
Forecasting by factors, by variables, by both, or neither?

Jennifer L. Castle†, Michael P. Clements� and David F. Hendry∗
†Magdalen College and Institute for Economic Modelling,

Oxford Martin School, University of Oxford, UK, and Institute for New Economic Thinking (INET)
�Economics Department, Warwick University, UK

⋆Economics Department and Institute for Economic Modelling,

Oxford Martin School, University of Oxford, UK, and INET

December 7, 2011

Abstract

We consider forecasting with factors, variables or both when multiple breaks occur, modelling in-
sample using impulse-indicator saturation (IIS). Model selection byAutometricshandles both more
regressors than observations and perfect collinearity, enabling all principal components (PCs) and
variables to be included jointly. We forecast US GDP and inflation over 1-, 4- and 8-step horizons
using the dataset from Stock and Watson (2009). The results are mixed but suggest that factor mod-
els are more useful for nowcasting or short-term forecasting (e.g. 1-step ahead) but their relative
performance declines as the forecast horizon increases. For direct multi-step forecastingAutometrics
selection over variables (or variables and PCs) tends to forecast better than factor forecasts. Re-
cursive estimation can yield better forecasts, but recursive selection leads to greater variability in
forecast accuracy, and so a more robust partial recursive selection strategy is proposed. Accounting
for in-sample breaks and outliers using IIS is useful, with lowerRMSFEs.

JEL classifications:C51, C22.
Keywords: Model selection; Factor models; Forecasting; Impulse-indicator saturation;Autometrics

1 Introduction and historical background

There are three venerable traditions in economic forecasting based respectively on economic-theory de-
rived empirical econometric models, ‘indicator’ or ‘factor’ approaches combining many sources of in-
formation, and mechanistic approaches.

Members of the first group are exemplified by early models likeSmith (1927, 1929) and Tinbergen
(1930), smaller systems in the immediate post-war period (such as Klein, 1950, Tinbergen, 1951, Klein,
Ball, Hazlewood and Vandome, 1961), leading onto large macro-econometric models (Duesenberry,
Fromm, Klein and Kuh, 1969, and Fair, 1970, with a survey in Wallis, 1989), and now including both
dynamic stochastic general equilibrium (DSGE) models widely used at Central Banks (see e.g, Smets
and Wouters, 2003), and global models, first developed by project Link (see e.g., Waelbroeck, 1976) and
more recently, global vector autoregressions (GVARs: see Dees, di Mauro, Pesaran and Smith, 2007,
Pesaran, Schuerman and Smith, 2009, and Ericsson, 2010).

The second approach commenced with the ABC curves of Persons(1924), followed by leading indi-
cators as in Zarnowitz and Boschan (1977) with critiques in Diebold and Rudebusch (1991) and Emerson
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and Hendry (1996). Factor analytic and principal componentmethods have a long history in statistics
and psychology (see e.g., Spearman, 1927, Cattell, 1952, Anderson, 1958, Lawley and Maxwell, 1963,
Joreskog, 1967, and Bartholomew, 1987) and have seen some distinguished applications in economics
(e.g., Stone, 1947, for an early macroeconomic application; and Gorman, 1956, for a microeconomic
one). Diffusion indices and factor models are now quite widely used for economic forecasting: see e.g.,
Stock and Watson (1989, 1999, 2009), Forni, Hallin, Lippi and Reichlin (2000), Peña and Poncela (2004,
2006), and Schumacher and Breitung (2008).

The third set includes methods like exponentially weightedmoving averages, denoted EWMA, the
closely related Holt–Winters approach (see Holt, 1957, andWinters, 1960), damped trend (see e.g.,
Fildes, 1992), and autoregressions, including the generaltime-series approach in Box and Jenkins (1970).
Some members of this class were often found to dominate in forecasting competitions, such as Makri-
dakis, Andersen, Carbone, Fildeset al. (1982) and Makridakis and Hibon (2000).

Until recently, while the first two approaches often compared their forecasts with various ‘naive’
methods selected from the third group, there was little direct comparison between them, and almost no
studies included both. Here, we consider the reasons for that lacuna, and explain how it can be remedied.

