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Abstract

We develop a systematic framework for the joint modelling of returns and multiple daily

realised measures. We assume a linear state space representation for the log realised

measures, which are noisy and biased estimates of the log integrated variance, at least

due to Jensen’s inequality. We incorporate filtering methods for the estimation of the la-

tent log volatility process. The endogeneity between daily returns and realised measures

leads us to develop a consistent two-step estimation method for all parameters in our

specification. This method is computationally straightforward even when the stochastic

volatility model contains non-Gaussian return innovations and leverage effects. The em-

pirical results reveal that measurement errors become significantly smaller after filtering

and that the forecasts from our model outperforms those from a set of recently developed

alternatives.
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1 Introduction

In this paper we develop a systematic framework for linking a general class of discrete time

stochastic volatility (SV) models to realised measures of volatility such as the two time

scales estimator of Zhang, Mykland, and Aı̈t-Sahalia (2005), the realised kernel of Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008) and the pre-averaging based realised variance

estimator of Jacod, Li, Mykland, Podolskij, and Vetter (2009). Our analysis considers a

fully specified time series model for both the returns and the realised measures. We model

the daily asset return series via a SV specification in which the latent daily log volatility

process has a linear dynamic representation. The SV model class accommodates a range of

dynamic processes for volatility, leverage effects and non-Gaussian return innovations; see,

for example, Ghysels, Harvey, and Renault (1996) and Shephard (2005) for an overview of

SV models and their applications. Realised measures are high-frequency based estimators

of the integrated variance or the quadratic variation of an asset price over a certain period,

so that we also specify an observation equation stating that the log realised measures are

noisy and possibly biased estimators of the unobserved daily log variance of the asset. Our

assumptions imply a linear state space model for the log realised measures, which we analyse

by Kalman filter and smoother (KFS) methods.

We refer to this extension of the SV framework by an explicit measurement equation the

realised stochastic volatility (RSV) model. Takahashi, Omori, and Watanabe (2009) and Do-

brev and Szerszen (2010) propose related approaches within this setting and adopt a Bayesian

inference methodology. The realised SV model extends and complements previous methods

in several directions. First, it establishes the estimation of all parameters that characterise

the conditional distribution of returns in the presence of realised measures. Second, the re-

turn data allows the estimation of the bias in the realised measures. Bias is an inevitable

problem in this context at least due to Jensen’s inequality (via the log transformation) and

overnight returns. Third, existing applications of discrete time SV models, such as options

pricing, can immediately rely on this framework. Fourth, it improves volatility estimation

and forecasting via time series filtering. Finally, it does not require the selection of a single

realised measure, but rather it can incorporate as many measures as considered relevant. At

the same time, it is a framework for assessing the estimation improvements introduced by

different realised measures.

This paper presents two main contributions. First, we propose a simple and consistent

estimation method for the realised SV model. The joint likelihood function for the returns

and the realised measures consists of two parts: the likelihood of the linear model for the

vector of realised measures and the expectation of the product of return densities conditional
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on the realised measures. In contrast to previous studies that have proposed the estimation

of joint models of returns and realised measures, including Takahashi, Omori, and Watanabe

(2009) and Dobrev and Szerszen (2010), we argue that the estimation of such a model must

recognise the endogeneity between these two random variables (conditional on the unobserved

daily volatility). This problem is due to discretisation effects and jumps in the estimation of

the integrated variance or quadratic variation of asset prices from high-frequency data; see

Peters and de Vilder (2006), Andersen, Bollerslev, and Dobrev (2007b), Andersen, Bollerslev,

Frederiksen, and Nielsen (2010) and Fleming and Paye (2011).

The endogeneity problem implies that the analysis of the realised SV model based on

the joint likelihood function is generally infeasible: the joint distribution of returns and the

realised measures is only available for specialised cases. Our proposed estimation approach

consists of two-steps that mirror the joint estimation method. In the first step, we estimate

the parameters of the volatility process using the likelihood function from the Kalman filter

only. In the second step we estimate the remaining parameters, including leverage effects,

by evaluating integrals based on the deletion smoother of de Jong (1989). This smoothing

method provides the distribution of the unobserved log volatility at a certain time period,

conditional on the sample of all realised measures except for the one in that day. Because of

the deletion sampling scheme, the integrals in the second step do not require the knowledge of

the joint distribution of the returns and realised measures. The necessary computations are

straightforward even when the model specification includes non-Gaussian return innovations

and a copula function for modelling leverage effects. Simulation results suggest that we can

expect this method to be almost as efficient as full joint estimation.

Second, we perform a detailed empirical study of the realised SV model using data for

nine Dow Jones index stocks in the period between 2001 and 2010. We find that superpo-

sitions of three autoregressive processes are able to accurately describe the dynamics of the

unobserved log volatility series for these nine stocks. The three processes have clear empirical

interpretations as persistent, transitory and noisy volatility components, with leverage effects

significantly impacting both the long run and short run dynamics of the series. A large kur-

tosis is present in the conditional distribution of close-to-close returns even after controlling

for stochastic volatility. We therefore reject the hypothesis of Gaussian return innovations

for most of the series.

We find that measurement errors account for between 24% and 53% of the variance of

daily innovations in the log realised kernel and pre-averaging based realised variance series.

Filtering methods prove to be an useful complement to the realised estimates of volatility,

leading to 30-45% variance reductions in the estimation of the log volatility signal. Variance

improvements are even more pronounced for a simpler subsampled realised variance estimate,
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highlighting the robustness of the filtering approach. Our methods also indicate that the

realised kernel and pre-averaging based measures significantly overestimate the open-to-close

variance of the stocks, confirming that bias correction is an important feature of the realised

SV model. Our bias estimates are comparable to the findings in Hansen, Huang, and Shek

(2011b).

In an out of sample predictive analysis, we find that the realised SV model outperforms a

set of recent models in forecasting the one-day and one-month ahead daily volatility of the nine

stocks. The predictive gains are stronger for the one-month horizon. As a consequence of the

efficiency the Kalman filter in estimating the persistent log-volatility series, the forecasting

gains from incorporating more efficient realised measures into the realised SV model are

modest at the daily frequency and disappear as we increase the predictive horizon. The

small forecasting benefit we obtain by using the more robust realised measures is consistent

with the theoretical analysis of Andersen, Bollerslev, and Meddahi (2011a).

Our methods and findings relate to other contributions. Barndorff-Nielsen and Shephard

(2002) have originally studied the use of realised volatility in estimating stochastic volatility

models. Examples of joint models of returns and realised volatility outside the SV method-

ology are the HEAVY model of Shephard and Sheppard (2010) and the Realised GARCH

model of Hansen, Huang, and Shek (2011b). Andersen, Bollerslev, and Meddahi (2011a),

Ghysels and Sinko (2011) and Asai, McAleer, and Medeiros (2012) consider the impact of

measurement noise in forecasting realised volatility. Bollerslev, Kretschmer, Pigorsch, and

Tauchen (2009) have proposed a joint model for realised volatility, returns and jumps that

does not include a measurement equation. Andersen, Bollerslev, Diebold, and Labys (2003),

Andersen, Bollerslev, and Diebold (2007a), Corsi (2009) and Hillebrand and Medeiros (2010),

among others, suggest other reduced form approaches for modelling and forecasting realised

volatility.

We organise the paper as follows. Section 2 presents the realised stochastic volatility

model in detail, discusses its properties, and motivates our empirical specification. Section 3

discusses estimation. Section 4 presents our empirical results.

2 Stochastic Volatility and Realised Measures

2.1 A general discrete time stochastic volatility model

Let p(t) be the logarithmic price of an asset at day t and let y1, . . . , yn denote a sequence of

daily continuously compounded returns, defined as yt = p(t) − p(t − 1). Our objective is to

model the conditional distribution p(yt+1|Ft), where Ft is the information set generated by

4



the data available up to time t. The model specification for the daily asset return is

yt = µt + σtεt, σ2
t = f(θt), θt = c+

k∑
i=1

θi,t (1)

for t = 1, . . . , n, where µt is the expected return, σt is the latent daily volatility, εt is an

independent innovation with mean zero and unit variance, and f(·) is a function with strictly

positive support (typically the exponential function). We do not explicitly specify the ex-

pected return µt in this study, so that we set µt = 0 in our simulation and empirical studies

below.

Our framework allows for a diversity of stationary and non-stationary specifications for

the volatility process. We assume that we can express the signal θt and its components θi,t

as functions of the state vector αt,

θt = c+

k∑
i=1

θi,t = c+ Ztαt, θi,t = Zi,tαt, (2)

for i = 1, . . . , k and t = 1, . . . , n, where c is a constant, αt is an m × 1 state vector, Zi,t is

a 1 ×mi fixed vector, Zt = (Z1,t . . . , Zk,t) is a 1 ×m fixed vector, with m =
∑k

i=1mi. The

state vector αt is a stochastically time-varying vector which we model as

αt+1 = Tαt +Rηt, ηt ∼ N(0, Q), (3)

where ηt represents a normally distributed and serially uncorrelated r×1 disturbance vector,

T is a m×m transition matrix, R is a m× r disturbance selection matrix and Q is a r × r
covariance matrix. The specification of these matrices determine the dynamic properties of

the state and signal vectors. The state disturbance ηt and the return innovation εt may be

dependent. We model the initial state vector as α1 ∼ N(a1, P1), where the unconditional

properties of the state vector αt imply the mean vector a1 and variance matrix P1. This

general framework accommodates combinations of autoregressive moving average, random

walk, time-varying regression, and other dynamic components. Harvey (1989) and Durbin

and Koopman (2001) provide more details on state space representations and unobserved

components time series models.

Tauchen and Pitts (1983), Taylor (1986), Melino and Turnbull (1990) and Harvey, Ruiz,

and Shephard (1994) are classical references for stochastic volatility models in the financial

econometrics literature. Shephard (1996) and Ghysels, Harvey, and Renault (1996) provide

complete reviews on SV models. The collection of papers in Shephard (2005) contains addi-
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tional references.

2.2 Stochastic volatility with leverage

The basic Gaussian stochastic volatility model with leverage is

yt = exp(θt / 2) εt, εt ∼ N(0, 1), θt = c+ αt,

αt+1 = φαt + ηt, ηt ∼ N(0, σ2
η), ρ(εt, ηt) 6= 0,

(4)

for t = 1, . . . , n, with stationary condition |φ| < 1 and where ρ(εt, ηt) denotes the correlation

between the disturbances εt and ηt. This specification is a special case of the general state

space representation (1), (2) and (3) with µt = 0, f(θt) = exp(θt) Zt = 1, T = φ, R = 1 and

Q = σ2
η.

We refer to the negative dependence between returns and volatility as the leverage effect.

Bollerslev, Litvinova, and Tauchen (2006) and Asai, McAleer, and Medeiros (2009) present

recent evidence on this empirical regularity. In the stochastic volatility model (4), the re-

turn innovation at the current time period has an impact on the volatility in the following

period. The correlation coefficient ρ(εt, ηt) captures the dependence in this Gaussian setting.

Alternatively, we can also specify the dependence between returns and volatility via a copula

function. Copula functions allow for nonlinear and asymmetric dependence relations and do

not rely on the normality of εt. We present an application in Section 4.5, where we anal-

yse a SV model with student-t errors and leverage. Joe (1997), among others, provides a

comprehensive discussion of copulas.

In our framework we do not consider a possible additional dependence between ηt and

εt+1. In contrast to the predictive formulation in (4), this specification implies that the

negative relation between returns and volatility can also be contemporaneous. Although this

correlation may be present in some empirical settings due to leverage effects at higher frequen-

cies, Yu (2005) argues that the specification of a negative dependence between ηt and εt+1

brings important theoretical drawbacks to the SV model. For example, expected returns can

be highly negative in this setting even when µt = 0. We can instead directly account for the

properties of the returns due to contemporaneous dependence, such as negative conditional

skewness, by changing the distributional assumption for εt.

