of the transitory

jumps needs not to be specified, but they need to be accounted for, as they are indeed present

in the data, and need to be differentiated from the permanent jumps in the state equation. Not

accounting for this distinction would lead to wrong conclusion about permanent jumps. We will

explain in Section 3 how we identify non-parametrically both types of jumps.

Whereas continuous-time models usually assume a particular distribution for the jumps, we

are agnostic about this distribution. As such, we are able to address a larger class of processes.

We only assume that the jumps are independent from the errors and from the explanatory

variables Z1 and Z2, and that they are rare and do not cluster.7

Whereas the effect of durations between trades has been ignored in Madhavan, Richardson,

and Roomans (1997) and Sadka (2006), this issue has theoretical foundations in Easley and

O’Hara (1992) and Parlour (1998), among others. Theoretical models differ in their predictive

implications regarding the informativeness of trades. Empirically, there is no consensus either.

Grammig, Theissen, and Wuensche (2007), for example, find that short durations are not related

to the processing of private information. Dufour and Engle (2000), on the other hand, find that

no trade means no information, through an extension of Hasbrouck’s (1991) VAR approach.

We adopt a structural modeling close to their approach and measure the price impact of trades

conditional on the duration between trades. Unlike Madhavan, Richardson, and Roomans (1997)

and Sadka (2006), we also account for time as all our estimations hold “per unit of time.”

7As it is known from the probability theoretic literature dealing with continuous-time processes, the inno-

vations could also be generated by jumps with infinite activity (Aı̈t-Sahalia and Jacod, 2009). We partly take

account of this feature by allowing for non-Gaussian innovations in some of our estimations.
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2.2 Choice of Explanatory Variables

It has been shown that the order flow exhibits some degree of predictability (Hasbrouck, 1991,

and Foster, Douglas, and Viswanathan, 1993). One reason usually invoked for this stylized

fact is that orders are split by traders wishing to minimize their price impact. This can lead

to autocorrelation in the order flow. In line with this empirical evidence, our explanatory

variables Z are the surprise in the trade size and the surprise in the trade direction. See also,

e.g., Brennan and Subrahmanyam (1996), Huang and Stoll (1997), Madhavan, Richardson, and

Roomans (1997), and Sadka (2006).

The explanatory variables are constructed in a preliminary step. We denote by Dk the trade

direction dummy variable. It takes the value +1 if the trade at time tk is buy-initiated, i.e., if the

trade took place on the ask side of the order book, and the value −1 if the trade is sell-initiated.

To distinguish potential asymmetries in the dynamic of the order book, we consider separately

the effect of buy-initiated and sell-initiated trades. For this reason, we introduce a dummy I+
k

(respectively, I−k ) taking the value 1 (−1) if the trade at time tk was buy (sell) initiated and 0

otherwise. Clearly, Dk = I+
k − I

−
k . We also introduce τ̃k = (tk − tk−1)/(100 × σ(τ)), a scaled

measure of duration, where σ(τ) denotes the standard deviation of all durations for a given

company over the entire sample.8 To estimate the surprises, we consider the Logit regression:

I+
k =

{
1 with probability F (xkβ

+
D),

0 with probability 1− F (xkβ
+
D),

(2.3)

where xk includes a constant, the previous trade direction Dk−1, the scaled duration τ̃k, and

possible lags thereof. This is in line with Madhavan, Richardson, and Roomans (1997) and

Sadka (2006). The inclusion of the time elapsed since the previous trade follows Dufour and

Engle (2000). Using the Logit estimate β̂+
D, we obtain a forecast for the trade direction as

F (xkβ̂
+
D), leading to a buy-order surprise defined as: BOSk = I+

k − F (xkβ̂
+
D).

In a similar way, we estimate a Logit regression for the sell-order dummy variable as in:

I−k =

{
1 with probability F (xkβ

−
D),

0 with probability 1− F (xkβ
−
D).

(2.4)

Eventually, the sell-order surprise is defined as: SOSk = I−k − F (xkβ̂
−
D).

Regarding surprises in the trade size, we first compute the monetary volume as Vk = log(Pk×
Nk/10′000), where Pk and Nk denote the share price and the number of shares traded.9 We then

model the signed trade sizes, denoted by I+
k Vk and I−k Vk, for buy-initiated and sell-initiated

8As in the rest of this work, we compute this standard deviation by excluding the duration from close to open.
9The scaling factor of 10’000 is introduced for normalization purpose only.
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trades, respectively. In the spirit of Sadka (2006), we consider the regressions:

I+
k Vk = a0 +

J+∑
j=1

a+
1jI

+
k−jVk−j +

J+∑
j=1

a−1jI
−
k−jVk−j +

J+∑
j=1

a2jDk−j +
J+−1∑
j=0

a3j τ̃k−j + u+
k , (2.5)

I−k Vk = b0 +
J−∑
j=1

b+
1jI

+
k−jVk−j +

J−∑
j=1

b−1jI
−
k−jVk−j +

J−∑
j=1

b2jDk−j +
J−−1∑
j=0

b3j τ̃k−j + u−k . (2.6)

Eventually, we retain u+
k and u−k as the surprises in the signed trade size.

At this point, our general model is:

yk = xk + φ̄+I+
k − φ̄

−I−k + λ̄+I+
k Vk − λ̄

−I−k Vk + σy,kεy,k + Jy,k, (2.7)

xk = µ τk + xk−1 + φ+BOSk − φ−SOSk + λ+u+
k − λ

−u−k + σx,k
√
τkεx,k + Jx,k. (2.8)

On the one hand, parameters φ̄± and λ̄± in equation (2.7) can be interpreted as transitory

parameters, as they do not affect the fundamental value of the stock given by the latent variable

xk. On the other hand, parameters φ± and λ± in equation (2.8) are permanent parameters, as

they measure the impact of a surprise on the fundamental value of the stock.

For further use, it is useful to simplify the notation by rewriting our model as:

yk = xk + Z1,kβy,k + σy,kεy,k + Jy,k, (2.9)

xk = xk−1 + Z2,kβx,k + σx,k
√
τkεx,k + Jx,k, (2.10)

where Z1,k = [ I+
k −I−k I+

k Vk −I
−
k Vk ] and Z2,k = [ τk BOSk −SOSk u+

k −u−k ].

The volatility component in equation (2.10) is decomposed as σx,k = σIDx,k σ
D
x σFx,k, where

σIDx,k denotes periodic intradaily volatility, σDx denotes the daily volatility, and σFx,k denotes what

could be called the fundamental volatility. This last component has a time index, as we update

its estimate with each new observation. The volatility component in equation (2.9), σy,k, is

updated in a similar manner. We assume that the periodic daily seasonality affects the volatility

of the fundamental value xk instead of the volatility of the microstructure noise. The time index

on βy,k and βx,k also reflects the fact that those parameters will also be updated with each new

observation.

3 Methodological Issues

Having discussed our most general model, we now turn to its estimation. We adopt a Bayesian

framework, where we update the parameters not only on a daily basis but as observations

materialize. This updating, in addition to the explicit modeling of the intradaily volatility,

allows us to show that parameters and volatilities have rich patterns through time. Finally, we

also describe how to estimate the jumps over the day.
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3.1 Estimation strategy

To start the discussion about the estimation of the model, it is useful to consider a simplified

model without jumps. Once this simpler model has been discussed, we will turn to the detection

and treatment of the jumps.

In order to take the temporal variability of the parameters into account, we re-initialize the

parameters each day and use each new observation yk to update the parameter estimates. Such

an approach is referred to as online estimation in the PF literature. We use Bayesian OLS

(BOLS) to estimate βy and βx, and PF techniques to estimate xt, σy, and σx.
10 We assume

Bayesian priors, as in Lopes and Tsay (2011):

x0 ∼ N(m0, c0), (3.1)

βy ∼ N(by0 , σ
2
yBy0), βx ∼ N(bx0 , σ

2
xBx0), (3.2)

σ2
y ∼ IG

(n0

2
,
n0

2
σ2
y0

)
, σ2

x ∼ IG
(ν0

2
,
ν0

2
σ2
x0

)
. (3.3)

In practice, to initialize the algorithm, we set m0 = y1 the first log-price in the sample and we

let c0 = 2 × V̂ [y1:100], where V̂ [y1:100] denotes the estimate of the variance based on the first

100 observations. In the Bayesian literature, it is common to assume that variances follow an

inverse-gamma distribution, IG, as it is a natural conjugate prior for the normal distribution.