The structure of the paper is as follows. Section 2 describessome of the issues that are likely to
bear on the topic of this paper, including the role of measurement errors. Section 3 relates the ‘external’
variables, denoted{zt}, to factors{ft}. Section 4 compares variable-based and factor-based models.
Section 5 develops the analysis of forecasting from factor models with a taxonomy of sources of forecast
error in the empirically relevant case of non-stationary processes. Section 6 addresses the problem of
systematic forecast failure to which equilibrium-correction formulations are prone in the face of location
shifts. Section 7 discusses model selection with both factors and variables, and section 8 illustrates the
analysis using US GDP and inflation forecasts. Section 9 concludes.

2 Setting the scene

There are a number of interacting issues that need to be addressed in an analysis of forecasting, whatever
device is used. The complexity of these issues, and the way they interact, means that an answer to the
question in the title of this paper ‘forecasting by factors,by variables, or both?’ is likely to be context
specific. Even though general guidelines might prove hard tocome by, it is fruitful to consider these
issues and how they affect our research question. We consider eight aspects: (i) the pooling of both
variables and factors in forecasting models; (ii) the role of in-sample model selection in that setting;
(iii) whether or not breaks over the forecast horizon are unanticipated; (iv) the role of more versus less
information in forecasting; (v) the type of forecasting model being used, specifically whether or not it is
an equilibrium-correction mechanism (EqCM); (vi) measurement errors in the data, especially near the
forecast origin; (vii) how to evaluate the ‘success or failure’ of forecasts; (viii) the nature of the DGP
itself. We briefly consider these in turn.

2.1 Pooling of information

Factor models are a way of forecasting using a large number ofpredictors, as opposed to pooling over
the forecasts of a large number of simple, often single-predictor, models. When there are many variables
in the set from which factors are formed (the ‘external’ variables), including both sets will often result
in the number of candidate variables,N , being larger than the sample size,T . This problem may have
seemed insurmountable in the past, but now is not. Letzt denote the set ofn ‘external’ variables’
from which the factorsft = Hzt (say) are formed, thenft, . . . ft−s, zt, . . . zt−s comprise the initial set
of candidate variables. Automatic model selection can use multi-path searches to eliminate irrelevant
variables by exploring all feasible paths with mixtures of expanding and contracting block searches, so
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can handle settings with both perfect collinearity andN > T , as shown in Hendry and Krolzig (2005)
and Doornik (2009b). The simulations in Castle, Doornik andHendry (2011a) show the feasibility of
such an approach whenN > T in linear dynamic models. Hence we are not forced at the outset to
allow only a small number of factors, or just the factors and afew lags of the variable being forecast,
say, as candidates. When the number of candidate variables exceeds the sample size, model selection is
unavoidable, so we consider that issue next.

2.2 Model selection

The ‘general-to-specific’ (Gets) search algorithm inAutometricswithin PcGive (see Doornik, 2007,
2009a, and Hendry and Doornik, 2009) seeks the local data generating process (denoted LDGP), namely
the DGP for the set of variables under consideration (see e.g., Hendry, 2009) by formulating a general un-
restricted model (GUM) that nests the LDGP, and checking itscongruence when feasible (estimable once
N ≪ T and perfect collinearities are removed). Search thereafter ensures congruence, so all selected
models are valid restrictions of the GUM, and should parsimoniously encompass the feasible GUM.
Location shifts are removed in-sample by impulse-indicator saturation (IIS: see Hendry, Johansen and
Santos, 2008, Johansen and Nielsen, 2009, and the simulation studies in Castle, Doornik and Hendry,
2011c), which also addresses possible outliers. Thus, if

{
1{j=t}, t = 1, . . . , T

}
denotes the complete

set ofT impulse indicators, we allow forft, . . . ft−s, zt, . . . zt−s and
{
1{j=t}, t = 1, . . . , T

}
all being

included in the initial set of candidate variables to which multi-path search is applied, soN > T will al-
ways occur when IIS is used. The in-sample feasibility of this approach is established in Castle, Doornik
and Hendry (2011b). Here we are concerned with the application of models selected in this way to a
forecasting context when the DGP is non-stationary due to structural breaks. Since there seem to be few
analyses of how well a factor forecasting approach would then perform (see however, Stock and Watson,
2009, and Corradi and Swanson, 2011), we explore its behavior facing location shifts at the forecast
origin.