2.3 Stochastic volatility with long range dependence

Ding, Granger, and Engle (1993), Andersen, Bollerslev, Diebold, and Labys (2003) and Lima

and Crato (1994), among many others, have documented that long range dependence is a

common characteristic of volatility processes in financial markets. The slow decay in the
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autocorrelation functions for absolute and squared daily returns and for the realised variance

of stocks and exchange rates provide strong evidence of this property for these assets.

Superpositions of independent ARMA processes are a convenient way to account for long

range dependence in the present modelling framework. An example of a SV model with this

property is

yt = exp(θt / 2) εt, εt ∼ N(0, 1), θt = c+
∑k

i=1 αi,t,

αt+1 = T αt + ηt, ηt ∼ N(0, Q), ρi = ρ(εt, ηi,t) 6= 0,
(5)

with k × 1 state vector αt and the k × k system matrices T and Q given by

T =


φ1 0 0

0
. . . 0

0 0 φk

 , Q =


σ2

1,η 0 0

0
. . . 0

0 0 σ2
k,η

 ,
where αi,t is the ith element of αt, ηi,t is the ith element of ηt and ρi is the correlation

coefficient between εt and ηi,t, for i = 1, . . . , k and t = 1, . . . , n. The model specification (5)

is a special case of our general model given by the equations (1), (2) and (3) with µt = 0,

f(θ) = exp(θ), θi,t = αi,t, R = I and k = m = r.

Shephard (1996), Barndorff-Nielsen and Shephard (2002), Liesenfeld and Richard (2003),

and other studies estimate multiple component stochastic volatility models. Engle and Lee

(1999) propose a generalised autoregressive conditional heteroscedasticity (GARCH) model

with short and long run components for volatility. Barndorff-Nielsen (2001) formally studies

the application of superpositions in modelling long range dependence. Long memory stochas-

tic volatility models based on fractionally integrated processes are alternative approaches; see

for example Breidt, Crato, and de Lima (1998), Harvey (1998) and Mesters, Koopman, and

Ooms (2011).

2.4 Realised Stochastic Volatility

The analysis of the stochastic volatility model relies on an information set Fn consisting of a

sequence of daily returns y1, . . . , yn. Our objective in this paper is to study the case in which

we extend the information set by a sequence of realised measures RM1, . . . , RMn, where RMt

is a vector of p noisy nonparametric volatility estimates for day t = 1, . . . , n.

We obtain the realised stochastic volatility (RSV) model by adding measurement equa-

tions for the realised measures to the model we have specified in equations (1), (2) and (3),
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that is

f−1(RMj,t) = γj + λjθt + κj,t, j = 1, . . . , p,

κt = (κ1,t, . . . , κp,t)
′ ∼ N(0,Σκ)

(6)

where RMj,t is the jth realised measure in RMt and where we treat constant γj and coefficient

λj as unknown parameters. Since we allow γj 6= 0 and λj 6= 1, we implicitly take the realised

measures as possibly biased estimates of daily volatility. The measurement disturbances κj,t,

j = 1, . . . , p, have variance σ2
j,κ, are correlated with one another and are independent of the

state disturbance vector ηt. Due to the construction of the information set Ft, we cannot

assume that κt is independent from the return innovation εt in (1); see Section 2.6.

The measurement equations in (6), together with the specifications (2) for the signal θt

and (3) for the state vector αt, lead to a linear Gaussian state space model for the realised

measures. We can therefore rely on Kalman filter and smoother (KFS) methods for its anal-

ysis; see, for example, the treatment in Durbin and Koopman (2001). The analysis includes

the estimation of the unknown coefficients by the method of maximum likelihood, signal

extraction of θt and volatility forecasting. When considering the measurement equations in

(6), the signal extraction of θt by filtering methods necessarily leads to improved estimates of

volatility. On the other hand, this setup does not enable us to identify all parameters of the

realised SV model (including the coefficients γj and λj), which is why the return equation in

(1) remains relevant in our framework.

The asymptotic properties of the realised measures justify their treatment in (6). We

therefore regard (6) as an approximation and rely on the optimal mean square error prop-

erties of the Kalman filter to provide a robust framework in case of misspecification of the

measurement equation, in particular with respect the assumption of a multivariate normal

disturbance vector κt. Barndorff-Nielsen and Shephard (2002) have argued that the central

limit theorem approximation for the log of the standard realised variance estimator has a

good finite sample performance in practical settings, making the log transformation a natu-

ral choice for the function f(·) in the measurement equations. Gonçalves and Meddahi (2010)

have shown on the basis of a Monte Carlo simulation study that specific Box-Cox transfor-

mations improve the accuracy of asymptotic approximations for realised estimators. Hence

our general choice f(·) for the transformation of RMj,t in the measurement equations of (6).

We note that any transformation of RMt is necessarily a biased estimate of the implied signal

because of Jensen’s inequality. The coefficient γj in equation (6) captures this effect along

with the bias caused by other sources.

We assume for simplicity that the covariance matrix of the measurement disturbances Σκ
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is constant. We estimate the unique elements of Σκ together with the other parameters in

the RSV model. In a related study, Dobrev and Szerszen (2010) specify the measurement

disturbance variance σ2
,κ as a function of the estimate of the asymptotic variance of the

realised measure RMj,t. We do not follow their approach for two reasons. First, the variance

of the realised measures depends on quantities we cannot accurately estimate, such as the

integrated quarticity; see, for example, Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008) and Andersen, Dobrev, and Schaumburg (2011b). The resulting instability will lead

to poor filtering in the signal extraction procedures. Second, the variance estimates are clearly

endogenous in relation to the realised measures themselves. Accounting for this endogeneity

would complicate the analysis further; see also § 2.6.

Equations (1), (2), (3) and (6) therefore give the complete formulation of the realised

stochastic volatility model. The model density

p(y,RM ;ψ), y = (y1, . . . , yn)′, RM = (RM ′1, . . . , RM
′
n)′, (7)

refers to the model equations for a given parameter vector ψ. We partition the parameter

vector into three sub-vectors: ψsv includes the parameters in (1), ψssf includes the parameters

in (2) and (3), and ψrm includes the parameters in (6). In our current model formulation we

have ψ = (ψ′sv, ψ
′
ssf , ψ

′
rm)′ where

ψsv = {ψε, ρ1, . . . , ρk} , ψssf = {c, Z, T,R,Q} , ψrm = {γ1, . . . , γp, λ1, . . . , λp,Σκ} ,

where ρi = ρ(εt, ηi,t), for i = 1, . . . , k, with ψε referring to a vector consisting of the parame-

ters for the density function p(εt) which do not determine the mean and variance of εt, which

are zero and one respectively.

2.5 Conditional return distribution

The current setting provides an useful characterisation of the full conditional density p(yt+1|Ft),
where Ft represents the natural filtration RM1, . . . , RMt. We define σt = exp(θt/2). By con-

sidering the model (2), (3) and (6), we can numerically evaluate the mean θ̂t+1 = E(θt+1|Ft;ψ)

and variance Vt+1 = Var(θt+1|Ft;ψ) of the Gaussian density p(θt+1|Ft;ψ) by applying the

Kalman filter to Ft. The conditional variance of the returns Var(yt+1|Ft;ψ) is equivalent to

the conditional expectation of σ2
t ,

Var(yt+1|Ft;ψ) = E([σt+1εt+1]2|Ft;ψ) = E(σ2
t+1|Ft;ψ) = exp{θ̂t+1 + (1/2)Vt+1}, (8)
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for t = 1, . . . , n. By defining S(·) and K(·) as the skewness and kurtosis of the density p(·),
respectively, we can express the higher conditional moments by

S(yt+1|Ft;ψ) =
E([σt+1εt+1]3|Ft;ψ)

Var(yt+1|Ft;ψ)3/2
= exp{(3/8)Vt+1} · S(εt+1), (9)

and

K(yt+1|Ft;ψ) =
E([σt+1εt+1]4|Ft;ψ)

Var(yt+1|Ft;ψ)2
= exp (Vt+1) · K(εt+1), (10)

for t = 1, . . . , n.

We refer to Vt+1 as the volatility risk, which is a function of both the variance of the

log-volatility innovations and the variance of past measurement errors. Skewness (9) and

kurtosis (10) are functions of volatility risk and the properties of the return innovations.

The introduction of the realised measures in the stochastic volatility model has therefore

two consequences. First, it directly reduces volatility risk Vt+1 via improved measurement.

Second, it leads to improved estimation of the parameters that determine skewness and

kurtosis in the model; see also the discussions in Allen, McAleer, and Scharth (2009) and

Dobrev and Szerszen (2010).

2.6 The endogeneity between daily returns and realised measures

The daily return innovations εt and the measurement disturbances κj,t, for j = 1, . . . , p, are

dependent in our realised SV model. To introduce this endogeneity issue, we briefly discuss

a continuous-time formulation of the model.

Suppose that the logarithmic price of the asset at day t follows the continuous-time

diffusion

dp(t+ τ) = µ(t+ τ) + σ(t+ τ)dW (t+ τ), 0 ≤ τ ≤ 1, t = 1, 2, . . . , n, (11)

where p(t+ τ) is the logarithmic price at time t+ τ , µ(t+ τ) is the drift component, σ(t+ τ)

is the spot volatility, and dW (t + τ) is standard Brownian motion. Barndorff-Nielsen and

Shephard (2002) and Andersen, Bollerslev, Diebold, and Labys (2003), among others, have

shown that for any specification of the dynamics of spot volatility, it holds that

yt|σ2
t ∼ N

(∫ 1

0
µ(t− 1 + τ)dτ, σ2

t

)
, (12)

where

σ2
t =

∫ 1

0
σ2(t− 1 + τ)dτ. (13)
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The term
∫ 1

0 σ
2(t−1+τ)dτ is known as the integrated variance. Barndorff-Nielsen and Shep-

hard (2002) have shown that a standard mean reverting specification for the spot volatility

leads to an autoregressive moving average process with Gaussian innovations for σ2
t . This

argument provides an example of a discrete-time model specification for yt based on equations

(1), (2) and (3).

Realised measures are nonparametric estimates of the integrated variance of assets based

on asset prices sampled at high-frequency time intervals. Since any given realised measure

RMj,t and the daily return yt are functions of intra-day returns, it follows that these two

quantities are dependent conditional on σ2
t . We can relate this endogeneity issue to the

analyses of Peters and de Vilder (2006), Andersen, Bollerslev, and Dobrev (2007b), Andersen,

Bollerslev, Frederiksen, and Nielsen (2010) and Fleming and Paye (2011), who study the

theoretical and empirical properties of returns standardised by realised measures. These

studies have shown that returns scaled in this manner are typically thin tailed; see also our

empirical results in Section 4.5. Discretisation effects in the estimation of integrated variance

and jumps explain this phenomenon: a relatively large return in the numerator implies a

large squared return in the realised measure in the denominator.

Using similar arguments to the ones we have used to derive (10), if εt and κj,t are indepen-

dent and εt is Gaussian, then returns standardised by volatility estimates based on any set of

noisy measures are always leptokurtic. This contradiction shows the relevance of the endo-

geneity issue in our framework. If we assume that the two innovations are orthogonal, then

the analysis of the realised SV model will misleadingly lead to the implication that return

innovations are thin tailed and measurement errors are negligible, when the opposite could

be true. We discuss the consequences of endogeneity for parameter estimation in Section 3.