We also set n0 = ν0 = 10, as in Lopes and Tsay (2011). In addition, we let σ2
y0

= 5 σ2
y,KF and

σ2
x0

= 5 σ2
x,KF , where σ2

y,KF and σ2
x,KF are the estimates of the innovation variances obtained

from the Kalman Filter. We also used other scaled variances but our eventual estimates were

rather similar.

3.2 Bayesian OLS

Before discussing the parameter-learning algorithm for the estimation of the state variable and

the innovation volatilities, let us start with the way we update the βy and βx estimates. We

assume that Nd observations are available on a given day d. In a traditional OLS setting, we

would simply estimate βy and βx from the regression:

yk − yk−1 = (Z1,k − Z1,k−1)βy + Z2,kβx + uk for k = 1, · · · , Nd.

With BOLS, each new observation allows to update the parameters βy,k and βx,k, which is the

reason why these parameters carry a time index. In our estimation, we want to re-initialize

10We adopt direct online estimation of the model using particle-filter techniques as opposed to a batch estima-

tion, which would use the full sample for estimation. Batch estimation proved to lead to slow convergence of the

βy and βx parameters, in particular because the estimation of βx involves as a left-hand-side variable xk − xk−1,

which also needs to be estimated.
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the estimation procedure for each new day. For this reason, we will distinguish the estimations

performed for the first day from the subsequent ones.

For the first day, we initialize hyper-parameters as by0 = 0 and bx0 = 0 and we set By0 =

INZ1
and Bx0 = INZ2

, where NZ1 and NZ2 represent the number of parameters in βy and βx,

respectively. As the price yk is made available, it is natural to update the parameters as follows.

Let b0 =
[
b′y0 , b

′
x0

]′
and

B =

[
By0 0

0 Bx0

]
.

Also, let for k = 2, · · · , Nd,

Z2:k =


Z1,2 − Z1,1 Z2,2

Z1,3 − Z1,2 Z2,1

...
...

Z1,k − Z1,k−1 Z2,k

 and ∆Y2:k =


y2 − y1

y3 − y2

...

yk − yk−1

 .
Then the Bayesian estimate is:

β̂k =
[
β̂′y,k, β̂

′
x,k

]′
=
[
B−1 + Z ′2:kZ2:k

]−1 [
B−1b0 + Z ′2:k∆Y2:k

]
= [SZ′Z;k−1 + Z ′k:kZk:k]

−1
[SZ′Y ;k−1 + Z ′k:k∆Yk:k] , (3.4)

where SZ′Z;k−1 ≡ B−1+Z ′2:k−1Z2:k−1 and SZ′∆Y ;k−1 ≡ B−1b0+Z ′2:k−1Y2:k−1 are sufficient statistics

for the parameter estimates βk, which can be updated with each new price observation yk. At

the end of each day, we obtain β̂Nd
, where Nd denotes the number of trades on day d.

For subsequent days, we initialize the hyper-parameters with b0 = β̂Nd
, meaning that we

start the day using as hyper-parameters, the parameters we obtained at the close of the previous

day. Furthermore, we set:

B =

(
n0

Nd

SZ′Z;tNd

)−1

.

Then, we proceed updating the parameters as in equation (3.4).

3.3 Particle-Filter Estimation of the State and Standard Deviations

At this stage, we have described how to obtain the parameter estimates. Now we describe how

the state xk and the standard deviations of the continuous shocks σy,k and σx,k are estimated via

particle learning, as described by Carvalho, Johannes, Lopes, and Polson (2010). Given that we

can estimate the parameters βy and βx via BOLS, this approach appears to be the most efficient

way according to the simulations performed in Lopes and Tsay (2011). We distinguish again
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the first day from the subsequent ones. For the first day, we start with the hyper-parameters

presented in equations (3.1)–(3.3). With each new observation, after estimation of the state xk,

denoted by x̂k, we update the following sufficient statistics of sum of squared residuals:

SSRy,0 = n0σ
2
y0
, (3.5)

SSRy,k = SSRy,k−1 + (yk − x̂k − Z1,kβ̂y,k)
2, (3.6)

SSRx,0 = ν0σ
2
x0
, (3.7)

SSRx,k = SSRx,k−1 + (x̂k − x̂k−1 − Z2,kβ̂x,k)
2/τk. (3.8)

By defining nk = nk−1 + 1 and νk = νk−1 + 1, we notice that a resampling of the standard

deviations is easy to obtain. It suffices to draw from the following distributions:

σ2
y,k ∼ IG

(
nk
2
,
1

2
SSRy,k

)
and σ2

x,k ∼ IG

(
νk
2
,
1

2
SSRx,k

)
.

For each new day, we re-initialize the SSR with:

SSRy,0 =
n0

Nd

SSRy,Nd
and SSRx,0 =

ν0

Nd

SSRx,Nd
.

The idea of doing so is that the best parameter estimate as the market opens is yesterday’s

close, although the error around this observation can be very large. As the new day evolves,

parameter estimates will evolve to new values and the standard deviations (filtered for intradaily

seasonality) will decrease.

Particle filter and estimation of remaining parameters

To cast our model within the pPF literature, we notice that equations (2.1) and (2.2) can be

rewritten as:

yk|xk, Zk ∼ p(yk|xk, Zk), (3.9)

xk|xk−1, Zk ∼ p(xk|xk−1, Zk), k = 1, 2, · · · , Nd. (3.10)

We have regrouped all predetermined variables in a vector Zk. We denote by p a generic prob-

abilistic model that needs to be specified depending on the particular problem.11 If parameters

were known, two fundamental approaches could be used to estimate the latent state xk.

The seminal approach, due to Gordon, Salmond, and Smith (1993), called Bootstrap Filter,

proceeds as follows:

1. At the initial step 0, simulate M particles x
(i)
0 ∼ N(m0, c0) for i = 1, · · · ,M.

11This general notation allows for a potentially non-linear and non-Gaussian model. Even though our model

is linear and Gaussian, we use the particle filter, as it is a convenient setting to update parameter estimates with

each new observation.
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2. At step k, propagate the particle x
(i)
k−1 to some x̃

(i)
k using equation (3.10).

3. Resample from the candidate particles by drawing with resampling, where particle x̃
(i)
k is

chosen with a probability proportional to the weight w
(i)
k ∝ p(yk|x̃(i)

k , Zk).

Having described this algorithm, several remarks are of order. First, in step (2), we propagate

x
(i)
k−1 to x̃

(i)
k by using:

x̃
(i)
k = x

(i)
k−1 + Z2,kβx,k + σx,k

√
τkε

(i)
x,k,

where εx,k is drawn from a Gaussian N(0, 1) or possibly from some distribution with fat tails.

In other words, we do not simulate jumps here. The reason for this is that we want to obtain a

conservative value of x̃k, which, when confronted with yk, will allow us to detect if an abnormal

realization of yk took place. And, indeed, a first way to detect jumps is to consider the likelihood

p(yk|x̃(i)
k , Zk) for all the candidate particles. There are cases where, even for a very large amount

of particles, M, all the likelihoods are infinitesimally small. Such cases would clearly qualify as

jumps given that the observations just do not match the model.

Second, if no jump is detected, meaning that the likelihoods p(yk|x̃(i)
k , Zk) are not all infinites-

imally small, it is still possible that the realization of yk is highly unlikely given the current

parameter estimates and xk. To investigate this issue, we construct the posterior distribution

p(yk|Ȳk−1, Z̄k), where Ȳk = {yk, yk−1, · · · , y1} and Z̄k = {Zk, Zk−1, · · · , Zt1}, and investigate if

the actual observation yk can come from this posterior distribution with reasonable probability.12

To obtain this predictive distribution, we follow the approach described by Maiz, Miguez,

and Djuric (2009). First, the predictive density is defined as:

p(yk|Ȳk−1, Z̄k) =

∫
p(yk|xk, Z̄k)p(xk|Ȳk−1, Z̄k)dxk. (3.11)

To simulate from this density, it is necessary to sample from p(xk|Ȳk−1, Z̄k), defined as:

p(xk|Ȳk−1, Z̄k) =

∫
p(xk|xk−1, Z̄k)p(xk−1|Ȳk−1, Z̄k)dxk−1

≈ 1

M

M∑
i=1

p(xk|x(i)
k−1, Z̄k). (3.12)

The reason for this is that the particles resulting from the boostrap filter provide a sample

representation of p(xk−1|Ȳk−1, Z̄k), see Gordon, Salmond, and Smith (1993, p. 108). Contem-

plating equation (3.12), we notice that the predictive density can be reinterpreted as a mixture

12We always assume in determining the posterior distribution that the explanatory variables of the model are

known. In practice, as the time of the next trade k and the traded price yk become known, also the other

right-hand-side variables for our model would become known.
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of distributions, from which it is trivial to sample. The algorithm is now traced. We start with

simulating from equation (3.12) a sample of i′ = 1, · · · ,M ′ draws. To do so, we uniformly draw

from the particles x
(i)
k−1 and for each draw we generate x

(i′)
k using equation (3.10). This yields a

sample drawn from p(xk|Ȳk−1, Z̄k).
Then, as a next step, we notice that equation (3.11) can be approximated as:

p(yk|Ȳk−1, Z̄k) ≈
1

M ′

M ′∑
i′=1

p(yk|x(i′)
k , Z̄k).