2.3 Unanticipated location shifts

Third, ex anteforecasting is fundamentally different fromex postmodeling when unanticipated location
shifts can occur. Breaks can always be modeled after the event (at worst by indicator variables), but will
cause forecast failure when not anticipated. Clements and Hendry (1998, 1999) proposed a general theory
of economic forecasting for a world of structural breaks using mis-specified models, and emphasized that
it had radically different implications from a forecastingtheory based on stationarity and well-specified
models (as in Klein, 1971, say). Moreover, those authors also establish that breaks other than location
shifts are less pernicious for forecasting (though not for policy analyses). Pesaran and Timmermann
(2005) and Pesaran, Pettenuzzo and Timmermann (2006) consider forecasting time series subject to
multiple structural breaks, and Pesaran and Timmermann (2007) examine the use of moving windows
in that context. Castle, Fawcett and Hendry (2010, 2011) investigate how breaks themselves might be
forecast, and if not, how to forecast during breaks, but drawsomewhat pessimistic conclusions due to
the limited information that will be available at the time any location shift occurs. Thus, we focus the
analysis on the impacts of unanticipated location shifts infactor-based forecasting models.

2.4 Role of information in forecasting

Fourth, factor models can be interpreted as a particular form of ‘pooling of information’, in contrast to the
‘pooling of forecasts’ literature discussed in (e.g.) Hendry and Clements (2004). Pooling information
ought to dominate pooling forecasts, each of which is based on limited information, except when all
variables are orthogonal (see e.g, Granger, 1989). However, the taxonomy of forecast errors in Clements
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and Hendry (2005b) suggests that incomplete information byitself is unlikely to play a key role in
forecast failure (except if that information would forecast breaks). Consequently, using large amounts of
data may not correct one of the main problems confronting forecasters, namely location shifts, unless that
additional information is directly pertinent to forecasting breaks. Moreover, although we useGetsmodel
selection from a very general initial candidate set, combined with congruence as a basis for econometric
modeling, it cannot be proved that congruent modeling helpsfor forecasting when facing location shifts
(see e.g., Allen and Fildes, 2001). Conversely, Makridakisand Hibon (2000) conclude that parsimonious
models do best in forecasting competitions, but Clements and Hendry (2001) argue that such findings
are conflated with robustness to location shifts because most of the parsimonious models evaluated also
happened to be relatively robust to location shifts compared to their non-parsimonious contenders.1 Since
more information cannot lower predictability, and omitting crucial explanatory variables will both bias
parameter estimates and lead to an inferior fit, the jury remains out on the benefits of more versus less
information when forecasting.

2.5 Equilibrium-correcting behavior

Fifth, factor models are often equilibrium correction in form, so they suffer from the general non-
robustness to location shifts of that class of model. However, the principles of robust-model formulation
discussed in Clements and Hendry (2005b) apply, and any equilibrium-correction system, whether based
on variables or factors (or both), could be differenced prior to forecasting, thereby embedding the result-
ing model in a second-differenced forecasting device. Castle et al. (2010) show that how a given model
is used in the forecast period matters, and explore various transformations that reduce systematic forecast
failure after location shifts. Section 6 provides a more extensive discussion.