2.7 Overnight returns

Realised measures typically estimate the open-to-close variance of asset returns, while we are

more generally interested in the volatility of whole day returns. The volatility of stock prices

outside trading hours is substantial: in our empirical study below, we estimate that overnight

returns account for between 20% and 30% of the total daily variance of stock returns. Hansen

and Lunde (2005) discuss general estimates of the type

RMt = δ1 ·RMoc
t + δ2 · (ycot )2 , (14)

where RMoc
t is the realised measure for the open-to-close period in day t, ycot is the overnight

return at the opening of the market in day t, and δ1 and δ2 are predetermined values. We

may choose these parameters according to some mean-square error criterion.
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Throughout the paper we implicitly assume that there is a daily volatility factor which we

can extract from the realised measures only. We therefore let δ1 = 1 and δ2 = 0 above and use

the bias term γj in the realised SV model to estimate the whole day variance of the stocks.

This approach has the advantage of preserving the asymptotic approximation argument that

justifies (6). Shephard and Sheppard (2010), Hansen, Huang, and Shek (2011b) and Dobrev

and Szerszen (2010) follow similar strategies. Alternatively, we can extend the model by

separate return equations for the open-to-close and overnight periods.

3 Maximum likelihood estimation

3.1 The likelihood function based on full information

The likelihood for the realised stochastic volatility model (1), (2), (3) and (6) is

L(y,RM ;ψ) =

∫
p(α, y,RM ;ψ)dα

=

∫
p(y|RM,α;ψ)p(RM |α;ψrm)p(α;ψssf )dα (15)

=

∫ n∏
t=1

p(yt|RMt, αt, αt+1;ψsv) p(RMt|αt;ψ) p(αt|αt−1;ψssf )dα1 . . . dαn,

where we have defined y, RM and ψ = (ψ′sv, ψ
′
ssf , ψ

′
rm)′ in Section 2.4; furthermore, let

α = (α′1, . . . , α
′
n)′. We simplify the conditional return density to

p(yt|RMt, αt, αt+1;ψsv) = p(yt|RMt, θt, ηt;ψsv),

where θt reflects the dependence on the signal and ηt on the leverage effect. We also have

that p(RMt|αt;ψrm) = p(RMt|θt;ψrm). Hence it follows that

L(y,RM ;ψ) =

∫ n∏
t=1

p(yt|RMt, θt, ηt;ψsv) p(RMt|θt;ψrm) p(θt|αt−1;ψssf )dα1 . . . dαn. (16)

Endogeneity implies that

p(yt|RMt, θt, ηt;ψsv) 6= p(yt|θt, ηt;ψsv),

where the density p(yt|θt, ηt;ψsv) refers to the model equation (1). Peters and de Vilder

(2006) derives the distribution of yt/
√
RMt for the special case in which RMt is the re-

alised variance estimator and the underlying diffusion is homogeneous. In all other settings,
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p(yt|RMt, θt, ηt;ψsv) is currently not available.

We therefore propose an estimation approach that does not require the knowledge of

p(yt|RMt, θt, ηt;ψsv). To motivate our new method, we first consider the hypothetical case in

which we know p(yt|RMt, θt, ηt;ψsv) and hence estimation based on the complete likelihood

function is feasible. The following discussion may also be useful for the estimation of the

volatility of overnight returns, which are not endogenous to the realised measures.

Let p(RM ;ψ) be the likelihood of the linear state space model for the realised measure.

By multiplying the likelihood function (16) with the term p(RM ;ψ) · p(RM ;ψ)−1, we have

L(y,RM ;ψ) = p(RM ;ψ)

∫ n∏
t=1

p(yt|RMt, θt, ηt;ψsv)p(α|RM ;ψ)dα1 . . . dαn, (17)

since p(RM |α;ψ) p(α;ψssf ) / p(RM ;ψ) = p(α|RM ;ψ). The expression in (17) has a straight-

forward interpretation. The density p(RM ;ψ) refers to the likelihood function of the linear

Gaussian state space model (6), (2) and (3). We can therefore carry out the evaluation of

p(RM ;ψ) by the Kalman filter. The integral part in (17) is effectively the expectation of the

product of densities
∏n
t=1 p(yt|RMt, θt, ηt;ψsv) with respect to density p(α|RM ;ψ). We can

estimate the integral via a routine application of Monte Carlo integration in which we sample

S trajectories α(s) = (α
(s) ′
1 , . . . , α

(s) ′
n )′ from p(α|RM ;ψ) and compute the likelihood as

L̂(y,RM ;ψ) = p(RM ;ψ) · 1

S

S∑
s=1

n∏
t=1

p(yt|RMt, θ
(s)
t , η

(s)
t ;ψ), (18)

where θ
(s)
t = c + Zα

(s)
t and η

(s)
t = (R′R)−1(α

(s)
t+1 − Tα

(s)
t ); see the relations in (2) and

(3). The simulation smoothing methods of de Jong and Shephard (1995) and Durbin and

Koopman (2002) can carry out the simulation of α(s) from the smoothed density p(α|RM ;ψ),

for s = 1, . . . , S.

Despite the efficiency of the realised measures, the direct implementation of Monte Carlo

integration in (18) may require a large number of draws S to ensure a reliable and efficient

estimate of (17). To improve computational and numerical efficiency, we can alternatively

consider the method of importance sampling; see Durbin and Koopman (2001, Part II) for

an exposition of the importance sampling method for this class of models. Koopman, Lucas,

and Scharth (2011) propose a method for the construction of efficient importance samplers

based on an approximating linear Gaussian state space model. These samplers are designed

to minimise the Monte Carlo variance of the resulting likelihood estimates. The computation

of the likelihood estimate is similar to (18), with α(s) then becoming a draw from the efficient

importance sampler.

13



3.2 A likelihood function based on selected information

We can alternatively rewrite (17) using a partial prediction error decomposition with respect

to y. We obtain

L(y,RM ;ψ) = p(RM ;ψ)p(y|RM ;ψ)

= p(RM ;ψ)p(y1|RM ;ψ)p(y2|RM, y1;ψ) · · · p(yn|RM, y1, . . . yn−1;ψ).

Due to the fact that the high-frequency information set for calculating the realised mea-

sures at day t includes yt, returns introduce new information about the signal in our frame-

work only via leverage effects and bias correction. The primary role of returns in the estima-

tion of the realised SV model is accordingly the identification of a selection of parameters,

rather than the estimation of the signal. We therefore propose the likelihood approximation

L(y,RM ;ψ) ≈ p(RM ;ψ)p(y1|RM ;ψ)p(y2|RM ;ψ) · · · p(yn|RM ;ψ) =

p(RM ;ψ)
n∏
t=1

p(yt|RM ;ψ), (19)

where

p(yt|RM ;ψ) =

∫
p(yt|RMt, θt, ηt;ψ)p(θt, ηt|RM ;ψ)d(θt, ηt). (20)

Due to endogeneity, RMt remains a conditioning variable.

If an expression for p(yt|RMt, θt, ηt;ψ) was available, the evaluation of the integral in (20)

by low dimensional numerical or Monte Carlo integration would be straightforward. The

Kalman filter and smoother provides the mean and variance of p(θt, ηt|RM ;ψ); see Appendix

A for the details. The resulting estimate of ψ is still consistent and the loss of efficiency is

small as we only discard redundant information.

3.3 Two-step estimation for model without leverage

Our two-step method for the estimation of ψ builds on the results presented above. We start

with the simpler case in which there is no leverage in the model. We adopt the same argu-

ments as for the approximate likelihood function in the previous section. We decompose the

likelihood as p(y,RM ;ψ) = p(RM ;ψ)p(y|RM ;ψ). Since in our framework p(y|RM ;ψ) adds

little information about the volatility signal and p(RM ;ψ) does not contain any information

about the statistical properties of the return innovations, we treat the two components of the

likelihood separately.

We first estimate the linear Gaussian state space model (6), (2) and (3) by maximising
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the likelihood function p(RMt;ψ) with respect to ψssf and ψrm. We evaluate this likelihood

by the Kalman filter. For identification, the optimisation is subject to two scaling coefficients

in ψrm which we refer to as ψbias. We take a particular value ψ∗bias and denote the resulting

estimates as ψ̂∗ssf and ψ̂∗rm. In contrast to joint estimation, this first part of the method is

robust to the misspecification of the return equation (1). In the second step, we estimate the

remaining part of the parameter vector by maximising

p∗(y|RM ;ψ) =
n∏
t=1

p(yt|RM−t;ψ), (21)

where RM−t is the deletion set

{RM1, . . . , RMt−1, RMt+1, . . . , RMn} .

and

p(y|RM−t;ψ) =

∫
p(yt|θt;ψsv)p(θt|RM−t;ψbias, ψ̂∗ssf , ψ̂∗rm)dθt. (22)

The optimisation is with respect to ψsv and ψbias only.

The likelihood function (21) is a direct counterpart to the product of conditional return

densities in (19). We remove the endogeneity problem by recognising that yt does not share

information with the other realised measures in the sample. In doing so, we still incorporate

as much information as possible about θt in the estimation. Since the log-volatility process

θ1, . . . , θn is highly persistent in empirical settings, we can regard RMj , with j close to t

as being informative about θt. We compute the mean and variance of the Gaussian density

p(θt|RM−t;ψssf , ψrm) by the deletion smoothing algorithm of de Jong (1989) applied to

the model (6), (2) and (3). We give the details in Appendix A. The evaluation of (22) by

numerical or Monte Carlo integration is straightforward for any density p(yt|θt;ψsv). We

have found that Gaussian quadratures are the most accurate and computationally efficient

methods for this purpose.

The computational simplicity of the two-step estimation method contrasts with the simu-

lation intensive algorithms typically required for the estimation of stochastic volatility models

when only return data is available. Examples of such methods are the Markov Chain Monte

Carlo approaches of Kim, Shephard, and Chib (1998) and Chib, Nardari, and Shephard (2002)

and the importance sampling approaches of Sandmann and Koopman (1998) and Liesenfeld

and Richard (2003). In the current framework, parameter estimation for stochastic volatility

models with leverage and non-Gaussian daily returns also becomes straightforward.
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3.4 Two-step estimation for model with leverage

The first estimation step of the last section is not affected when we let the disturbances εt

in (1) and ηt in (3) depend on each other. In the second step, the counterpart of (22) we

maximise is given by

p(y|RM−t;ψ) =
n∏
t=1

∫
p(yt|θt, ηt;ψsv, ψ̂∗ssf )p(θt, ηt|RM−t;ψbias, ψ̂∗ssf , ψ̂∗rm)d(θt, ηt). (23)

Appendix A provides the details on how we obtain the mean, variance and covariances of

the conditional Gaussian density p(θt, ηt|RM−t;ψssf , ψrm). The necessary modification is

straightforward and the additional computational cost is small. The integral in (23) is mul-

tidimensional. We have used quasi-Monte Carlo integration using Halton sequences for its

estimation; see, for example, Train (2003) for further details on this method.

The evaluation of p(yt|θt, ηt;ψsv, ψ̂∗ssf ) in (23) follows standard results. For example, if

we assume that εt and ηt are both Gaussian in the SV model (4), the multivariate normal

lemma applies and we have

p(yt|θt, ηt;ψsv, ψ̂∗ssf ) = N(m,V ), m = exp(θt / 2)
ρ(εt, ηt)

σ̂η
ηt, V = [1− ρ(εt, ηt)]

2 exp θt,

where σ̂2
η is the estimate of σ2

η from the first step. When we specify the dependence as a

copula function, we adopt the following corollary of Sklar’s theorem

p(yt|θt, ηt;ψsv, ψ̂∗ssf ) = p(yt|θt;ψsv) · C
[
F (yt|θt;ψsv) , G(ηt; ψ̂

∗
ssf );ψsv

]
, (24)

where C(·, ·) is a probability density function for the copula that describes the dependence

between εt and ηt, F (·) is the cumulative distribution function of the daily returns yt con-

ditional on θt and G(·) is the normal cumulative distribution function of ηt. We can adopt

many results on copula functions in this framework; see, for example, the discussions in Joe

(1997).