Again, the integral is viewed as a mixture of distributions from which we can sample. We consider

M ′′ draws obtained as y
?(i′′)
k = ˜̃x

(i′′)
k + Z1,kβy,k + σy,kε

(i′′)
y,k , for i′′ = 1, · · · ,M ′′, where the ˜̃xk are

redrawn among the x
(i′)
k . These y?k constitute a sample drawn from the posterior distribution. It

can be used to construct the empirical confidence interval by finding those (α/2)% observations,

for α being some level of probability, such as 1%, to be in the tails. The rule to classify an

observation into a jump is: if yk is larger than the upper threshold, we consider the observation

to be a positive jump. If yk is smaller than the lower threshold, we classify it as a negative

jumps. We will discuss later on how we treat these observations for which it is thought that a

jump occurred.13

Even though the Bootstrap Filter, as explained above, plays a crucial role in the detection of

jumps, it turns out that for the actual parameter estimation the so-called Auxiliary Particle

Filter (APF) of Pitt and Shephard (1999) plays a particular role. Whereas the Bootstrap Filter

starts by propagating and then resampling, the APF is somewhat more efficient, as it avoids

some of the throwing away of the resampled x̃
(i)
k−1. This algorithm is based on the following

steps, where we follow Lopes and Tsay (2011):

1. Resample x̃
(i)
k−1 from x

(i)
k−1 using as weights w

(i)
k−1 ∝ p(yk|g(x̃

(i)
k−1),Zk).

2. Propagate x̃
(i)
k−1 to x

(i)
k using p(xk|x̃(i)

k−1,Zk).

3. Resample x
(i)
k from x̃

(i)
k with weights w

(i)
k ∝ p(yk|x̃(i)

k ,Zk)/p(yk|g(x̃
(i)
k−1),Zk).

In the first step of this algorithm, g denotes for instance the expected value of xk:

g(x
(i)
k−1) = Ek−1 [xk] = x

(i)
k−1 + Z2,kβx,k.

This implies that in the second step we use particles x
(i)
k−1 that are of relevance for yk. Because

of this, the algorithm is generally more efficient for the estimation of the latent state and the

parameters.

13In this manner, we also discuss parameter estimation.
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We notice that, even though the algorithm is more efficient for parameter estimation, it is

less adapted in the case where yk incorporates a jump. Indeed, if a permanent jump took place

at time tk−1, then xk will have adjusted. This is not taken into account in the APF approach

as only g(x
(i)
k−1) is used. For this reason, we prefer to proceed in two steps. First, we use the

Bootstrap Filter to detect jumps and then we use an algorithm involving APF for the parameter

estimation.

So far, we assumed the parameters to be known. Presently, we consider the situation where

the parameters have to be estimated. For this purpose, we use the Particle Learning (PL)

algorithm of Carvalho, Johannes, Lopes, and Polson (2010). Their method requires that the

parameters can be estimated from sufficient statistics. Other algorithms for parameter esti-

mation, such as Storvik (2002), similarly require that parameters can be updated by using

sufficient statistics. As in Lopes and Tsay (2011), we denote by sk = S(sk−1, xk, yk, Zk) and by

sxk = K(sxk−1, θ, yk) the parameter- and state-sufficient statistics. The PL algorithm is given by

the following steps:14

1. Resample (θ̃, s̃xk−1, s̃k−1) from (θ, sxk−1, sk−1) with weights wk−1 ∝ p(yk|sxk−1, θ).

2. Sample xk from p(xk|s̃xk−1, θ̃, yk, yk−1, · · · , y1).

3. Update the parameter-sufficient statistics: sk = S(s̃k−1, xk, yk, Zk).

4. Sample θ from p(θ|sk).

5. Update the state-sufficient statistics: sxk = K(s̃xk−1, θ, yk).

For the example at hand, we have already seen how in an independent step, sufficient statistics

can be obtained for the estimation of βy and βx during the day as new yk become available. For

the problem at hand, the PL algorithm translates into the following:

a) Simulate i = 1, · · · ,M particles for the state x
(i)
0 ∼ N(m0, c0).

b) Simulate i = 1, · · · ,M particles for the parameters σ
2(i)
y ∼ IG(n0

2
, n0

2
σ2
y0

) and σ
2(i)
x ∼

IG(ν0
2
, ν0

2
σ2
x0

).

c) Consider σ̄2
y,t and σ̄2

x,t the variance of the observation and state equations computed by

averaging over the various particles. Following step (2) above, we also sample xk as xk =

x
(i)
k−1 + Z2,kβx,k + σ̄x,k

√
τkεx,k. Let us define x̂k = x

(i)
k−1 + Z2,kβx,k for further use.

d) If trade k does not correspond to a jump, then we start updating βy,k and βx,k as outlined

previously using the corresponding sufficient statistics.

14We adapt from Lopes and Tsay (2011).
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e) The model can be rewritten as:

yk = Z1,kβy,k + x
(i)
k−1 + Z2,kβx,k + σ

(i)
y,k

√
τkεy,k + σ

(i)
x,kεx,k.

Therefore, using estimates of βy,k and βx,k, it is possible to estimate the likelihood of yk

conditional on its mean Z1,kβy,k + x
(i)
k−1 + Z2,kβx,k and its variance σ

(i)2
y,k + σ

(i)2
x,k τk. Denote

the likelihood of each particle by l(i). We then resample from those sufficient statistics and

parameters by using as weights: w(i) = l(i)/
∑M

i=1 l
(i). This gives us σ̃

(i)
y,k, σ̃

(i)
x,k, x̃

(i)
k , and

˜̃x
(i)
k . We also resample from the sufficient statistics S̃SR

(i)

y,k and S̃SR
(i)

x,k, where these latter

expressions correspond to sum of squared residuals seen in equations (3.6) and (3.8).

f) The next step is to propagate the state using an equation similar to the one of the Kalman

filter. We define the precision for each particle as:

1/V (i) = 1/σ
2(i)
y,k + 1/(σ

2(i)
x,k τk),

and evaluate the best predictor of the mean as:

m(i) = V (i) ×

(
yk − Z1,kβy,k

σ2
y,k

+
˜̃x

(i)
k

σ
2(i)
x,k τk

)
.

Eventually, we obtain particles for the next state as:

x
(i)
k = m(i) +

√
V (i)ε

(i)
x,k,

where ε
(i)
x,k is drawn from some given density such as the Gaussian or the Student t.

g) At this stage, it is possible to update the sufficient statistics as already indicated in equations

(3.6) and (3.8) but for all particles. We obtain:

nk = nk−1 + 1,

SSR
(i)
y,k = SSR

(i)
y,k−1 + (yk − x(i)

k − Z1,kβy,k)
2,

νk = νk−1 + 1,

SSR
(i)
x,k = SSR

(i)
x,k−1 + (xk − x(i)

k−1 − Z2,kβx,k)
2/τk.

h) In this step, we generate new particles for the innovation and observation error standard

deviations:

σ
2(i)
y,k ∼ IG

(
nk
2
,
1

2
SSR

(i)
y,k

)
,

σ
2(i)
x,k ∼ IG

(
νk
2
,
1

2
SSR

(i)
x,k

)
.

With this last step, it is possible to go to the next observation yk+1.
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Having presently described how to detect a situation where the observation yk is abnormally

small or abnormally large, we presently turn to explaining how we detect and handle the two

types of the jumps.