2.6 Measurement errors

Sixth, many of the ‘solutions’ to systematic forecast failure induced by location shifts exacerbate the ad-
verse effects of data measurement errors near the forecast origin: for example, differencing doubles their
impact. Conversely, averaging mitigates the effects of random measurement errors, so as one method
of averaging over variables, factors might help mitigate data errors. Forecasting models which explic-
itly account for data revisions offer an alternative solution. These include modelling the different vin-
tage estimates of a given time-observation as a vector autoregression (see, e.g., Garratt, Lee, Mise and
Shields, 2008, 2009, and Hecq and Jacobs, 2009, following onfrom Patterson, 1995, 2003), as well as
the approach of Kishor and Koenig (2010) (building on earlier contributions by Howrey, 1978, 1984,
and Sargent, 1989). For the latter, a VAR is estimated on post-revision data, necessitating stopping the
estimation sample short of the forecast origin, and the model forecasts of the periods up to the origin
are combined with lightly-revised data for these periods via the Kalman filter to obtain post-revision
estimates. The forecast is then conditioned on these estimates of what the revised values of the latest
data will be. Clements and Galvão (2011) provide some evidence on the efficacy of these strategies for
forecasting US output growth and inflation, albeit using information sets consisting only of lags (and
different vintage estimates) of the variable being forecast.

The frequency of macroeconomic data can also affect its accuracy, as can nowcasting (see e.g.,
Castle, Fawcett and Hendry, 2009, and Bánbura, Giannone and Reichlin, 2011) and ‘real time’ (versus
ex post) forecasting (on the latter, see e.g., Croushore, 2006, andClements and Galvão, 2008). Empirical

1Parsimonious models need not be robust–to see that the two characteristics are distinct, consider using as the forecastan
estimate of the unconditional mean of the process to date. Nomodel specification/selection/estimation is required, apart from
the calculation of a sample mean, suggesting a simple forecasting device, which is nevertheless highly susceptible to location
shifts.
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evidence suggests that the magnitudes of data measurement errors are larger in the most recent data, in
other words, in the data on which the forecast is being conditioned (hence the Kishor and Koenig, 2010,
idea of stopping the model estimation period early, and attempting to predict the ‘final’ estimates of the
most recent data), as well as during turbulent periods (Swanson and van Dijk, 2006), which might favour
factor models over other approaches that do not explicitly attempt to take data revisions into account.

2.7 Forecast evaluation

Next, there is a vast literature on how to evaluate the ‘success or failure’ of forecasts (see among many
others, Leitch and Tanner, 1991, Pesaran and Timmermann, 1992, Clements and Hendry, 1993b, Granger
and Pesaran, 2000a, 2000b, Pesaran and Skouras, 2002), as well as using forecasts to evaluate models
(see e.g., West, 1996, West and McCracken, 1998, Hansen and Timmermann, 2011, with a sceptical
view in Castle and Hendry, 2011b), forecastingmethods(Giacomini and White, 2006), and economic
theory (Clements and Hendry, 2005a). As a first exercise in forecasting from models selected from both
variables and factors, below we just report descriptive statistics of forecast performance.

2.8 Nature of the DGP

Finally, the nature of the DGP itself matters greatly to the success of a specific forecasting model or
method. In particular, the factor model would be expected todo well if the ‘basic’ driving forces are
primarily factors, in the sense that a few factors account for a large part of the variance of the variables
of interest. The ideal case for factor model forecasting is where the DGP is:

xt = Υ (L) ft + et

ft = Φ (L) ft−1 + ηt

wherext is n × 1, ft is m × 1, Υ(L) andΦ(L) aren × m andm × m, andn ≫ m so that the low-
dimensionalft drives the co-movements of the high-dimensionalxt. The latent factors are assumed here
to have a VAR representation. Suppose in addition that the mean-zero ‘idiosyncratic’ errorset satisfy
E[ei,tej,t−k] = 0 all k unlessi = j (allowing the individual errors to be serially correlated), and that
E[ηtet−k] = 0 for all k.

It then follows that given theft, each variable inxt, sayxi,t, can be optimally forecast using only the
ft and lags ofxi,t (xi,t−1, xi,t−2 etc). If we letλi(L)

′ denote theith row ofΥ(L), then:

Et [xi,t+1 | xt, ft,xt−1, ft−1, . . .] = Et

[
λi (L)

′
ft+1 + ei,t+1 | xt, ft,xt−1, ft−1, . . .