3.5 Simulation study

In order to investigate the performance of the two-step method based on the deletion smooth-

ing scheme, we design a simulation study in which the endogeneity issue does not arise. We

simulate 250 series of returns and log volatility measurements using the model (1), (6), (2)

and (3), drawing the disturbance series κt in (6) independently from εt in (1). We generate

simulations for two different models for which the transformation function in (1) and (6) is
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f(·) = exp(·). We consider

• Model 1 : the Gaussian stochastic volatility model with leverage of equation (4); we fix

the parameters at c = 0.4, φ = 0.98, σ2
η = 0.05 and ρ(εt, ηt) = −0.5;

• Model 2 : a stochastic volatility model with a standardised Student’s t density with ν

degrees of freedom for εt; we fix the parameters at ν = 10, c = 0.4, φ = 0.98, σ2
η = 0.05.

This specification does not have leverage, so that ρ(εt, ηt) = 0.

Equation (6) with p = 1 gives the model for the log variance measurement in the two specifi-

cations. The bias is γ = 0.1 and the observation variance is σ2
κ = 0.05. We fix the coefficient

λ at one and do not treat it as a parameter.

We estimate the parameters as if they are unknown for each of the 250 time series for yt

and RMt with t = 1, . . . , n and n = 2, 500. We repeat the estimation for the full likelihood,

approximate likelihood and two-step methods we have discussed above. In case of the two-

step method, we consider three different sets of realised measures for the conditioning of the

density p(θt, ηt|χ; ψ̂ssf , ψrv) in the second step : χ = {RM1, . . . , RMt−1}, χ = RM−t and

χ = RM . The first conditioning set leads to a second step that only requires the Kalman filter.

We use this case as a benchmark. The deletion and full sets of RM allows us to determine

the efficiency loss when we drop RMt from the conditioning set. We emphasise that in these

three cases the estimate of ψssf from the first step remains the same by construction. We

compute the integral in (23) by quasi-Monte Carlo integration using Halton sequences with

S = 100 samples.

Tables 1 and 2 present our simulation results. We report the mean and the standard

deviation of the series of 250 parameter estimates for each estimation method. The findings

support our discussions above. All methods lead to similar means and standard deviations

for the parameters in ψssf , confirming that the return information has minimal impact on

the estimation of ψssf . The five methods also perform equally well in estimating the bias

coefficient γ. The only differences arise in the estimation of the leverage effect ρ(εt, ηt) in

Model 1 and of the degrees of freedom ν in Model 2. Whereas the two joint estimation

methods and the efficient two-step method lead similar standard deviations for these two

parameters, a small loss of efficiency appears for the deletion method. We conclude that

the deletion smoothing approach provides an effective estimation method for the realised SV

model when the endogeneity problem is present.
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4 Empirical Analysis

4.1 Data and measurement

Our data set consists of NYSE TAQ open-to-close transaction prices for nine Dow Jones index

stocks in the period between January 1993 and December 2010. We list the stocks in Table 3

along with their ticker indicators. We remove potential sources of errors from the data set by

following the guidelines in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009). We have

taken the daily return series from the CRSP database. The quality of the data has markedly

improved over the years for purposes of measuring volatility; see the discussion in Hansen

and Lunde (2006). To ensure that our results reflect recent and more relevant patterns, we

concentrate exclusively on the post-decimalisation years (2001-2010) in the estimation and

filtering analysis of Section 4.3. We do however use the earlier period to estimate the model

in the rolling window exercise of Section 4.4.

We compute the following realised measures in transaction time: the realised kernel (RK)

of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), the pre-averaging based realised

variance (PRV) of Jacod, Li, Mykland, Podolskij, and Vetter (2009), the subsampled realised

variance (SRV) of Zhang, Mykland, and Aı̈t-Sahalia (2005) and the subsampled median-based

realised variance (MedRV) of Andersen, Dobrev, and Schaumburg (2009). Our calculations

for the realised kernel and the pre-averaging based realised variance follow the suggested

implementations in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) and Jacod, Li,

Mykland, Podolskij, and Vetter (2009) respectively. We base the subsampled RV estimator

on subgrids containing every mth transaction, where we select m so that the grid points

are 15 minutes apart on average. The median-RV estimator follows a similar scheme with

average intervals of 2.5 minutes. We remove stale prices from the sample for computing the

median-RV measure.

The realised kernel and pre-averaging measures are among the most efficient estimates

currently available. Consistent with the theoretical argument in Christensen, Kinnebrock,

and Podolskij (2010a), we have found the two measures to be nearly perfectly correlated in

their standard implementations. Since the computational cost of simultaneously adopting

the two estimates is small, we do so for completeness. We also include the subsampled

realised variance in our analysis because the impact of microstructure noise is small at the

low frequency we have used to calculate the measure. In comparison with discretisation errors,

microstructure noise contamination is possibly of greater concern for time series analysis due

to the nonstationary behaviour of microstructure effects; see the discussions, for example,

in Hansen and Lunde (2006). Finally, we consider the median-RV measure to investigate

whether jump-robust estimates improve the empirical performance of the realised SV model.
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This estimate is a special case of the quantile-based realised variance of Christensen, Oomen,

and Podolskij (2010b).

4.2 Model specification

In the empirical study we mostly focus on daily close-to-close returns, using a selection of

results for open-to-close returns in complementary analyses. We model the returns by the

stochastic volatility specification (5). We therefore let the log-volatility signal be a sum

of autoregressive processes. On the basis of the Bayesian information criterion, we have

found conclusive support for the inclusion of k = 3 autoregressive processes of order one

for all the stocks in this study. We initially assume that the daily returns innovations are

normally distributed; we investigate the validity of this assumption in Section 4.5. We allow

for leverage effects by having non-zero values for ρi = ρ(εt, ηi,t) for i = 1, 2, 3. We have found

no evidence of a leverage effect for the third autoregressive process, so that we fix ρ3 = 0

throughout the study. We consider two vectors of realised measures in Section 4.3: the 3× 1

vector RMt = (RKt , PRVt , SRVt)
′ and RMt = MedRVt. We model the realised measures

by equation (6) with the restriction that λj = 1. We obtain all estimation results by two-step

method of Sections 3.3 and 3.4.

4.3 Estimation and filtering

Tables 4 and 5 report the parameter estimates for the stochastic volatility model (5). The

results are similar across the nine stocks and the two realised vectors. We find that the

first autoregressive components are near unit root processes with relatively small estimated

disturbance variances σ2
η,1. The second autoregressive components are persistent processes

with estimated autoregressive coefficients between 0.91 and 0.95. The third autoregressive

components are invariably noisy with autoregressive coefficients estimated as low as 0.15

and reaching a maximum of 0.47. Despite their statistical significance, the third volatility

states are in practice hard to distinguish from the measurement disturbances due to their low

persistence. Figure 1 shows the three estimated volatility components for IBM. With only

a few exceptions, leverage effects significantly impact both the long and short run volatility

components. The estimated long run effects contrast with previous studies which have found

leverage effects for transitory components only; see, for example, Engle and Lee (1999). We

attribute our finding to the inclusion of realised measures in the analysis. The long run effect

is typically difficult to identify given the small estimated values for the state variances σ2
η,1.

We next consider the added value of including equation (6) for the estimation of the

daily volatility signal θt in (5). We apply the Kalman filter and smoother to the individual
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elements of RMt = (RKt PRVt SRVt)
′ and to the three measures simultaneously using the

parameters of Table 4. Table 6 presents estimates of the measurement variances σ2
j,κ, the

correlations between the measurement disturbances, the signal-to-noise ratios (defined as the

variance of the innovation in the signal θt divided by the variance of κt) and the variances

of the volatility signal θt, conditional on RM1, . . . , RMs with s = t for filtering, s = n for

smoothing and s = t−1 for one-step ahead forecasting. We report the last three variances as

the steady-state values computed by the Kalman filter and smoother for t = 1, . . . , n. Table 7

repeats the exercise for the median-RV measure. Due to presence of the noisy volatility state,

the measurement variances and correlations for the Exxon and Procter & Gamble stocks were

not identified by the estimation. Our discussion therefore focus on the remaining series.

The empirical evidence indicates that the level of noise in the realised measures is relatively

high, even for the most efficient estimates. The signal-to-noise ratios for the realised kernel

and pre-averaging measures range from 0.9 for Coca-Cola to 3.2 for the JP Morgan stock.

The Kalman filter substantially improves the estimation of the unobserved volatility signal in

this setting. The filtered variances for the realised kernel and pre-averaging series are between

29% and 46% lower than the corresponding estimated measurement variances σ2
κ. Similar

findings hold for the Median-RV measure. Figure 2 displays the log realised kernel measure

and the smoothed estimate of the volatility component θt for Coca-Cola. For the subsampled

RV measure, our results show that the signal-to-noise ratios are nearly half of those for the

other two RV estimates in most cases. However, this less efficient measure appears to benefit

even more from filtering. Estimated variance reductions for this measure range between 36%

and 53%. We conclude that time series filtering is an useful complement to realised measures

for estimating volatility.

As a consequence of the efficiency of the Kalman filter in reducing the noise in the time

series of the log realised measures, we find that the predictive variances are similar across all

the estimates. Despite the differences in the signal-to-noise ratios, the forecasting variances

for the realised kernel and the pre-averaging measures are only between 5% and 9% lower than

the variance implied by the subsampled RV estimator. The presence of the third volatility

component α3,t in our model (5) illustrates this result. This state is important for in-sample

fit but plays a minor role in forecasting, given its low persistence. The additional improvement

of treating the three realised measures simultaneously seems negligible.

Table 8 reports the estimates of the bias parameter γj in (6) for close-to-close and open-

to-close returns. The results suggest that the realised kernel and pre-averaging measures are

significantly upwards biased estimates of the open-to-close variance of all stocks except JP

Morgan. The bias is around 6% in the case of IBM, but reaches as high as 23% for Procter &

Gamble. Our high estimates for some of the stocks are consistent with some of the results in
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Hansen, Huang, and Shek (2011b), even though the authors do not emphasise the bias in their

discussions. The subsampled RV measure substantially reduces or eliminates this problem.

The coefficients for this realised measure are not significant for the majority of stocks, even

though relatively large positive biases still appear for Coca-Cola, Procter & Gamble and

Wal-Mart. Comparing these results with the coefficients we obtain for close-to-close returns,

we find that the period outside the trading hours accounts for between 20% and 30% of the

total daily variance of the stocks; the results in Hansen, Huang, and Shek (2011b) lead to

similar conclusions.

Table 9 presents a selection of diagnostic statistics based on the one-step ahead prediction

residual vt = RKt −E(RKt|Ft−1). The diagnostic statistics for skewness, kurtosis and serial

correlation (for both vt and v2
t ) indicate possibly useful extensions of our current modelling

framework. The positive skewness and excess kurtosis in the residuals imply that we strongly

reject the Gaussian assumption for the linear model (6). In our framework, we can con-

sider Box-Cox transformations as in Gonçalves and Meddahi (2010) to alleviate the skewness

problem. Alternatively, we can also consider a non-Gaussian density for κj,t in (6). We also

report the Box-Ljung serial correlation test statistics for vt and v2
t , for different lag lengths;

they are satisfactory.

4.4 Forecasting

We next analyse out-of-sample forecasts of daily volatility from the realised SV model, com-

paring them to predictions from three other recently developed models. For all models,

including the realised SV model, we base the analysis on the realised kernel measure RKt (or

RK∗t = logRKt) and the close-to-close daily returns yt. In the model specifications below,

let ut be an independently and identically distributed error term and denote the model pa-

rameters by a, b, c, . . ., possibly with subscripts i for i = 1, 2, 3, . . .. We consider the following

alternatives:

• The heterogeneous autoregressive (HAR) model of Corsi (2009),

RK∗t = a+ b1RK
∗
t−1 + b2RK

∗
5,t−1 + b3RK

∗
22,t−1 + c(yt−1/

√
RKt−1) + ut,

where RK∗j,t−1 =
∑t−1

i=t−j RK
∗
t−i for j = 1, 2, 3, . . ., and with ut ∼ N(0, g) for t =

1, . . . , n.
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• The high-frequency-based volatility (HEAVY) model of Shephard and Sheppard (2010),

yt = h
1/2
t ut,

ht = Var(yt|RK1, . . . , RKt−1) = a1 + b1ht−1 + c1RKt−1 + d1(yt−1/ht−1),

ωt = E(RKt|RK1, . . . , RKt−1) = a2 + b2ωt−1 + c2RKt−1 + d2(yt−1/ht−1),

for t = 1, . . . , n.