4 Detection of Jumps and Simulations

The objective of this section is to discuss the way jumps are detected and to apply the jump

detection in the setting where state variables are estimated using particle filter techniques.

4.1 Discussion of Jump Classification

In Figure 1, we represent two possible trajectories of jumps corresponding to permanent jumps

and transitory jumps. As these pictures indicate, a permanent jump will be associated with a

change in regime, here from some low price to some higher one. A transitory jump, on the other

hand, is a jump where one of the prices deviates from the general trajectory. Such differences in

the price process have already been discussed in Fox (1972). In the context of financial markets,

permanent jumps can be associated with the arrival of relevant financial news, whereas transitory

jumps could be associated with a temporary lack of liquidity.15

This figure also suggests an obvious strategy for jump detection: if after a significant change

in price, the price remains for more than one observation in that new position, we consider it to

be a permanent jump. On the other hand, if after one outlier the price returns to a similar value

from where it started, we call it a transitory jump. From this figure, it is also clear that jumps

can be detected in real time. The classification of the jumps will require only one additional

observation.

4.2 Discussion of Simulation

We consider for this illustration the following data generating process:

yk = xk + σyεy,k + Jy,k,

xk = xk−1 + σxεx,k + Jx,k,

where innovations εy,k and εx,k are uncorrelated and the jumps Jy,k and Jx,k are independent

compound Poisson processes. This means that, when there is no jump, Jy,k = 0 and Jx,k = 0.

When there is a jump, it will be drawn from a normal distribution. The intensity of the jumps

15In this context, illiquidity could in principle last for several trades before liquidity is restored. In this paper,

we focus on short-lasting illiquidity only.
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is as follows: Jy,k takes a non-zero value with an intensity of λy = 1/60 meaning that every 60th

observation, there will be a jump on average. We also assume that Jx,k occurs with an intensity

of λx = 1/50. When a jump occurs, then Jy,k ∼ N(2, 1) and Jx,k ∼ N(−2, 1).

We simulate a sample with T = 200 observations starting with x0 = 100 and we set σy = 0.1

and σx = 0.2. Such a magnitude for the signal-to-noise ratio is also what one might observe for

actual data.16 Eventually, we focus on a window covering observations 60 till 160. We assume

in this simulation that the parameters are known. We estimate the state using a particle filter

with M = 2000 observations. We also introduce M ′ = M ′′ = 2000, which are required for the

jump estimation as discussed earlier. The results are presented in Figures 2 and 3.

Let us start with the discussion of Figure 2. The observations are represented by an o symbol

and the true values of the state, represented by a +. At each step, the particle filter provides

us with the median estimate of the state. This is represented by the continuous line. We notice

that this line tracks very well the actual states. We also represent a confidence interval following

our modification of the jump detection algorithm of Maiz, Miguez, and Djuric (2009). This

confidence interval is represented with dashed thin lines.

At observations 87 and 88, there are two consecutive negative jumps. The algorithm detects

the second larger jump and indicates that it is a permanent (or innovation) jump. This is followed

by an immediate adjustment, backwards, of the estimation of the state once a new observation

becomes known. Because of this backwards step, the estimation of the state is adjusted as can

be seen by inspection of the continuous line which touches the center of the circle (the cross

would not be known in a real life exercise since this is the latent state).

At observation 118, there is also a jump in the state but it is not large enough to be detected.

Indeed, the total variation induced by the jump and the innovation of the observation equation

obfuscates the detection of a jump. Inspection of the estimate given by the continuous line in

the center shows, however, that in this case, the particle filter is still able to filter in a very

satisfactory manner the state as can be seen by focusing on the continuous line that takes a

strong dip and then climbs back.

At observation 158, we find a very large observation. In this case, the jump detection

algorithm calls for a transitory (or additive) jump. The observation is ignored and the state

is not updated, which translates into a small horizontal step in terms of the underlying state

estimation and its associated confidence intervals.

If we move on to Figure 3, we can corroborate those findings. The upper figure presents

the distance of the actual observations to the filtered estimates standardized by the standard

16We experienced with various signal-to-noise ratios and various parameters. A documentation of the outcomes

of our Monte-Carlo experiment with the quality of our jump detection algorithm is to be made available elsewhere.

In general, our method tends to perform rather well.
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deviation of the innovations. The standardization has essentially the role of transforming the

variables into a new variable that would behave like a Gaussian distribution with mean zero and

unit variance where there is no jumps. If we focus on observations 87 and 118, for which the

algorithm was not able to detect that there was a jump, we notice that the resulting measure

cannot be distinguished from the other points. For observation 88 where a jump was detected,

given the way that the algorithm performs the correction off the state estimation, we find no

difference. In observation 158, we have an additive outlier, which the algorithm neglects in the

estimation of the state. As the state is not updated, we obtain a large difference between the

observation y and the retained state x in this case.

If we turn to the lower figure, we can verify that, for observations 87 and 117, there are

relative large variations in x, but they are not sufficiently large as to count as extremes, the

algorithm is able on its own to capture those observations. For observation 88, a large deviation

for the state occurs, which results from the correction that was made in recognition of the

jump. On the other hand for innovation 158, there is no variation in the state, as the algorithm

recognized that there was a transitory jump in the observation and therefore decided not to

update the state.

We conclude this short section by noticing that the algorithm appears to work as expected.

It also demonstrates that it may be very difficult in practical situations to decide if a jump

occurred or not because noisy observations may hide the true state.

5 Empirical Investigation

5.1 The Data

As an illustration of the general methodology outlined above, we use tick-by-tick data from

Euronext Paris.17 We use data for twelve companies. We focus in our empirical investigation on

the months of January and February 2003, encompassing 42 trading days. This was a period just

a few weeks before the second Irak war started and it was surrounded by uncertainty whether

the war would take place or not.

5.1.1 Descriptive statistics

Table 1 provides some descriptive statistics for returns, durations and volume, for the 12 stocks

during the sample period. The number of observations varies greatly across stocks, revealing the

wide spectrum of liquidity we consider for our application. Mean returns are virtually zero.

17Data from this stock market has also been investigated by Biais, Hillion, and Spatt (1995).
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The liquidity can be also measured by the average duration between trades. It ranges from

an average of 6.7 seconds between two trades for Alcatel and 43.5 seconds for Sodexho. The

average trading volume ranges between 2’600 euros for Alstom and 39’800 euros for Total. As the

skewness and kurtosis for the intraday return reveal, some stock returns are highly non-normal.

For instance, Suez displays a highly rightward skewed distribution, whereas Vivendi is extremely

leftward skewed.

Figures 4 and 5 display the evolution, for five days of January 2003, of the raw data and of

the log-difference of the prices expressed in basis points.18 Starting with Figure 4, which displays

the price process, we notice very large price variations in particular for the most illiquid stock,

Sodhexo. For Sodexho, the largest change is 45bp (almost 2%). For Alcatel, the maximum price

change is about 6.25 bp (or about 1.4%). As Figure 5 reveals, once we consider log-differenced

prices, there are large outliers in the data which we aim to filter. Also, if we consider the most

liquid stock Alcatel (Figure 5-a), the price discreteness is revealed, whereas it is much less visible

in the case of the illiquid stock Sodexho (Figure 5-b), whose price dynamic is more dominated

by trade durations. In any case, we conclude from those figures that large jumps are apparent

in the data. But it is not obvious whether they come from the noise component or from sudden

large changes in equilibrium prices.

In Figure 6, we display 1000 observations for Alcatel starting with observation 1000 for the

second day in the sample. We observe that most of the trades take place at the second decimal

such as 4.68, 4.69 etc. There are also trades that take place between the bid-ask spread. Those

trades between the bid-ask spread are typically trades associated with a relatively large volume.

Those trades may induce a price discount.

5.1.2 Preliminary Treatment of Intraday Periodic Volatility

Intraday trading regularities lead to a periodic volatility pattern. This stylized fact of high

frequency financial time series has been put forward by Andersen and Bollerslev (1997) and

Andersen and Bollerslev (1998) among others. Before estimating the general model (2.9)–(2.10),

we construct the intradaily volatility component σIDx,k. To do so, we follow ideas of Taylor and Xu

(1997) and Boudt, Croux, and Laurent (2008) and use a robust scale estimator, for each intraday

period situated on an equally spaced grid defined over one day. The grid is given by 10-minute

intervals. This robust scale estimator is then smoothed over the day, using the Loess smoothing

algorithm.19 Finally, the intradaily volatility component for each trade, σIDx,k, is obtained via a

18It is possible that various trades took place in the same second. We treat such cases as if it was a single

trade. To do so, we compute for this second, the average price of the transaction as well as the total volume.
19Popular smoothing algorithms are Henderson-Prescott, Golay-Salvay, and Loess. Eventually, we retain this

latter filter. Details are provided in Appendix A.
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cubic interpolation to account for the second at which the trade took place.