]

= Et

[
λi (L)

′
ft+1 | xt, ft,xt−1, ft−1, . . .

]

+ Et [ei,t+1 | xt, ft,xt−1, ft−1, . . .]

= Et

[
λi (L)

′
ft+1 | ft, ft−1, . . .

]
+ Et [ei,t+1 | ei,t, ei,t−1 . . .]

= α (L)′ ft + δ (L)xi,t

under the assumptions we have made (see Stock and Watson, 2011, for a detailed discussion). Absent
structural breaks, the model with the appropriate factors and lags ofxi would deliver the best forecasts
(in population: ignoring parameter estimation uncertainty). The results of Faust and Wright (2007),
among others, suggest that the factor structure may not be a particularly good representation of the
macroeconomy. Our empirical approach allows that the ‘basic’ driving forces may be variables or factors,
and that there may be non-linearities (captured by linear approximations), as well as the many possible
non-stationarities noted above. We assume the DGP originates in the space of variables, with factors
being potentially convenient approximations that parsimoniously capture linear combinations of effects.
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Although non-linearity can be tackled explicitly along with all the other complications (see e.g., Castle
and Hendry, 2011a), we only analyze linear DGPs here.

Thus, we consider forecasting from linear models selected in-sample from (a) a large set of variables,
(b) over those variables’ principal components (PCs), and (c) over a candidate set including both, in each
case with IIS, so the initial model will necessarily haveN > T , and in the third case will be perfectly
collinear. We exploit the ability of automatic model selection to operate successfully in such a setting, as
well as to select despite more candidate variables than observations.

3 Relating ‘external’ variables to factors

Consider a vector ofn stochastic variables{zt} that are weakly stationary overt = 1, . . . , T . For
specificity, we assume thatzt is generated by a first-order vector autoregression (VAR) with deterministic
termπ:

zt = π +Πzt−1 + vt (1)

whereΠ has all its eigenvalues inside the unit circle, andvt ∼ INn [0,Ωv], wheren < T . From (1):

E [zt] = π +ΠE [zt−1] = π +Πµ = µ

whereµ = (In −Π)−1 π. The principal-component description ofzt is:

zt = Ψf t + et (2)

so whenE [ft] = κ andE [et] = 0, under weak stationarity in-sample from (2):

E [zt] = ΨE [ft] + E [et] = Ψκ = µ (3)

whereft ∼ IDm [κ,P] is a latent vector of dimensionm ≤ n, soΨ is n × m, with et ∼ IDn [0,Ωe
],

E[fte′t] = 0 andE [ete
′
t] = Ωe. Then:

E
[
(zt − µ) (zt − µ)′

]
= ΨE

[
(ft − κ) (ft − κ)′

]
Ψ′ + E

[
ete

′
t

]
= ΨPΨ′ +Ωe = M (4)

say, whereP is anm×m diagonal matrix and hencezt ∼ Dn [µ,M]. Let:

M = HΛH′ (5)

whereH′H = In, soH−1 = H′ and the eigenvalues are ordered from the largest downwards with:

H′ =

(
H′

1

H′
2

)
and Λ =

(
Λ11 0

0 Λ22

)
, (6)

whereΛ11 is m×m, with H′
1MH1 = Λ11 and:

HΛH′ = H1Λ11H
′
1 +H2Λ22H

′
2.

Consequently, from (2) and (6):

H′ (zt − µ) = H′ (Ψ (ft − κ) + et) = ft − κ (7)

If only m linear combinations actually matter, son−m do not, the matrixH′
1 weights thezt to produce

the relevant principal components where:

H′
1 (zt − µ) = f1,t − κ1 (8)

In (7), we allow for the possibility thatn = m, soft is the complete set of principal components entered
in the candidate selection set, of which onlyf1,t are in fact relevant to explainingyt.
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4 Variable-based and factor-based models

The postulated in-sample DGP foryt is:

yt = β0 + β′zt−1 + ρyt−1 + ǫt (9)

where|ρ| < 1 andǫt ∼ IN
[
0, σ2

ǫ

]
. Integrated-cointegrated systems can be reduced to this framework

analytically, albeit posing greater difficulties empirically. Under weak stationarity in-sample:

E [yt] = β0 + β′
E [zt−1] + ρE [yt−1] = β0 + β′µ+ ρδ = δ (10)

soδ =
(
β0 + β′µ

)
/ (1− ρ) and (9) can be expressed as:

yt − δ = β′ (zt−1 − µ) + ρ (yt−1 − δ) + ǫt (11)

or as an EqCM when that is a useful reparametrization. In general, only a subset of thezt−1 will matter
substantively, and we denote that byza,t−1, so the remaining variables are not individually significant at
relevant sample sizes, leading to:

yt − δ ≃ β′
a (za,t−1 − µa) + ρa (yt−1 − δ) + ǫt (12)

However, that does not preclude that known linear combinations of the omitted variables might be sig-
nificant.

Following up that last comment, from (7):

yt − δ = β′H (ft−1 − κ) + ρ (yt−1 − δ) + ǫt = τ ′ (ft−1 − κ) + ρ (yt−1 − δ) + ǫt (13)

where again only a subset may matter, namely thef1,t−1 in (8), so that:

yt − δ ≃ τ ′
1 (f1,t−1 − κ1) + ρ1 (yt−1 − δ) + ǫt (14)

Finally we allow the possibility that when both variables and their principal components are allowed,
some of theza,t−1 and some of thef1,t−1 are retained to provide closer, yet more parsimonious, approxi-
mations to the behavior ofyt in-sample. In practice, there may well have been location shifts and outliers
in-sample, so we also allow for IIS during model selection. Thus, a vector of deterministic terms (such as
intercepts, location shifts, and indicator variables) denotedqt with Q1

t = (q1 . . . qt) is allowed, as well
as longer lags, so the sequential conditional expectation of yt at timet is denotedEt[yt|Z

1
t−1,Y

1
t−1qt]

(when that exists).
An important special case is when the DGP foryt is a simple autoregressive process, so that none of

thezi,t−1 have a role to play. Whenyt is just an AR(1), say, then:

yt = γ0 + γ1yt−1 + vt.

Searching over (or modeling) factors alone might lead to theretention of a large number of the elements
of ft to approximateyt−1, especially if thezt includeyt. When searching over variables, or both variables
and factors, then the starting model includesyt−1, and so should allow for simpler models that more
closely resemble the DGP.
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5 Forecasting from variables and factors

The aim is to forecast the scalar{yT+h} over a forecast horizonh = 1, . . . ,H, from a forecast origin
atT , at which point the information set consists ofZ1

T = (z1 . . . zT ) and(y1 . . . yT ). Forecast accuracy
is to be judged by a criterion functionCe

(
ûT+1|T . . . ûT+H|T

)
, which we take to depend only on the

forecast errorŝuT+h|T = yT+h − ŷT+h|T , where ‘smaller’ values ofCe (·) are preferable. Even so,
unless the complete joint density is known, evaluation outcomes depend on the specific transformation
considered.

Once in-sample estimates of the factors{f̂t} are available, one-step forecasts can be generated from
estimates of the selected equation:2

ŷT+1|T = δ̂ + τ̂ ′
1

(
f̂1,T − κ̂1

)
+ ρ̂

(
ŷT − δ̂

)
(15)

whereŷT is the ‘flash’ estimate of the forecast origin value. Multi-step estimation can be used to obtain
the values of the coefficients in the forecasting device (seee.g., Clements and Hendry, 1996, Bhansali,
2002, and Chevillon and Hendry, 2005, for overviews), so forh-step ahead forecasts:

ŷT+h|T = δ̂(h) + τ̂ ′
1,(h)

(
f̂1,T − κ̂1

)
+ ρ̂(h)

(
ŷT − δ̂(h)

)
(16)

in which casêuT+h|T = yT+h − ŷT+h|T will generally be a moving average process of order (h − 1)
(denoted MA(h− 1)).