• The realised GARCH model of Hansen, Huang, and Shek (2011b),

yt = exp(ht/2)u1,t

ht = a1 + b1ht−1 + c1RK
∗
t,t−1 + d1(yt−1/ht−1),

RK∗t = a2 + b2ht + u2,t, u2,t ∼ N(0, g),

with variance g, for t = 1, . . . , n.

We compute one-day and one-month ahead forecasts of the log realised kernel in the period

between January 2001 and December 2010. We update the parameter estimates monthly and

calculate the forecasts using a rolling window of the most recent 2,000 observations. In the

case of the realised SV model, we first compute the Kalman filter prediction RK∗t+1 and subse-

quently approximate the leverage effect by calculating ε̂t = yt×E(exp (−θt/2)|RK1, . . . , RKt)

and substituting this estimate in the expression for E(ηt|εt). We estimate coefficients in

the HAR model by OLS and those in the HEAVY and realised GARCH models by quasi-

maximum likelihood, as described in the original papers we reference above.

We validate the forecasts on the basis of the corresponding mean squared errors (MSE)

and the model confidence set (MCS) methodology of Hansen, Lunde, and Nason (2011a). The

design of the MCS is such that it contains the best model in terms of MSE with a certain

level of confidence. We report the MCS p-value, which we denote by pmcs
m , to indicate that

model m is in a (1 − α)% confidence set for α ≤ pmcs
m . The model with the most accurate

forecasts in the results has a p-value of one by construction. We base the test on 10, 000

bootstrap resamples. Since we base the evaluation on RK∗t itself, the reported MSEs do not

take into account the possible bias in the forecast of the log variance. Differences in MSE

can be measured relatively to the predictive variances as reported in Table 6.

We report the forecasting results in Tables 10 and 11. We find that the realised stochastic

volatility model generates good forecasts, obtaining the lowest MSEs for the two horizons

considered across all nine stocks. The realised SV model is the only specification in the

one-day ahead 90% MCS for three of the stocks, while the 95% MCS contains all models
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for the remaining series. The one-step forecast precision differences are therefore relatively

small. When we take the HAR specification as a benchmark against the three remaining

models, the superior predictive ability (SPA) test of Hansen (2005) can shed further light on

the statistical significance of the results. The SPA test rejects the HAR model at the 5% level

for all stocks. The forecasting results are consistent with the findings of Table 6: even large

improvements in the realised measures have a modest impact on one-step ahead forecasting.

The relative MSE of the realised SV model improves with the forecasting horizon, val-

idating the specification of multiple autoregressive states in our empirical model. For the

one-month ahead forecasts, the RSV is the single model in the 90% confidence set for five

of the stocks, sharing the MCS for the other four stocks with the HAR model. The short

memory dynamics of the standard HEAVY and realised GARCH specifications do not appear

to be well suited for multi-step predictions.

The realised SV model can include multiple realised measures whose choice may have an

impact on forecasting. For example, microstructure noise may distort predictive accuracy;

see, for example, Andersen, Bollerslev, and Meddahi (2011a), Ghysels and Sinko (2011)

and Asai, McAleer, and Medeiros (2012). Additionally, jump robust estimates such as the

median-RV measure are less noisy and may produce better predictions compared to quadratic

variation measures such as the RK, PRV and SRV estimates; see, for example, Andersen,

Bollerslev, and Diebold (2007a). To investigate these issues, we compute out of sample

forecasts for the realised SV model based on the realised kernel, subsampled RV and median-

RV measures individually. We focus on the variance of forecasts only. We evaluate the rolling

window forecasts from these different models using the realised kernel and subsampled RV

measures. Here we consider the period between 2006 and 2010 since we can only reliably

estimate the median-RV measure from 1998 onwards.

We conclude from Table 12 that the choice between the realised kernel and median-RV

measures does not matter for both one-day and one-month ahead predictions. The forecasting

variances evaluated using the realised kernel or the subsampled RV are nearly the same: the

the model confidence set includes both variants of the realised SV model in all cases. With

respect to the subsampled RV measure, the results depend on the horizon and the measure

we use to evaluate the forecasts. For the one-day ahead predictions evaluated against the

realised kernel, the variance reductions generated by the realised kernel over the subsampled

RV measure are small; we report a similar finding in Table 6. However, the MCS excludes

the subsampled RV based forecasts in this setting. If we use the subsampled RV measure for

evaluation the results are mixed.

For one-month ahead predictions, the subsampled RV based forecasts are similar to those

we obtain using the other two measures. We find that the subsampled RV based model
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has the lowest variance when forecasting the realised kernel for two of the stocks, but the

differences are small and not significant. The three measures are in the one-month MCS

for all stocks except Pfizer. We therefore have two conclusions. First, microstructure noise

distortions are weak given the small loss in the relative performance of the realised kernel

based model when we base the forecasting evaluation on the subsampled RV measure. Second,

better volatility measurement appears to have a small impact and affect only the short-term

forecasting precision. We should base the selection of realised measures in the RSV model

on robustness rather than efficiency.

4.5 Testing the Gaussian SV model

We now investigate whether the Gaussian assumption for (5) holds empirically. A related

question is whether we can attribute the excess kurtosis in equation (10) for the conditional

distribution of stock returns to volatility risk only. Andersen, Bollerslev, Diebold, and Ebens

(2001) argue that the returns standardised by realised volatility measures are approximately

normally distributed. However, this type of standardisation is subject to the endogeneity

issue we have discussed in Section 2.6. Table 13 presents the sample kurtosis of open-to-close

returns standardised by the four realised measures between 2001 and 2010, showing their

tendency towards thin tails.

An appropriate way of scaling the returns for purposes of testing the Gaussian assumption

is by adopting the conditional variance (8). Equations (9) and (10) allow for the construc-

tion of test statistics for testing departures from the normality assumption using the higher

moments of standardised returns. We implement a parametric bootstrap procedure. Our

test consists of calculating the sample skewness and kurtosis from the standardised returns

and comparing them with the corresponding finite sample distributions under the null hy-

pothesis of a Gaussian SV model with the parameter reported in Table 4. We use the

conditional volatility for the standardisation rather than the volatility estimates from the

deletion smoothing method so that we do not have to control for leverage effects. This choice

also facilitates the interpretation of the results.

Table 14 presents the results. The conditional kurtosis implied by the estimated Gaussian

SV models range from 3.33 for Coca-Cola to 3.61 for Procter & Gamble. We find that the

sample kurtosis estimates for the open-to-close returns mostly agree with the values predicted

by the Gaussian model. Even though the sample kurtosis estimates are always higher than

the model implied moments, the differences are small and not significant for six of the stocks.

We also do not reject the skewness hypothesis for six of the stocks. Figure 3 shows the

empirical distribution of the standardised open-to-close returns. We can generally attribute
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rejections to a few outliers.

For close-to-close returns, we find evidence of excess kurtosis for seven of the stocks and

non-zero skewness for four of the stocks. Figure 4 further these findings. We interpret the

higher kurtosis in the close-to-close returns as an indication of the presence of a specific

overnight volatility factor that is not well captured by the realised SV model for the open-to-

close realised measures. For completeness, we also consider a realised SV specification based

on the Student’s t distribution for the suitable stocks, where we specify the leverage effects

via a Gaussian copula function. We display the resulting parameter estimates in Table 15.

We do not reject the kurtosis hypothesis implied by the Student’s t model for seven of the

stocks. Outliers lead to strong rejections of the Student’s t model for the GE and Coca-Cola

stocks. We may therefore more appropriately tackle the non-Gaussian features of the data

by accounting for jumps in returns or volatility.

References

Allen, D., M. McAleer, and M. Scharth (2009): “Realized Volatility Risk,” Work-

ing paper.

Andersen, T., T. Bollerslev, and F. Diebold (2007a): “Roughing it up: Includ-

ing Jump Components in the Measurement, Modeling and Forecasting of Return

Volatility,” Review of Economics and Statistics, 89, 701–720.

Andersen, T., T. Bollerslev, F. Diebold, and H. Ebens (2001): “The Distri-

bution of Realized Stock Return Volatility,” Journal of Financial Economics, 61,

43–76.

Andersen, T., T. Bollerslev, F. Diebold, and P. Labys (2003): “Modeling and

Forecasting Realized Volatility,” Econometrica, 71, 579–625.

Andersen, T. G., T. Bollerslev, and D. Dobrev (2007b): “No-arbitrage semi-

martingale restrictions for continuous-time volatility models subject to leverage ef-

fects, jumps and i.i.d. noise: Theory and testable distributional implications,” Jour-

nal of Econometrics, 138, 125–180.

Andersen, T. G., T. Bollerslev, P. Frederiksen, and M. O. Nielsen (2010):

“Continuous-time models, realized volatilities, and testable distributional implica-

tions for daily stock returns,” Journal of Applied Econometrics, 25, 233– 261.

Andersen, T. G., T. Bollerslev, and N. Meddahi (2011a): “Realized volatility

forecasting and market microstructure noise,” Journal of Econometrics, 160, 220–

25



234.

Andersen, T. G., D. Dobrev, and E. Schaumburg (2009): “Jump-Robust Volatil-

ity Estimation using Nearest Neighbor Truncation,” Working paper 15533, NBER.

——— (2011b): “Integrated Quarticity Estimation: Theory and Practical Implementa-

tion,” Working paper.

Asai, M., M. McAleer, and M. C. Medeiros (2009): “Asymmetry and Leverage

in Realized Volatility,” Tech. rep.

——— (2012): “Modelling and forecasting noisy realized volatility,” Computational

Statistics & Data Analysis, 56, 217–230.

Barndorff-Nielsen, O., P. Hansen, A. Lunde, and N. Shephard (2008): “De-

signing realised kernels to measure the ex-post variation of equity prices in the pres-

ence of noise,” Econometrica, 76, 1481–1536.

——— (2009): “Realised Kernels in Practice: Trades and Quotes,” Econometrics Jour-

nal, 12, C1–C32.

Barndorff-Nielsen, O. and N. Shephard (2002): “Econometric analysis of realized

volatility and its use in estimating stochastic volatility models,” Journal of the Royal

Statistical Society B, 64, 253–280.

Barndorff-Nielsen, O. E. (2001): “Superposition of Ornstein–Uhlenbeck Type Pro-

cesses,” Theory of Probability and its Applications, 45, 175.

Bollerslev, T., U. Kretschmer, C. Pigorsch, and G. Tauchen (2009): “A

discrete-time model for daily S & P500 returns and realized variations: Jumps and

leverage effects,” Journal of Econometrics, 150, 151–166.

Bollerslev, T., J. Litvinova, and G. Tauchen (2006): “Leverage and Volatility

Feedback Effects in High-Frequency Data,” Journal of Financial Econometrics, 4,

353–384.

Breidt, F., N. Crato, and P. de Lima (1998): “The detection and estimation of

long memory in stochastic volatility,” Journal of Econometrics, 83, 325–348.

Chib, S., F. Nardari, and N. Shephard (2002): “Markov chain Monte Carlo meth-

ods for stochastic volatility models,” Journal of Econometrics, 108, 281–316.