Figure 7 shows the estimated intradaily volatility component σIDx,k for Alcatel (relatively liquid

stock) and Sodexho (relatively illiquid stock). We find the usual U-shaped pattern of intradaily

volatility. We notice that the Loess and Savay-Golay smoothers result in rather similar patterns.

The Hodrick-Prescott smoother provides very smooth curves. Inspection of the quality of the

filtered data reveals that the Loess smoother results in somewhat better intradaily seasonality

removal. This is the reason why we retain this smoother. Figure 8 reports the autocorrelation

pattern of absolute returns for Sodexho, corrected for intradaily periodicity and daily volatility

(|rk| = 100× |log(pk/pk−1)| /
(√

τk σ
DσIDx,k

)
), for 20’000 lags. Such a large number of lags covers

several days of data. As this figure shows, a significant amount of intradaily volatility has been

removed by the filter.

5.1.3 Order flow surprises

Table 2 shows the order flow regression results. These regressions aim at extracting the surprise

component of trade direction and trade volume, as described in equations (2.3), (2.4), (2.5), and

(2.6).

Inspection of the Logit regressions for the trade-direction prediction reveals that the past

direction of the trade (Dk−1) is highly significant. Thus, buy trades tend to be followed by

buy trades and sell trades by sell trades. Interestingly, in line with the results of Dufour and

Engle (2000), the fact of having no trades contains information. In particular for sell trades,

the scaled duration between the current trade and the previous trade (τ̃k) contains information.

The longer the time since the last trade, the higher the probability that the next trade is a sell

order. In a certain sense, no news (i.e., no trade) means bad news. The results for buy orders

are more mitigated. For the 12 regressions, duration plays a significant role in eight cases, but

with alternating signs. The negative sign suggests that, if one has to wait for a long time before

the next trade occurs, a buy order becomes less likely.20

Turning to the regressions for the volume prediction, we notice that there is persistence, that

the sign of the previous trade matters, and that duration plays a role. More precisely, a high

volume for a trade of a given type generates a high volume of similar type, but also, up to a

certain extent, of the other type, as we notice by inspecting the parameters on I+
k−1Vk−1 and

I−k−1Vk−1. If we consider the volume regressions for buy trades, the positive sign on the past

trade direction dummy, which is positive, we notice that purchases are in general followed by

purchases and sales by sales. The sign of the duration variable indicates that the longer the time

20The reason why the coefficients for the buy and sell initiated Logit regressions differ is that Dk also contains

0 for the cases where a trade took place between the bid-ask spread. Thus the identity I+k = 1 − I−k does not

hold and the coefficients in the Logit regressions do not need to be the same.
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since the last trade, the lower the expected future volume.

5.2 The microstructure model

Tables 3 and 4 report summary statistics on the parameter estimates. For the sake of compar-

ison among existing methods, we first present in Table 3 the Kalman filter estimates for our

microstructure model, before turning to the particle filter approach in Table 4.

Relying on the Kalman filter approach (Table 3), we observe how the noise-to-signal ratio is

changed through the inclusion of the order flow surprises variables (see rhe upper panel for the

full microstructure estimate and the lower panel for the RWN model). We find that, compared

to a simple random walk with noise model, the inclusion of order flow reduces the noise variance

by more than the signal variance. For example, the noise-to-signal ratio for Alcatel is reduced

from about 3 (8.6/2.6) to about 2 (5.2/2.4) after including order flow in the model.

The relevance of the order flow is also revealed through the magnitude of the parameters

in the microstructure model. We find that parameters associated to permanent effects, φ+,

φ−, λ+, and λ−, are all statistically significant with the expected sign. In the Kalman filter

estimation, φ+ and φ− lie between 0.6 and 6.9, whereas λ+ and λ− lie between 0.1 and 1.9. That

means that an order-flow-surprise unit increase, corresponding to about 4’000 euro, can move

prices permanently by as much as 8 basis points.21 We also note significant deviations from the

equilibrium price due to transaction costs, as measured by the parameters φ
+

, φ
−

, λ
+

, and λ
−

.

φ
+

and φ
−

range between 1.3 and 8.2, whereas λ
+

and λ
−

range between -1.8 and -0.2.

The observation equation contains a trade dummy whereas the state equation contains its

unexpected component. We notice that the sign of the transitory component φ
±

is compatible

with the notion that orders have a price impact that reverts however to its long-run level. The

permanent component φ± indicates that surprises of trades have a permanent impact on prices.

As one could expect, φ
±

is larger than φ±.

Turning to the impact of volume, the positive sign of λ± indicates that unexpected large

volumes lead to price impacts. On the other hand, the universally negative parameter λ
±

demonstrates that large volumes are associated with price discounts.

In Table 3, we also report the result of a likelihood-ratio test for the null hypothesis that the

impact of buy trades is the same as the one of sell trades. As the row labeled LR1 indicates,

the 1% critical level is exceeded in all cases except for Sodexho and Vivendi. Thus, buy orders

differ in their impact on prices from sell orders. What causes this phenomenon is, however, less

clear. For some stock, it seems to be the long-run impact of the trade surprise. For others, it

seems to be the differential impact of transitory shocks of both types of orders.

21Note that the observed dependent variable yk is 100 times the log-price.
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The last row of Table 3 displays the likelihood-ratio test for the null that the microstructure

variables have no effect. Given the very high level of this test, we can confidently assume that

the microstructure variables should be included in the model.

In Table 4, we present the parameter estimates resulting from the general estimation, which

involves a daily re-initialization of the parameters as well as an estimation via the particle-filter

algorithm. In this model, jumps have also been removed. Since the parameters are updated

with each new observation, they vary over time. Table 4 presents, therefore, averages of the

parameter estimates. Comparison of those averages with the estimates of Table 3 reveals that

by and large the averages are similar. This means that removing jumps does not affect by much

the parameter estimates. In parenthesis, we represent the standard errors of the parameter

estimates. These measures are the actual standard deviations of the various estimates. Given

that each day, these parameters are re-initialized with a rather uninformative prior, it is not

astonishing that the resulting standard errors are rather large.22

In Figures 9, 10, and 11, we trace the evolution of the parameters resulting from the PF

estimation and the preliminary Kalman filter ones (the constant lines). Focusing on Figures 9

and 10, we notice the relative stability of the parameters over time. Even though the various

parameters exhibit at times deviations from the average, we notice that, on average, those

parameters are relatively stable. Inspecting the figures corresponding to buy trades (+) and

sell trades (−), we notice some divergence of the parameters. This corroborates the finding by

Hameed, Kang, and Viswanathan (2010) that the dynamic for the buy side of the market differs

from the one of the sell side.

We believe that allowing for temporal evolution of the parameters could be further useful in

measuring the impact of the news arrival and the structure of market participants over time. This

would allow a better understanding of the relative proportion of market participants (informed

traders versus uninformed ones) present over the day.23 If we focus on Figure 11, presenting

the estimates of the standard deviation of the price and fundamental value equations, we notice

that these parameters can deviate substantially from the long-run average parameter and this for

several days. The reason for this is that these parameters contain a daily volatility component

which fluctuates from day to day and measures the variation from calm to agitated days.

For many days, we also observe large volatility in the morning as the market opens which

then decreases over the day. Such an evolution is compatible with information revelation during

the day.

22We also imposed at some point more informative priors, in which case the variability of the estimates is

strongly reduced.
23Exploration of such a path is left for future research.
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5.3 Jumps

In this section, we examine two important questions. First, does jump detection depend on

the liquidity of the underlying asset once noise is explicitly modeled as it is done in our state-

space approach? Second, what is the effect of including microstructure variables in the model?

Concerning the former question, we would expect a priori that permanent jumps do not vary

too much in function of the stocks’ degree of liquidity. This is because these jumps should

capture a public information component, in principle independent of liquidity. On the other

hand, transitory jumps are expected to vary across the level of stock liquidity, as less liquid

stocks could be characterized by more transitory large deviations from the equilibrium price.