Christensen, K., S. Kinnebrock, and M. Podolskij (2010a): “Pre-averaging

estimators of the ex-post covariance matrix in noisy diffusion models with non-

synchronous data,” Journal of Econometrics, 159, 116–133.

26



Christensen, K., R. Oomen, and M. Podolskij (2010b): “Realised quantile-based

estimation of the integrated variance,” Journal of Econometrics, 159, 74–98.

Corsi, F. (2009): “A Simple Approximate Long-Memory Model of Realized Volatility,”

Journal of Financial Econometrics, 7, 174–196.

de Jong, P. (1989): “Smoothing and interpolation with the state space model,” Journal

of the American Statistical Association, 84, 1085–1088.

de Jong, P. and N. Shephard (1995): “The Simulation Smoother for Time Series

Models,” Biometrika, 82, 339–350.

Ding, Z., C. Granger, and R. F. Engle (1993): “A Long Memory Property of

Stock Market Returns and a New Model,” Journal of Empirical Finance, 1, 83–106.

Dobrev, D. and P. Szerszen (2010): “The Information Content of High-Frequency

Data for Estimating Equity Return Models and Forecasting Risk,” Working paper.

Durbin, J. and S. J. Koopman (2001): Time Series Analysis by State Space Methods,

Oxford University Press.

——— (2002): “A Simple and Efficient Simulation Smoother for State Space Time Series

Analysis,” Biometrika, 603–616.

Engle, R. F. and G. J. Lee (1999): “A Long-Run and Short-Run Component

Model of Stock Return Volatility,” in Cointegration, Causality, and Forecasting: A

Festschrift in Honour of Clive W. J. Granger, ed. by R. F. Engle and H. White,

Oxford University Press, 475–497.

Fleming, J. and B. S. Paye (2011): “High-frequency returns, jumps and the mixture

of normals hypothesis,” Journal of Econometrics, 160, 119–128.

Ghysels, E., A. C. Harvey, and E. Renault (1996): “Stochastic Volatility,” in

Handbook of Statistics, Volume 14, ed. by G. Maddala and C. Rao, Elsevier, Ams-

terdam.

Ghysels, E. and A. Sinko (2011): “Volatility forecasting and microstructure noise,”

Journal of Econometrics, 160, 257–271.
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A Deletion Smoothing

Our estimation method of Section 3.3 relies on the deletion smoothing estimate

ὰt = E(αt|RM−t;ψ) (25)

and the associated variance

V̀t = Var(αt|RM−t;ψ), (26)

where RM−t is the interpolation set {RM1, . . . , RMt−1, RMt+1, . . . , RMn}.
We compute these quantities using the results in de Jong (1989). For the linear state

space model

logRMt = c+ Zαt + κt, κt ∼ N(0,Σκ), t = 1, . . . , n,

αt+1 = Tαt +Rηt, α1 ∼ N(a1, P1), ηt ∼ N(0, Qt),
(27)

we first obtain at+1 = E(αt+1|RM1, . . . , RMt;ψ) and Pt+1 = Var(αt+1|RM1, . . . , RMt;ψ) via

the Kalman filter recursion

vt = logRMt − c− Zat, Ft = ZtPtZ
′ + Σκ,

Kt = TPtZ
′F−1
t , Lt = T −KtZ,

at+1 = Tat +Ktvt, Pt = TPtL
′
t +RQR.

(28)

Next, we compute α̂t = E(αt|RM1, . . . , RMn;ψ) and Vt = Var(αt|RM1, . . . , RMn;ψ) by

the backward state smoothing equations

rt−1 = Z ′F−1
t vt + L′trt, Nt−1 = Z ′F−1

t Z + L′tNtLt,

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt,
(29)

initialised with rn = 0 and Nn = 0.

We obtain the deletion smoothing mean ὰt and variance V̀t as straightforward adjustments

to α̂t and Vt. Define

wt = F−1
t vt −K ′trt,

Wt = F−1
t +K ′tNtKt,

Mt = LtNtKt − Z ′F−1
t .

(30)

Theorem 5 of de Jong (1989) shows that
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ὰt = α̂t + PtMtW
−1
t wt,

V̀t = V̂t + PtMtW
−1
t M ′tPt.

(31)

In the case in which ηt and εt are dependent, we compute the Gaussian density p(θt, ηt|RM−t)
by applying the above result for a redefined state. The state space model becomes

logRMt = c+ Z∗α∗t + κt

α∗t+1 = T ∗α∗t +R∗η∗t

with

α∗t = (α′t η
′
t)
′,

Z∗ = [Z 0(p×r)],

T ∗ =

[
T R

0(r×m) 0(r×r)

]
,

R∗ =

[
0(m×r)

I(r×r)

]
,

η∗t ∼ N(0, Qt),

where 0(.×.) and I(.×.) are zero and identity matrices with the indicated dimensions, respec-

tively. We then apply the deletion smoothing algorithm to this model.
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B Tables and Figures

Table 1: Simulation results: Gaussian SV model with leverage
We simulate 200 trajectories of the realised SV model yt = exp(θt/2)εt, εt ∼
N(0, 1), logRMt = γ+ θt +κt, κt ∼ N(0, σ2

κ), θt = c+αt, αt = φαt + ηt, ηt ∼
N(0, σ2

η), t = 1, . . . , 2500. This disturbances εt and ηt have correlation ρ and

are independent from κt. The table shows the average estimated parameters,

with standard errors in parentheses, for the estimation methods discussed in

Sections 3.1 and 3.3.

Joint Two-step
True Full Simple Smoother Deletion Prediction

γ 0.1 0.098
(0.0288)

0.098
(0.0289)

0.098
(0.0289)

0.098
(0.0291)

0.098
(0.0294)

ρ -0.3 −0.302
(0.0294)

−0.302
(0.0300)

−0.301
(0.0299)

−0.302
(0.0349)

−
−

Full Simple Two-step
σ2
κ 0.05 0.050

(0.0028)
0.050
(0.0028)

0.050
(0.0027)

c 0.4 0.403
(0.2376)

0.401
(0.2379)

0.401
(0.2500)

φ 0.98 0.978
(0.0047)

0.978
(0.0047)

0.978
(0.0049)

σ2
η 0.05 0.050

(0.0031)
0.050
(0.0031)

0.050
(0.0031)

Table 2: Simulation results: SV-t model
We simulate 200 trajectories of the realised SV model yt = exp(θt/2)

√
ν−2
ν
εt,

εt ∼ t(ν), logRMt = γ + θt + κt, κt ∼ N(0, σ2
κ), θt = c + αt, αt = φαt + ηt,

ηt ∼ N(0, σ2
η), t = 1, . . . , 2500. This disturbances εt and ηt are independent.

The table shows the average estimated parameters, with standard errors in

parentheses, for the estimation methods discussed in Sections 3.1 and 3.3.

Joint Two-step
True Full Simple Smoother Deletion Prediction

γ 0.1 0.098
(0.0355)

0.098
(0.0355)

0.098
(0.0356)

0.098
(0.0360)

0.099
(0.0366)

ν 10 10.547
(2.2234)

10.545
(2.2233)

10.542
(2.2219)

10.614
(2.4486)

10.717
(2.7363)

Full Simple Two-step
σ2
κ 0.05 0.050

(0.0027)
0.050
(0.0027)

0.050
(0.0028)

c 0.4 0.407
(0.2077)

0.407
(0.2077)

0.407
(0.2077)

φ 0.98 0.978
(0.0042)

0.978
(0.0042)

0.978
(0.0042)

σ2
η 0.05 0.050

(0.0031)
0.050
(0.0031)

0.050
(0.0031)
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Table 3: Stocks
The table lists the stocks in our empirical analysis and provides

their abbreviations.

Ticker Stock Sector
GE General Electric Conglomerate
IBM IBM Computers and technology
JPM JP Morgan Banking
KO Coca-Cola Beverages
PFE Pfizer Pharmaceuticals
PG Procter & Gamble Consumer goods
T AT&T Telecommunication
WMT Wal-Mart Retail
XOM Exxon Oil and gas

Table 4: Stochastic Volatility Parameter Estimates I.
The reported estimation results are for the realised stochastic volatility model (5), for close-to-close

returns of nine DJIA stocks using data in the years of the post-decimalisation period, 2001-2010. The

vector of realised measures include the realised kernel, the pre-averaging RV and the subsampled SV

estimators. The model is specified as yt = exp(θt/2)εt, εt ∼ N(0, 1), logRMj,t = γj + θt + κj,t,

κt ∼ N(0,Σκ), where Σκ is a full covariance matrix with diagonal elements σ2
j,κ, θt = c +

∑3
i=1 αi,t,

αi,t+1 = φiαi,t + ηi,t, ηji,t ∼ N(0, σ2
i,η), for i = 1, . . . , 3. The return and state disturbances εt and

ηi,t have correlation ρi = ρ(εt, ηi,t) for i = 1, 2. Parameter estimation is carried out by the two-step

method and is based on the deletion smoothing scheme as proposed in Sections 3.3 and 3.4. The

standard errors of the parameter estimates are in parentheses.

GE IBM JPM KO PFE PG T WMT XOM
c 0.844

(0.480)
0.570
(0.370)

1.215
(0.549)

0.058
(0.362)

0.665
(0.241)

0.015
(0.299)

0.696
(0.434)

0.420
(0.369)

0.502
(0.222)

φ1 0.997
(0.002)

0.996
(0.003)

0.998
(0.001)

0.997
(0.002)

0.995
(0.003)

0.996
(0.003)

0.998
(0.002)

0.997
(0.002)

0.994
(0.004)

σ2
1,η 0.005

(0.002)
0.005
(0.003)

0.005
(0.002)

0.004
(0.002)

0.004
(0.002)

0.003
(0.002)

0.004
(0.002)

0.004
(0.002)

0.005
(0.004)

φ2 0.929
(0.027)

0.944
(0.024)

0.916
(0.024)

0.925
(0.036)

0.931
(0.035)

0.927
(0.023)

0.942
(0.027)

0.927
(0.037)

0.947
(0.021)

σ2
2,η 0.023

(0.007)
0.019
(0.005)

0.034
(0.008)

0.017
(0.007)

0.015
(0.006)

0.022
(0.005)

0.019
(0.007)

0.014
(0.005)

0.023
(0.005)

φ3 0.456
(0.080)

0.366
(0.068)

0.324
(0.067)

0.462
(0.102)

0.420
(0.060)

0.194
(0.038)

0.473
(0.054)

0.401
(0.080)

0.153
(0.036)

σ2
3,η 0.068

(0.009)
0.066
(0.007)

0.091
(0.010)

0.049
(0.009)

0.087
(0.009)

0.130
(0.007)

0.103
(0.009)

0.059
(0.007)

0.117
(0.006)

ρ1 −0.279
(0.105)

−0.340
(0.146)

−0.616
(0.187)

−0.380
(0.126)

−0.371
(0.139)

−0.249
(0.195)

−0.677
(0.239)

−0.237
(0.170)

0.006
(0.238)

ρ2 −0.339
(0.070)

−0.472
(0.092)

−0.264
(0.086)

−0.260
(0.081)

−0.107
(0.094)

−0.292
(0.092)

−0.103
(0.119)

−0.279
(0.112)

−0.599
(0.115)
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Table 5: Stochastic Volatility Parameter Estimates II.
Estimation results for the same setting as that of Table 4, but with the vector of realised measures

replaced by the subsampled median-based realised variance measure.

GE IBM JPM KO PFE PG T WMT XOM
c 0.849

(0.477)
0.567
(0.355)

1.217
(0.546)

0.066
(0.327)

0.698
(0.244)

0.037
(0.287)

0.737
(0.394)

0.426
(0.351)

0.507
(0.221)

φ1 0.997
(0.002)

0.996
(0.003)

0.998
(0.001)

0.996
(0.002)

0.995
(0.003)

0.996
(0.003)

0.997
(0.002)

0.997
(0.002)

0.994
(0.004)

σ2
1,η 0.005

(0.002)
0.005
(0.003)

0.005
(0.002)

0.004
(0.002)

0.004
(0.002)

0.003
(0.002)

0.004
(0.003)

0.004
(0.002)

0.005
(0.004)

φ2 0.932
(0.027)

0.945
(0.025)

0.918
(0.025)

0.924
(0.037)

0.937
(0.031)

0.934
(0.022)

0.950
(0.026)

0.928
(0.036)

0.951
(0.021)

σ2
2,η 0.019

(0.006)
0.017
(0.005)

0.030
(0.008)

0.016
(0.007)

0.012
(0.005)

0.019
(0.005)

0.016
(0.006)

0.013
(0.005)

0.020
(0.005)

φ3 0.454
(0.127)

0.352
(0.128)

0.312
(0.167)

0.474
(0.192)

0.446
(0.106)

0.223
(0.161)

0.491
(0.103)

0.342
(0.173)

0.189
(0.096)

σ2
3,η 0.066

(0.018)
0.072
(0.023)

0.088
(0.035)

0.041
(0.015)

0.064
(0.015)

0.094
(0.058)

0.075
(0.016)

0.065
(0.028)

0.106
(0.049)

ρ1 −0.284
(0.101)

−0.337
(0.142)

−0.617
(0.184)

−0.381
(0.120)

−0.357
(0.139)

−0.252
(0.200)

−0.710
(0.179)

−0.248
(0.168)

0.010
(0.238)

ρ2 −0.356
(0.071)

−0.461
(0.092)

−0.281
(0.087)

−0.241
(0.079)

−0.132
(0.098)

−0.284
(0.097)

−0.060
(0.102)

−0.254
(0.113)

−0.619
(0.123)
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Table 6: Measuring, Filtering and Forecasting with Different Measures.
We apply the Kalman filter and smoother individually to the realised kernel, pre-averaging RV,

subsampled SV as well as to the three measures in combination. Let j index the realised mea-

sures. The calculations are based on the parameters of Tables 4 and the measurement variances

Var(κj,t) reported below. The signal-to-noise rows indicate the ratio between the variance of

the innovations in the latent log-variance process
∑3
i=1 σ

2
iη and the measurement variances

Var(κj,t). Let Fj,t denote the natural filtration RMj,1, ..., RMj,t. Var(θt|Ft) is the filtered

variance of the log-volatility signal, Var(θt|Fn) is the smoothed variance and Var(θt+1|Fj,t) is

the predictive variance.

GE IBM JPM KO PFE PG T WMT XOM

Realised kernel

Signal-to-noise 1.116 1.525 3.181 0.856 1.564 - 1.801 1.015

Var(κ1,t) 0.086 0.059 0.041 0.082 0.068 0.005 0.070 0.076 0.001

Var(θt|F1,t) 0.053 0.040 0.033 0.046 0.046 0.005 0.049 0.045 0.001

Var(θt|F1,n) 0.045 0.035 0.031 0.038 0.041 0.005 0.043 0.038 0.001

Var(θt+1|F1,t) 0.137 0.123 0.166 0.104 0.139 0.186 0.162 0.109 0.177

Pre-averaging RV

Signal-to-noise 1.160 1.563 3.244 0.893 1.718 - 1.811 1.034 -

Var(κ2,t) 0.083 0.058 0.040 0.078 0.062 0.003 0.069 0.074 0.000

Var(θt|F2,t) 0.051 0.039 0.032 0.044 0.043 0.003 0.048 0.044 0.000

Var(θt|F2,n) 0.044 0.035 0.030 0.037 0.038 0.003 0.043 0.038 0.000

Var(θt+1|F2,t) 0.136 0.123 0.166 0.103 0.138 0.185 0.162 0.109 0.177

Subsampled RV

Signal-to-noise 0.641 0.770 1.245 0.532 0.795 2.465 1.046 0.541 2.930

Var(κ3,t) 0.150 0.117 0.105 0.131 0.134 0.063 0.120 0.142 0.049

Var(θt|F3,t) 0.075 0.063 0.067 0.061 0.071 0.048 0.071 0.065 0.039

Var(θt|F3,n) 0.062 0.053 0.058 0.049 0.061 0.045 0.061 0.054 0.037

Var(θt+1|F3,t) 0.150 0.136 0.182 0.113 0.151 0.197 0.173 0.120 0.187

Combined

ρ(κ1,t, κ2,t) 0.985 0.975 0.958 0.973 0.966 0.394 0.953 0.974 -

ρ(κ1,t, κ3,t) 0.877 0.806 0.818 0.832 0.845 0.636 0.804 0.847 -

ρ(κ2,t, κ3,t) 0.856 0.767 0.778 0.788 0.797 0.370 0.756 0.815 -

Var(θt|Ft) 0.050 0.039 0.029 0.044 0.041 0.002 0.048 0.043 0.000

Var(θt|Fn) 0.043 0.034 0.028 0.037 0.037 0.002 0.043 0.037 0.000

Var(θt+1|Ft) 0.135 0.123 0.165 0.103 0.137 0.185 0.162 0.108 0.176
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Table 7: Measuring, Filtering and Forecasting II
We reproduce the analysis of Table 6 for the median-RV measure. The results reflect the

estimated parameters of Table 5.

GE IBM JPM KO PFE PG T WMT XOM

Signal-to-noise 1.414 2.406 4.548 0.956 1.582 2.994 1.345 1.685 -

Var(κt) 0.060 0.038 0.025 0.063 0.047 0.033 0.063 0.047 0.000

Var(θt|Ft) 0.040 0.029 0.021 0.037 0.032 0.026 0.041 0.032 0.000

Var(θt|Fn) 0.034 0.026 0.020 0.031 0.028 0.025 0.035 0.029 0.000

Var(θt+1|Ft) 0.117 0.118 0.143 0.088 0.099 0.126 0.116 0.105 0.153

Table 8: Bias Estimates.
The table displays the estimates for the bias term γj of the realised stochastic volatility model,

where j indexes the realised measures. The standard errors are in parentheses.

Close-to-close returns Open-to-close returns
RK PRV SRV MedRV RK PRV SRV MedRV

GE −0.198
(0.030)

−0.203
(0.030)

−0.269
(0.030)

−0.228
(0.030)

0.071
(0.030)

0.066
(0.030)

0.000
(0.030)

0.040
(0.030)

IBM −0.220
(0.030)

−0.227
(0.030)

−0.301
(0.030)

−0.251
(0.030)

0.066
(0.030)

0.058
(0.030)

−0.016
(0.030)

0.035
(0.030)

JPM −0.213
(0.030)

−0.219
(0.030)

−0.270
(0.030)

−0.247
(0.030)

0.047
(0.030)

0.041
(0.030)

−0.010
(0.030)

0.016
(0.030)

KO −0.017
(0.030)

−0.026
(0.030)

−0.099
(0.030)

−0.060
(0.030)

0.167
(0.030)

0.158
(0.030)

0.085
(0.030)

0.127
(0.030)

PFE −0.132
(0.030)

−0.134
(0.030)

−0.227
(0.030)

−0.144
(0.030)

0.084
(0.030)

0.082
(0.030)

−0.012
(0.030)

0.081
(0.030)

PG 0.033
(0.031)

0.023
(0.031)

−0.073
(0.031)

−0.033
(0.031)

0.237
(0.031)

0.228
(0.031)

0.131
(0.031)

0.176
(0.030)

T −0.009
(0.030)

−0.029
(0.030)

−0.057
(0.030)

−0.064
(0.030)

0.177
(0.030)

0.157
(0.030)

0.129
(0.030)

0.128
(0.030)

WMT −0.074
(0.030)

−0.081
(0.030)

−0.156
(0.030)

−0.141
(0.030)

0.144
(0.030)

0.137
(0.030)

0.062
(0.030)

0.077
(0.030)

XOM −0.133
(0.031)

−0.134
(0.031)

−0.225
(0.031)

−0.178
(0.030)

0.093
(0.029)

0.091
(0.029)

0.000
(0.029)

0.085
(0.030)
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Table 9: Diagnostics for the realised kernel residuals.
The table displays diagnostic statistics for the prediction errors (vt) from the estimation

in Table 4. The prediction errors are outputs of the Kalman filter calculated as vt =

logRKt − E(logRKt|RM1, ..., RMt−1;ψ).

GE IBM JPM KO PFE PG T WMT XOM
Skewness 0.43 0.36 0.38 0.46 0.65 0.47 0.46 0.29 0.44
Kurtosis 4.69 5.68 4.49 4.98 5.75 5.72 4.57 5.00 5.34
LB(1) (vt) 0.71 0.80 0.37 0.99 0.37 0.77 0.92 0.60 0.82
LB(5) (vt) 0.96 0.12 0.68 0.39 0.22 0.27 0.83 0.14 0.23
LB(22) (vt) 0.38 0.04 0.38 0.86 0.46 0.90 0.98 0.14 0.00
LB(1) (v2t ) 0.00 0.26 0.00 0.00 0.01 0.07 0.01 0.10 0.05
LB(5) (v2t ) 0.00 0.26 0.00 0.00 0.01 0.00 0.01 0.02 0.01
LB(22) (v2t ) 0.00 0.03 0.00 0.00 0.13 0.00 0.00 0.08 0.00

Figure 1: Estimated log variance signal (top) and individual components for IBM
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Table 10: Forecasting results: realised kernel, one day ahead.
We compare out of sample predictions for the daily log realised kernel of nine DJIA stocks in the period

between January 2002 and December 2010. Parameter estimates are updated monthly in a rolling window

of 2000 observations. We use information from the realised kernel and close-to-close return series in the

estimations. The RSV model is based on the superposition specification (5). The specifications for the

HARX, HEAVY and Realised GARCH models are provided in Section 4.4. MSE is the mean-square error.

The pmcs column indicates the p-value of the Hansen, Lunde, and Nason (2011a) model confidence set. A

(1− α) MCS is constructed so that it will contain the best model in MSE at a (1− α)× 100% confidence

level. The model is included in the (1−α) model confidence set for α ≤ pmcs. We base the test on 10, 000

bootstrap resamples. R2 denotes the coefficient of determination of the Mincer-Zarnowitz regression.

GE IBM JPM
MSE pmcs R2 MSE pmcs R2 MSE pmcs R2

HARX 0.220 0.392 0.829 0.177 0.270 0.772 0.206 0.463 0.865
HEAVY 0.218 0.392 0.831 0.181 0.069 0.768 0.205 0.463 0.866
Realised GARCH 0.219 0.392 0.830 0.177 0.270 0.773 0.206 0.463 0.866
Realised SV 0.214 1.000 0.833 0.173 1.000 0.777 0.200 1.000 0.869

KO PFE PG
MSE pmcs R2 MSE pmcs R2 MSE pmcs R2

HARX 0.184 0.101 0.734 0.210 0.009 0.676 0.191 0.020 0.685
HEAVY 0.187 0.101 0.731 0.224 0.000 0.655 0.200 0.020 0.673
Realised GARCH 0.183 0.145 0.737 0.217 0.000 0.668 0.194 0.020 0.682
Realised SV 0.180 1.000 0.739 0.207 1.000 0.680 0.187 1.000 0.691

T WMT XOM
MSE pmcs R2 MSE pmcs R2 MSE pmcs R2

HARX 0.232 0.077 0.739 0.187 0.184 0.717 0.176 0.081 0.747
HEAVY 0.240 0.006 0.731 0.188 0.184 0.716 0.172 0.886 0.752
Realised GARCH 0.239 0.005 0.732 0.186 0.184 0.719 0.172 0.706 0.752
Realised SV 0.229 1.000 0.742 0.181 1.000 0.726 0.171 1.000 0.753
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Table 11: Forecasting results: realised kernel, one month ahead.
We compare out of sample twenty two day ahead predictions for the daily log realised kernel of nine DJIA

stocks in the period between January 2002 and December 2010. Parameter estimates are updated monthly

in a rolling window of 2000 observations. We use information from the realised kernel and close-to-close

return series in the estimations. The RSV model is based on the superposition specification (5). The

specifications for the HARX, HEAVY and Realised GARCH models are provided in Section 4.4. MSE is

the mean-square error. The pmcs column indicates the p-value of the Hansen, Lunde, and Nason (2011a)

model confidence set. A (1 − α) MCS is constructed so that it will contain the best model in MSE

at a (1 − α) × 100% confidence level. The model is included in the (1 − α) model confidence set for

α ≤ pmcs. We base the test on 10, 000 bootstrap resamples. R2 denotes the coefficient of determination

of the Mincer-Zarnowitz regression.