Concerning the latter question, by including order flow explicitly in the system, we expect to

detect whether both type of jumps could be triggered by order flow surprises, be it signed volume

or trade direction.

5.3.1 Jump and Liquidity

How does variation in liquidity affect jump detection? To answer this question, we remind that

we are dealing with positive and negative jumps, at the level of the observation equation (J+
y , J

−
y )

and at the level of the state equation (J+
x , J

−
x ). Consider as a first, very broad measure, the sum

of all jumps over the two months of data for each one of the 12 companies. Figure 12 represents

the total number of jumps as a function of the overall liquidity of the stock measured by the total

number of trades observed during the period. Tables 5 and 6 report statistics on jumps, J+
x , J−x ,

J+
y , and J−y , detected with the method described in Section 3. The difference between Tables 5

and 6 is that the former reports results for the model including all microstructure explanatory

variables, whereas the latter excludes these regressors.

We find that the overall jump probability depends, to some extent, on the liquidity level.

The detected jump level does not seem to vary across stocks for which we have more than

100’000 trades. But we do detect more jumps in the least liquid stocks, those with less than

100’000 trades. Having made this general statement, it is possible to examine statistics of jumps

at a more detailed level. This is done in Tables 5 and 6. We notice that France Telecom,

which is the second most liquid stock in our sample with 169’448 trades jumps as much as Suez

(7th most liquid stock) for which we have 114’456 trades. Table 5 shows a total of 50 jumps

(J+
y = 16, J−y = 9, J+

x = 9, J−x = 16) for France Telecom and 50 as well (J+
y = 13, J−y = 13,

J+
x = 13, J−x = 11) for Suez.24 But Sodexho (the least liquid stock with 28’824 trades) jumps

24One striking feature of this table is that the total number of detected jumps in the price equation Jy and

in the state equation Jx are very similar. We carefully verified that there is no relation between the occurrence

of one type of jumps and then of another one. Typically, jumps of both types are separated by thousands of

observations.
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more than Suez (with a total of 193 jumps, i.e. J+
y = 29, J−y = 43, J+

x = 53, J−x = 68). This

pattern translates into the average number of jumps per day (second panel of Table 5) and the

proportion of jumps per day (last panel of Table 5). We find (second panel of Table 5) less than

one jump per day for liquid stocks (those with more than 100’000 sample observations) and

usually more than 2 jumps per day, sometimes more than 4, for the least liquid stocks (those

with less than 100’000 trades). Moreover, the last panel of Table 5 shows that any observation

has a probability of jumping below 0.05 percent for the liquid stocks, but above 0.5 percent for

the three least liquid ones (Alstom, Lagardère, and Sodexho). This overall pattern for detected

jumps is roughly similar in the model without microstructure variables, whose jump results are

reported in Table 6.

5.3.2 Transitory and Permanent Jumps

How do these patterns differ in terms of the type of jumps considered (transitory versus perma-

nent jumps, and positive versus negative jumps)? Looking at the absolute number of detected

jumps (first panel of Table 5), we observe again different results for liquid relative to less liquid

stocks. Similar proportions of temporary and permanent jumps are detected in the liquid stocks.

Nevertheless, for illiquid stocks, a higher proportion of permanent jumps is detected. In other

words, when moving from liquid to illiquid stocks, we find more jumps in general, but they

increase more in the state equation than in the observation equation. For example, Alstom, an

illiquid stock, exhibits 177 (J+
y = 84 and J−y = 93) transitory jumps but 222 (J+

x = 100 and

J−x = 122) permanent jumps. In contrast to this, liquid stocks have similar number of jumps of

both types.

Now, what do we find in terms of jumps when we compare models with and without mi-

crostructure variables (Tables 5 and 6)? We notice that including order flow variables in the

model is in general associated with a larger number of detected jumps, both in the state and

observation equations. But this is not always the case. In particular, splitting jumps between

positive and negative ones reveals that the inclusion of microstructure variables reduces the

amount of detected positive jumps for five stocks (Alcatel, Alstom, AXA, Orange, and STMi-

cro).

To sum up, we find more jumps of both types when illiquidity is above some threshold and

we do more so in the state equation. Second, overall, microstructure variables tend to increase

the number of detected jumps, except for positive jumps of both types for five stocks in our

sample. To interpret these results, recall from Table 4 that the inclusion of microstructure

variables improves the signal-to-noise ratio. This improvement operates mainly, on average,

through a reduction of the observation variance. This is central to jump identification in our

procedure as we define a jump as an outlier, i.e., a large return compared to local volatility
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conditions. This time-varying estimation of the signal-to-noise ratio affects jump identification

directly and may well lead to an overall increase in detected jumps as some outliers become

apparent once volatility is reduced. From that perspective, order flow explains small variations

in the equilibrium price but not, in general, the large ones. As described above, however, order

flow (its surprise component for the state equation and level for the observation equation) does

seem to explain some positive jumps for five stocks.

5.4 Timing of Jumps

As a last investigation, we consider the timing of the jumps. To do so, we count for all companies

the number of a certain type of jump that occurred during various hours of the day. The results

of this investigation are presented in Tables 7 and 8 and Figures 13 and 14.

The construction of the lower panel of Tables 7 and 8 is done in the following manner: we

denote by Nidh the number of jumps found for company i, on day d, and hour h. Then, we define

by Ti =
∑

d

∑
hNidh, the total number of jumps for company i over the sample. Eventually,

we construct fh = 100× 1
12

∑12
i=1

∑
dNidh/Ti, the average across all companies for a given hour

h. Figures 13 and 14 plot these statistics. As we notice, the number of jumps is particularly

high during the opening and the closing hours. As it is well documented, those are the moments

when trading activity is the most intense. Our detection of jumps during those moments suggests

that more news are generated at those moments. The breakdown into transitory jumps Jy and

permanent jumps Jx shows that the relative frequency of permanent jumps is high during the

opening and closing hours. If jumps in the state equation can be associated with fundamental

news, our estimations show that news in the morning are particularly relevant for the Paris

market. Later on during the day, information released as the US market opens in the afternoon

also appear to affect markets.

6 Conclusion

In this paper, we consider a market microstructure model where the stock price is modeled as

gravitating around a fundamental value process similarly to a random walk with noise model

with explanatory variables. Transitory components affect the gap between the price and the

fundamental value, whereas permanent components affect the fundamental value itself. We

establish a bridge between this type of model and the literature of jump estimation by including

two types of jumps in the model. The first type, called transitory jump, is short-lived and

corresponds to a price bounce, whereas the second type, called permanent jump, leads to a

change in the fundamental value of the stock. We develop an estimation strategy of this model
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based on Bayesian OLS and on particle filtering, which allows us to detect jumps in real time.

In the empirical section of this paper, we estimate the model over the first two months of

2003 for 12 stocks traded on Euronext Paris. We find that the dynamic of buy trades differs from

those of sell trades, thereby confirming the work by Hameed, Kang, and Viswanathan (2010).

We also obtain that the explicit modeling of the microstructure variables significantly improves

the signal-to-noise ratio.

Concerning jumps, we investigate two dimensions. The first one is the role of jump removal

on the estimation of the microstructure part. The second is the estimation of jumps given the

microstructure model. We find that removing jumps does not significantly affect the estimation

of the microstructure parameters. One possible reason for this could be that the frequency

of jumps is small among the thousands of tick-by-tick observations and that their impact is

averaged out.

We first obtain that the less liquid stocks also contain more jumps in their price process.

Liquid stocks exhibit about one jump every day, whereas the less liquid ones exhibit at least 2

jumps every day. We also obtain that illiquid companies tend to have a relative proportion of

permanent jumps that is larger than liquid stocks.

Jumps of both types tend to occur most frequently during the first and last hours of trading.

Given that we removed the periodic intraday seasonality, we conclude that the occurrence of the

jumps could actually have been the reason for the increase in volatility around those moments.

Such a finding would be compatible with the notion that jumps trigger volatility.
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Appendix A Intradaily Periodic Volatility

Different approaches have been used in the literature to deal with intradaily periodic volatility

patterns. Some authors have ignored this issue (Duan and Fulop, 2007), others have estimated

their model over arbitrary 30 minute time intervals (Madhavan, Richardson, and Roomans,

1997). Still others include the estimation of this component within the general setting of their

model (Engle and Sun 2007).