GE IBM JPM
MSE pmcs R2 MSE pmcs R2 MSE pmcs R2

HARX 0.551 0.044 0.573 0.479 0.032 0.412 0.591 0.049 0.615
HEAVY 0.752 0.000 0.453 0.629 0.000 0.289 0.721 0.000 0.562
Realised GARCH 0.707 0.000 0.482 0.611 0.000 0.311 0.678 0.000 0.583
Realised SV 0.518 1.000 0.598 0.450 1.000 0.437 0.550 1.000 0.641

KO PFE PG
MSE pmcs R2 MSE pmcs R2 MSE pmcs R2

HARX 0.423 0.143 0.423 0.443 0.215 0.336 0.444 0.033 0.303
HEAVY 0.502 0.000 0.366 0.615 0.000 0.136 0.561 0.000 0.185
Realised GARCH 0.507 0.000 0.360 0.592 0.000 0.164 0.530 0.000 0.234
Realised SV 0.406 1.000 0.437 0.430 1.000 0.347 0.416 1.000 0.332

T WMT XOM
MSE pmcs R2 MSE pmcs R2 MSE pmcs R2

HARX 0.529 0.242 0.426 0.405 0.070 0.422 0.501 0.193 0.300
HEAVY 0.573 0.012 0.416 0.547 0.000 0.273 0.545 0.004 0.257
Realised GARCH 0.618 0.000 0.370 0.495 0.000 0.351 0.548 0.004 0.262
Realised SV 0.506 1.000 0.447 0.389 1.000 0.436 0.490 1.000 0.317
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Table 12: Forecasting with different realised measures (2006-2010).
We compare the out of sample forecasting variances of the realised stochastic volatility model

estimated using the realised kernel, subsampled SV and Median-RV measures individually. The

forecasts use information from the corresponding realised measure only. The same predictions

are separately compared as forecasts of the realised kernel and the subsampled RV measures.

Parameter estimates are updated monthly in a rolling window of 2000 observations. In parentheses

are the p-values of the Hansen, Lunde, and Nason (2011a) model confidence set. The (1 − α)

MCS is constructed so that it will contain the best model in MSE at a (1−α)× 100% confidence

level. The model is included in the (1− α) model confidence set for α ≤ pmcs. The test is based

on 10, 000 bootstrap resamples.

GE IBM JPM KO PFE PG T WMT XOM

1 day ahead predictions evaluated via RK

Realised kernel 0.235
(0.774)

0.188
(0.424)

0.202
(1.000)

0.202
(0.502)

0.181
(1.000)

0.197
(1.000)

0.212
(0.822)

0.194
(0.709)

0.180
(1.000)

Subsampled RV 0.251
(0.000)

0.198
(0.004)

0.211
(0.012)

0.215
(0.000)

0.191
(0.001)

0.213
(0.000)

0.225
(0.000)

0.205
(0.002)

0.185
(0.145)

Median-RV 0.235
(1.000)

0.187
(1.000)

0.203
(0.601)

0.201
(1.000)

0.182
(0.597)

0.199
(0.314)

0.211
(1.000)

0.193
(1.000)

0.180
(0.504)

1 day ahead predictions evaluated via SRV

Realised kernel 0.304
(0.500)

0.252
(0.853)

0.273
(1.000)

0.252
(0.781)

0.237
(1.000)

0.258
(1.000)

0.257
(0.507)

0.266
(1.000)

0.227
(0.598)

Subsampled RV 0.311
(0.017)

0.250
(1.000)

0.277
(0.431)

0.258
(0.050)

0.243
(0.061)

0.265
(0.203)

0.267
(0.005)

0.267
(0.975)

0.226
(1.000)

Median-RV 0.303
(1.000)

0.252
(0.853)

0.275
(0.466)

0.251
(1.000)

0.238
(0.915)

0.262
(0.203)

0.256
(1.000)

0.267
(0.975)

0.229
(0.395)

22 days ahead predictions evaluated via RK

Realised kernel 0.637
(0.826)

0.533
(0.661)

0.649
(1.000)

0.475
(1.000)

0.443
(0.026)

0.467
(1.000)

0.560
(0.550)

0.444
(0.202)

0.568
(1.000)

Subsampled RV 0.641
(0.649)

0.530
(1.000)

0.652
(0.631)

0.481
(0.550)

0.459
(0.005)

0.473
(0.522)

0.556
(1.000)

0.451
(0.202)

0.570
(0.941)

Median-RV 0.636
(1.000)

0.538
(0.366)

0.699
(0.025)

0.483
(0.550)

0.434
(1.000)

0.470
(0.522)

0.566
(0.550)

0.438
(1.000)

0.568
(0.941)

22 days ahead predictions evaluated via SRV

Realised kernel 0.671
(0.712)

0.554
(0.346)

0.687
(1.000)

0.509
(1.000)

0.482
(0.018)

0.504
(1.000)

0.580
(0.562)

0.505
(0.287)

0.589
(1.000)

Subsampled RV 0.674
(0.712)

0.547
(1.000)

0.689
(0.596)

0.515
(0.622)

0.495
(0.012)

0.509
(0.651)

0.576
(1.000)

0.510
(0.287)

0.592
(0.963)

Median-RV 0.669
(1.000)

0.558
(0.194)

0.735
(0.024)

0.516
(0.622)

0.472
(1.000)

0.506
(0.651)

0.585
(0.562)

0.499
(1.000)

0.591
(0.963)
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Table 13: Sample kurtosis of open-to-close returns standardised by realised
measures

RK PRV SRV MedRV
GE 2.69 2.73 2.52 2.83
IBM 2.79 2.80 2.55 2.91
JPM 2.83 2.84 2.55 2.99
KO 3.12 3.16 2.76 3.33
PFE 2.75 2.82 2.54 3.01
PG 3.08 3.10 2.79 3.20
T 2.83 2.86 2.58 3.10
WMT 2.84 2.86 2.58 3.04
XOM 2.83 2.87 2.56 2.93

Table 14: Testing the Gaussian SV model (2001-2010).
We analyse the series of open-to-close and close-to-close returns standardised by their conditional

volatilities estimated from the realised SV model with RMt = (RKt PRVt SRVt)
′. We calculate the

standardised returns as ε̂t = yt×E(exp (θt)|RM1, . . . ,RMt−1)−1/2. We report the sample skewness and

kurtosis of the standardised returns and compare it to the values implied by the estimated Gaussian

SV model of Table 4 and the SV-t model with additional parameters reported in Table 15. The model

implied kurtosis is calculated via equation (10). The table shows the p-values of parametric bootstrap

tests of the model implied skewness and kurtosis against the data.

GE IBM JPM KO PFE PG T WMT XOM
Open-to-close returns

Sample skewness 0.20 -0.10 -0.08 0.03 0.30 -0.08 -0.05 0.12 -0.19
p-value (Gaussian) 0.00 0.12 0.26 0.59 0.00 0.27 0.46 0.06 0.01

Sample Kurtosis 4.25 3.60 3.85 4.07 5.54 3.85 3.77 3.58 3.58
Gaussian SV kurtosis 3.43 3.39 3.54 3.33 3.44 3.61 3.53 3.34 3.58
p-value (Gaussian) 0.00 0.18 0.10 0.00 0.00 0.25 0.18 0.11 1.00

Close-to-close returns
Sample skewness -0.23 -0.25 -0.02 -0.15 -0.48 -0.21 0.03 -0.02 -0.24
p-value (Gaussian) 0.00 0.00 0.77 0.01 0.00 0.01 0.64 0.70 0.00
p-value (SV-t) 0.02 0.05 0.78 0.24 0.00 0.11 0.72 0.82 0.00

Sample Kurtosis 6.44 5.42 3.90 5.45 9.12 5.19 4.38 4.43 3.63
Gaussian SV kurtosis 3.43 3.39 3.54 3.33 3.44 3.61 3.53 3.34 3.58
p-value (Gaussian) 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.80
SV-t kurtosis 4.11 4.66 3.61 4.90 4.54 4.74 3.98 3.94 3.58
p-value (SV-t) 0.00 0.13 0.14 0.41 0.00 0.38 0.17 0.08 0.80
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Table 15: SV-t parameters.
We extend the results in Tables 4 and 5 to allow for the return innovations to follow the

(standardised) t-distribution with ν degrees of freedom. The leverage effects are modelled via

a Gaussian copula. Because of the two-step estimation method, the parameters of the linear

model for the log realised measures remain the same. We report the new parameters. The

standard errors are in parentheses.

GE IBM JPM KO PFE PG T WMT

Realised kernel, pre-averaging RV and subsampled RV estimation
γrk −0.213

(0.034)
−0.249
(0.037)

−0.214
(0.031)

−0.047
(0.038)

−0.157
(0.036)

−0.003
(0.038)

−0.025
(0.033)

−0.089
(0.033)

γprv −0.218
(0.034)

−0.257
(0.037)

−0.221
(0.031)

−0.056
(0.038)

−0.159
(0.036)

−0.012
(0.038)

−0.045
(0.033)

−0.095
(0.033)

γsrv −0.284
(0.034)

−0.331
(0.037)

−0.272
(0.031)

−0.129
(0.038)

−0.253
(0.036)

−0.109
(0.038)

−0.073
(0.033)

−0.170
(0.033)

ν 14.19
(3.45)

9.35
(1.56)

106.20
(243.75)

8.21
(1.25)

10.28
(1.79)

10.36
(2.27)

19.65
(7.87)

15.16
(4.38)

ρ1 −0.497
(0.141)

−0.503
(0.193)

−0.610
(0.180)

−0.457
(0.171)

−0.512
(0.155)

−0.252
(0.205)

−0.441
(0.202)

−0.245
(0.173)

ρ2 −0.265
(0.081)

−0.431
(0.113)

−0.266
(0.083)

−0.232
(0.099)

−0.078
(0.102)

−0.294
(0.095)

−0.212
(0.107)

−0.276
(0.114)

Median-RV estimation
γmed −0.243

(0.034)
−0.282
(0.037)

−0.249
(0.031)

−0.089
(0.038)

−0.166
(0.036)

−0.070
(0.038)

−0.042
(0.035)

−0.156
(0.034)

ν 13.51
(3.10)

9.06
(1.47)

92.25
(189.74)

7.76
(1.10)

9.21
(1.41)

8.82
(1.59)

12.16
(2.88)

14.29
(3.91)

ρ1 −0.500
(0.139)

−0.514
(0.190)

−0.612
(0.176)

−0.490
(0.167)

−0.527
(0.162)

−0.254
(0.205)

−0.500
(0.219)

−0.255
(0.173)

ρ2 −0.277
(0.087)

−0.412
(0.116)

−0.283
(0.084)

−0.202
(0.100)

−0.094
(0.110)

−0.290
(0.099)

−0.167
(0.125)

−0.253
(0.115)

Figure 2: Log realised kernel (top) and estimated log variance signal for Coca-Cola
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Figure 3: Open-to-close returns standardised by the conditional volatilities

Figure 4: Close-to-close returns standardised by the conditional volatilities
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