In this section, we build on Boudt, Croux, and Laurent (2008) and Lahaye, Laurent, and

Neely (2007). Their approach recognize first the possibility that volatility can change from day

to day, this is the daily volatility component. They remove this component in a preliminary step.

Since intraday returns could contain jumps, this daily volatility should be estimated in a manner

which is robust to jumps, which can be achieved by using, for instance, bipower variation.

Specifically, denote by m the intraday sampling frequency, here chosen to be 10 minutes.

Denote by pd,im the price that is closest to the i ·m th minute on day d. We have i = 1, · · · ,M.

Let the m-minute log-returns be rd,im ≡ pd,im − pd,(i−1)m. The realized bi-power variation for

day d is

RBVd ≡ µ−2
1

M∑
i=2

|rd,im||rd,(i−1)m|,

where µ1 ≡
√

2/π ' 0.798 under normality, and intradaily standardized returns are then defined

as:

rd,im =
rd,im√
RBVd

.

To proceed, we could, at this stage, compute a standard deviation using the m-minute returns

over several days, see Taylor and Xu (1997). Such a procedure would not be robust to jumps,

however. In this context, a more appropriate approach consists in using a scale measure from

the robust statistics literature, as in Boudt, Croux, and Laurent (2008).

This latter approach involves the Shortest-Half-Scale (SHS) estimator of Rousseeuw and

Leroy (1988). The SHS is an equivalent measure to standard deviation, however, it is outlier

robust. To compute the SHS estimator, we first need to rank returns by size. In the following, ni

denotes the number of sample observations for intraday period i and {r̄l;i}l=1,··· ,ni
is the sample of

observations for this intraday period i. We obtain the order statistics r(1);i ≤ r(2);i ≤ . . . ≤ r(ni);i.

Halves length of hi = bni/2c+ 1 contiguous order observations are defined as r(hi);i − r(1);i, . . .,

r(ni);i − r(hi−1);i, respectively. The shortest half scale is the smallest length of all “halves length

” corrected for consistency under normality:

ShortHi = 0.741 min{r(hi);i − r(1);i, . . . , r(ni);i − r(hi−1);i}.
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Next, we consider:

f̂ ShortH

i =
ShortHi√

1
M

∑M
j=1 ShortH2

j

, (A-1)

whose squares sum up to one. Eventually, Boudt, Croux, and Laurent (2008) propose the use

of the so-called Weighted Standard Deviation (WSD) as the intradaily volatility estimator. The

WSD can now be computed for each intraday period across sample days. This estimator is a

robust scale estimator that we use as a proxy for intradaily volatility. It is defined as:

f̂WSD

i =
WSDi√

1
M

∑M
j=1 WSD2

j

,

where

WSDj =

√√√√1.081

∑nj

l=1w[(rl;j/f̂ ShortH
j )2]r2

l;j∑nj

l=1 w[(rl;j/f̂ ShortH
j )2]

. (A-2)

The function w(·) in equation (A-2) robustifies the standard deviation. It is an indicator equal

to one when its argument can not be rejected to be a realization from a χ2(1) distribution for

a given level of probability, and zero otherwise. In our numerical implementation, w(z) is equal

to one when z ≤ 6.635, which is the 99th percentile of the χ2(1).

As noted in Boudt, Croux, and Laurent (2008), the SHS estimator is highly robust to jumps,

but it has only 37% efficiency with normally distributed rd,i, against 69% for the WSD. This

justifies why the latter is preferred over the former.
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Table 1: Elementary statistics of the data

Stock Var. x̄ q(1%) q(2.5%) q(50%) q(97.5%) q(99%) Sk Ku

Alcatel rk 0.016 -2.477 -2.202 -0.001 2.161 2.471 -0.003 5.343
(T = 187′703) τk 6.734 -0.603 -0.603 -0.287 2.656 4.128 5.244 67.320

Vk 8.874 -2.572 -2.003 -0.010 1.839 2.133 -0.209 3.255

Alstom rk -0.162 -2.847 -2.086 0.006 2.172 2.878 0.157 9.715
(T = 47′747) τk 26.465 -0.636 -0.636 -0.337 2.788 4.173 4.598 50.811

Vk 7.865 -2.764 -2.148 0.030 1.861 2.196 -0.364 3.713

AXA rk -0.015 -2.753 -2.204 0.001 2.254 2.885 0.058 7.249
(T = 140′157) τk 9.018 -0.613 -0.613 -0.384 2.753 4.206 4.038 30.588

Vk 9.373 -2.785 -2.206 0.102 1.636 1.901 -0.607 3.585

Fr.Tel. rk 0.014 -2.831 -2.241 -0.002 2.236 2.836 0.011 8.905
(T = 169′488) τk 7.458 -0.620 -0.620 -0.332 2.739 4.274 4.189 37.089

Vk 9.186 -2.418 -2.039 0.059 1.728 2.012 -0.308 2.833

Lagardère rk -0.040 -3.119 -2.127 0.003 2.138 3.111 0.035 19.383
(T = 35′221) τk 35.803 -0.595 -0.595 -0.390 2.790 4.107 3.976 29.633

Vk 8.823 -2.731 -2.096 0.072 1.701 2.025 -0.455 3.481

LVHM rk -0.006 -2.984 -2.200 0.001 2.207 3.020 -0.003 17.788
(T = 77′181) τk 16.361 -0.540 -0.540 -0.364 2.800 4.348 4.437 33.518

Vk 9.362 -2.789 -2.317 0.126 1.670 1.877 -0.650 3.755

Orange rk 0.025 -2.822 -1.957 -0.002 1.953 2.824 0.000 7.033
(T = 67′030) τk 18.852 -0.665 -0.665 -0.367 2.762 4.029 3.854 31.746

Vk 8.675 -2.266 -1.810 0.101 1.684 1.916 -0.329 2.666

Sodexho rk -0.009 -3.167 -2.182 0.000 2.179 3.131 -0.059 16.644
(T = 28′864) τk 43.507 -0.555 -0.555 -0.373 2.725 4.201 4.597 37.917

Vk 8.736 -2.848 -2.228 0.093 1.686 1.974 -0.522 3.764

STMicro rk -0.012 -2.706 -2.090 0.002 2.109 2.703 0.001 14.301
(T = 115′629) τk 10.925 -0.513 -0.513 -0.358 2.745 4.349 5.082 49.042

Vk 9.661 -2.958 -2.266 0.104 1.604 1.887 -0.833 4.478

Suez rk -0.030 -2.916 -2.061 0.003 2.073 2.914 2.451 135.404
(T = 114′496) τk 11.036 -0.565 -0.565 -0.340 2.756 4.163 7.055 235.348

Vk 9.315 -2.655 -2.143 0.126 1.717 1.975 -0.502 3.506

Total rk -0.006 -2.632 -2.283 0.001 2.310 2.641 0.037 4.476
(T = 144′642) τk 8.740 -0.611 -0.611 -0.374 2.784 4.205 4.038 30.593

Vk 10.591 -2.650 -2.158 0.188 1.586 1.732 -0.657 3.223

Vivendi rk -0.018 -2.882 -2.143 0.002 2.169 2.913 -1.404 89.318
(T = 119′575) τk 10.569 -0.626 -0.626 -0.365 2.777 4.152 4.024 31.467

Vk 9.223 -2.733 -2.203 0.147 1.630 1.917 -0.563 3.326

Note: This table presents elementary statistics for intraday returns rk (in basis points), durations
between trades expressed in seconds τk, and log-monetary volume of each transaction Vk. The number T
in parentheses indicates the total number of intradaily observations in the sample. x̄ denotes the average
of a variable and q(α) the percentile for some given level α of the studentized observations. Sk and
Ku are skewness and kurtosis. A Gaussian distribution would have q(1%) = −2.33, q(2.5%) = −1.96,
q(50%) = 0, q(97.5%) = 1.96, and q(99%) = 2.33, a skewness of 0, and a kurtosis of 3.
TableName=BasicStats 1
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Table 7: Hourly breakdown of the number and frequency of jumps. Model with microstructure
variables.

Hour J+
y J−y Jy J+

x J−x Jx Total

Total number of jumps
9:00 - 9:59 54 60 114 70 88 158 272

10:00 - 10:59 30 38 68 40 47 87 155
11:00 - 11:59 30 25 55 31 30 61 116
12:00 - 12:59 18 13 31 21 24 45 76
13:00 - 13:59 11 14 25 17 26 43 68
14:00 - 14:59 23 28 51 23 37 60 111
15:00 - 15:59 34 36 70 35 43 78 148
16:00 - 16:59 38 34 72 55 58 113 185
17:00 - 17:30 36 32 68 27 52 80 147

Relative frequency
9:00 - 9:59 1.302 1.859 3.161 1.652 1.869 3.521 6.682

10:00 - 10:59 0.830 0.520 1.350 0.809 1.046 1.855 3.205
11:00 - 11:59 0.846 0.492 1.337 0.569 0.369 0.938 2.275
12:00 - 12:59 0.384 0.526 0.910 0.386 0.573 0.960 1.870
13:00 - 13:59 0.131 0.233 0.364 0.290 0.417 0.707 1.071
14:00 - 14:59 0.405 0.560 0.964 0.517 0.886 1.403 2.367
15:00 - 15:59 0.829 0.702 1.531 0.684 0.932 1.616 3.147
16:00 - 16:59 0.713 0.941 1.655 1.414 1.338 2.752 4.407
17:00 - 17:30 0.802 0.541 1.343 0.336 1.029 1.365 2.708

Note: This table presents in the upper part the total number of jumps, for the various jump
types, for all companies, depending on the time of the day. The lower part presents the relative
frequency of jumps for each company. Formally if Nidh presents the number of jumps found for
company i, on day d, and hour h, and if Ti =

∑
d

∑
hNidh, then the table presents the relative

jump frequency for each hour h defined as the statistics 100× 1
12

∑12
i=1

∑
d
Nidh

Ti
. The jumps are

obtained by using a model where intradaily volatility has been filtered out. The model includes
the microstructure variables.
TableName=HJumps 7
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Table 8: Hourly breakdown of the number and frequency of jumps. Model with no
microstructure variables but with intraday-seasonality removal.

Hour J+
y J−y Jy J+

x J−x Jx Total

Total number of jumps
9:00 - 9:59 53 29 82 49 41 90 172

10:00 - 10:59 33 16 49 24 25 49 98
11:00 - 11:59 24 13 37 23 16 39 76
12:00 - 12:59 12 15 27 14 10 24 51
13:00 - 13:59 16 9 25 7 8 15 40
14:00 - 14:59 37 14 51 18 22 40 91
15:00 - 15:59 20 19 39 27 16 43 82
16:00 - 16:59 33 31 64 45 40 85 149
17:00 - 17:30 26 22 48 39 26 64 112

Relative frequency
9:00 - 9:59 2.424 1.029 3.454 2.730 1.803 4.534 7.987

10:00 - 10:59 0.878 0.268 1.146 0.435 0.514 0.949 2.095
11:00 - 11:59 0.951 0.481 1.432 0.924 0.252 1.177 2.608
12:00 - 12:59 0.808 0.285 1.093 0.512 0.286 0.798 1.891
13:00 - 13:59 0.377 0.114 0.491 0.131 0.206 0.337 0.828
14:00 - 14:59 0.652 0.659 1.311 0.352 0.461 0.813 2.124
15:00 - 15:59 0.536 0.471 1.007 0.672 0.384 1.056 2.064
16:00 - 16:59 1.205 0.676 1.881 1.116 1.777 2.893 4.774
17:00 - 17:30 1.365 0.577 1.942 0.829 0.915 1.744 3.686

Note: This table presents the same statistics as Table 7 but without the microstructure variables.
The intradaily seasonality has been removed.
TableName=HJumpsRWOnlyIDV 8

40



Figure 1: Permanent and transitory jumps.
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Note: This figure displays examples of prices that could correspond to permanent and transitory
jumps.
Figure=PandTJumps 1
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Figure 2: Price level y with jumps indicators.
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Note: This figure displays selected actual observations yk obtained in a simulation exercise (o) as
well as the corresponding states (+). It also contains the 95% confidence interval concentrated
around the particle-filter estimate of the state xk (dash and dot) as well as of the posterior
distribution of the observation, yk (dashed line). Thin vertical lines indicate occurrence of
permanent jumps (short dashes) or transitory jumps (long dashes). At observation 89, the
algorithm detected an permanent jump in the state equation. Even though there are jumps
at observations 88 and 117, they are too small to be detected. Around observation 158, the
simulated data contains a transitory outlier, which is also identified as such. The continuous
line in the center corresponds to the median estimate of the state.
Figure=PwithJumps 2
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Figure 3: Residuals for observation and state equation and jump indicators.
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Note: This figure represents for simulated data the residuals of the observation and state equa-
tions, εy,k respectively εx,k. The large deviations of εx,k for observation 88 and 89 lead to a
successful detection of permanent jumps. Inspection of the upper figure reveals for observation
158 a large outlier.
Figure=Residual 3
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Figure 4: Price in tick time.
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Note: This figure represents in (a) the price process (in euro) for a liquid company (Alcatel) and
in (b) the price process for a less liquid company (Sodexho). The figures present data for 5 days
(Jan 2, 3, 6, 7, 8 of 2003), each being separated form the next one by some vertical line.
Figure=PricePlots 4
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Figure 5: Returns in tick time.
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Note: This figure represents the returns (in basis points) associated with the price processes of
Figure 4.
Figure=ReturnPlots 5
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Figure 6: Zoom on intraday prices in tick time.
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Note: This figure represents, for Alcatel, 1000 realizations of the intraday price starting with
observation 1000 for the second day in the sample.
Figure=ZoomAlcatel 6
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Figure 7: Intraday periodic volatility.
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(b) IDV Sodexho

Note: This figure represents an average measure of intradaily volatility obtained by using a
jump-robust non-parametric estimates based on a multi-power volatility estimation. Various
smoothness algorithms (Loess, Hodrick Prescott, Savay-Golay) have been used. The top plot
corresponds to Alcatel and the lower one to Sodexho.
Figure=periodicvol 7
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Figure 8: Autocorrelation function.
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Note: This part represents the first 20’000 autocorrelations of absolute intradaily returns defined
as: |rk| = 100 × |log(pk/pk−1)| /

(√
τkσ

DσIDx,k
)
, where σD is the daily volatility and σIDx,k the

intradaily volatility estimate associated to the time instant of the k-th trade. The upper figure
corresponds to autocorrelations for data where the intradaily volatility component has not been
removed. In the lower figure, intradaily volatility has been filtered.
Figure=ACF 8
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Figure 9: Particle Learning estimates with daily Bayesian re-initialization. Parameters of the
observation equation for Alcatel.
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Note: This figure represents the parameter estimates obtained in an online estimation with daily
re-initialization as described in the main text. The straight line corresponds to the Kalman-Filter
estimates. Here we represent the transitory components of the model. The data is filtered for
intradaily seasonality.
Figure=ByAlcatel 9
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Figure 10: Particle Learning estimates with daily Bayesian re-initialization. Parameters of the
state equation for Alcatel.
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Note: This figure represents the parameter estimates obtained in an online estimation with daily
re-initialization as described in the main text. The straight line corresponds to the Kalman-Filter
estimates. Here we represent the permament components of the model. The data is filtered for
intradaily seasonality.
Figure=BxAlcatel.pdf 10
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Figure 11: Particle Learning estimates with daily Bayesian re-initialization. Observation and
state equation standard deviations for Alcatel.
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Note: This figure represents the standard deviations of the observation and state equations.
Each day the parameters are initialized in Bayesian fashion using information on the previous
day’s final parameter estimates.
Figure=VolsAlcatel 11
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Figure 12: Total number of jumps detected over the sample versus the total number of trades
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Note: This figure represents the number of jumps detected over the 42 days for the various
companies and traces those numbers against the total number of trades that took place.
Figure=NbJmpsVSLiq.pdf 12
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Figure 13: Additive and Innovation Jumps over the day with microstructure effects. Intraday
deseasonalized data.
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Note: This figure provides a graphical representation of the relative frequencies represented in
the columns labeled Jy : (+), Jx : (�), and J : (•) of Table 7.
Figure=AIJumpswMM 13
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Figure 14: Additive and Innovation Jumps over the day without microstructure effects.
Intraday deseasonalized data.
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Note: This figure provides a graphical representation of the relative frequencies represented in
the columns labeled Jy : (+), Jx : (�), and J : (•) of Table 8.
Figure=AIJumpsNoMM 14
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