Existing taxonomies of sources of forecast errors have analyzed a range of open and closed models in
variables, so here we consider the factor model when the DGP has a factor structure, as in (13). The DGP
depends onzt−1 andyt−1, although not all the variableszi,t−1 need enter the DGP, and the forecasting
model is allowed to incorporate a subset of the factors. Our taxonomy of forecast errors focuses attention
on what are likely to be the principle sources of forecast bias and forecast-error variance. Following
earlier work, we begin by allowing location shifts as the only source of instability over the forecast
horizon, but then consider the impact of a shift in the parameter vector that determines the impact of the
factors onyt. Stock and Watson (2009) consider the effects of instabilities in the forecasting model–that
is, in the effects of the factors onyt–but as we show, a key determinant of forecasting performance is the
impact of location shifts. We let the DGP change atT to:

yT+h = δ∗ + β′ (zT+h−1 − µ∗) + ρ (yT+h−1 − δ∗) + ǫT+h (17)

for h = 1, . . . ,H. Mapping to principal components yields:

yT+h = δ∗ + τ ′ (fT+h−1 − κ∗) + ρ (yT+h−1 − δ∗) + ǫT+h (18)

where for nowτ andρ remain at their in-sample values during the forecast period.
We derive the1-step forecast-error taxonomy, which highlights the key factors, and allows us to

separately distinguish 11 sources of forecast error. Calculating the forecast error as (18) minus (15), for
h = 1, gives rise to:

ûT+1|T =
(
δ∗ − δ̂

)
+ τ ′ (fT − κ∗)− τ̂ ′

1

(
f̂1,T − κ̂1

)
+ ρ (yT − δ∗)− ρ̂

(
ŷT − δ̂

)
+ ǫT+1.

Usingτ ′
1 (κ

∗
1 − κ1) + τ ′

2 (κ
∗
2 − κ2) = τ ′ (κ∗ − κ), we derive the forecast error reported in table 1.

2Estimateŝf1,t of ft using principal componentsH′

1 (zt − µ) depend on the scaling of thezt, so are often based on the
correlation matrix.

8



Table 1: Factor model taxonomy of forecast errors,ûT+1|T = . . .

(1− ρ) (δ∗ − δ) [A] equilibrium-mean shift
−τ ′ (κ∗ − κ) [B] factor-mean shift

+(1− ρ)
(
δ − δ̂

)
[C] equilibrium-mean estimation

−τ ′
1 (κ1 − κ̂1) [D] factor-mean estimation

+ρ (yT − ŷT ) [E] flash estimate error

+τ ′
1

(
f1,T − f̂1,T

)
[F] factor estimate error

+τ ′
2 (f2,T − κ2) [G] factor approximation error

+(τ 1 − τ̂ 1)
′
(
f̂1,T − κ1

)
[H] factor estimation covariance

+(ρ− ρ̂)
(
ŷT − δ̂

)
[I] flash estimation covariance

+(τ 1 − τ̂ 1)
′ (κ1 − κ̂1) [J] parameter estimation covariance

+ǫT+1 [K] innovation error

Taking expectations assuming near unbiased parameter estimates, and neglecting terms ofOp

(
T−1

)
:

E
[
ûT+1|T

]
≃ (1− ρ) (δ∗ − δ)− τ ′ (κ∗ − κ) + ρ (yT − E[ŷT ]) + τ ′

1(f1,T − E[̂f1,T ]) (19)

which indicates that sources [A] and [B] in table 1 are primary determinants of forecast bias, although
data and factor estimation errors ([E] and [F]) also contribute. These last two and all the remaining
terms contribute to the forecast-error variance. The factor approximation error does not enter (19) as
E [f2,T ] = κ2. Even when [E] and [F] are negligible, the equilibrium-meanand factor-mean shifts could
be large. For example, if in (1):

π∗ = π + 1(t≥T )θ for h = 1, . . . ,H (20)

so that the intercept in the unmodeled variables representation undergoes a permanent shift atT , then as:

π = (In −Π)Ψκ

whenΠ andΨ are constant,κ will shift, and forn = m:

κ∗ = Ψ−1 (In −Π)−1 π∗ = κ+ 1(t≥T )Ψ
−1 (In −Π)−1 θ (21)

Thus, forecast-error biases are entailed by equilibrium-mean shifts within the forecasting model ofyT+1

(i.e., δ∗ 6= δ) or in the external variables entering its DGP (κ∗ 6= κ) irrespective of the inclusion or
exclusion of the associated factors, whereas the approximation error by itself does not induce such a
problem. This outcome is little different from a model baseddirectly on thezt (rather thanft) where
shifts in their equilibrium mean can also induce forecast failure yet omission does not exacerbate that
problem (see Hendry and Mizon, 2011, for a general taxonomy of systems with unmodeled variables).

Consider now the possibility thatτ andρ change value for the forecast period, so that in place of
(18) the DGP is given by:

yT+1 = δ∗ + τ ∗′ (fT − κ∗) + ρ∗ (yT − δ∗) + ǫT+1 (22)

Without constructing a detailed taxonomy, the key impacts can be deduced. Relative to the baseline case
illustrated in table 1, the change inτ induces an additional error term:

τ ∗′ (fT − κ∗)− τ ′ (fT − κ∗) =
(
τ ∗′ − τ ′

)
(fT − κ∗)
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so that the slope change will interact with the location shift, but in its absence will be relatively benign–
this additional term will not contribute to the bias whenκ∗ = κ, suggesting the primacy of location
shifts. In a similar fashion, the change in persistence of the process (the shift inρ) only affects the
forecast bias if the mean ofyt also changes over the forecast period. To see this, the additional term in
the forecast error whenρ shifts is:

(ρ∗ − ρ) (yT − δ∗)

which has a zero expectation when the shift inρ does not cause a shift inδ, soδ∗ = δ.
Finally, it is illuminating to consider the principal sources of forecast error for an AR(1) model, as

this model serves as the benchmark against which theselectedfactor-and-variable models in section 8 are
to be compared. For the sake of brevity, we ignore factors of secondary importance, such as parameter
estimation uncertainty and data mis-measurement, and construct the forecast error for the AR(1):

yt = δ + α (yt−1 − δ) + ut (23)

when the forecast period DGP is given by (18). Notice that theomission of the factors will typically
change the autoregressive parameterα, so thatα need not equalρ, but the long-run mean is the in-
sample period value ofδ. Denoting the forecast error from the AR(1) model byv̂T+1|T , we obtain:

v̂T+1|T = (1− ρ) (δ∗ − δ)− τ ′ (κ∗ − fT ) + (ρ− α) (yT − δ)

with a forecast bias of:
E
[
v̂T+1|T

]
= (1− ρ) (δ∗ − δ)− τ ′ (κ∗ − κ) ,

matching the two leading terms in (19) for the bias of the factor-forecasting model. Hence whether we
include the ‘correct’ set of factors, a subset of these, or none at all will have no effect on the bias of the
forecasts (at the level of abstraction we are operating at here). This affirms the importance of location
shifts and the relative unimportance of forecasting model mis-specification (as in e.g., Clements and
Hendry, 2006).

6 The equilibrium-correction problem

Section 5 assumes a single forecast origin, but forecastingis rarely viewed as a one-off venture, and
of interest is the performance of the competing models as theorigin moves through time. Although all
models will fail when there is a location shift which is unknown when the forecast is made, of interest
is the speed and extent to which forecasts recover as the origin moves forward in time from the break
point. A feature of the ‘equilibrium-correction’ class of models, to which (15) belongs, is their lack of
adapatability over time. To see this, note that (15) could berewritten for 1-step forecasts as:

∆ŷT+1|T = τ̂ ′
1

(
f̂1,T − κ̂1

)
+ (ρ̂− 1)

(
ŷT − δ̂

)

so thatE
[
∆ŷT+1|T

]
≃ 0, whereas the DGP is given by:

∆yT+1 = τ ′ (fT − κ∗) + (ρ− 1) (yT − δ∗) + ǫT+1 (24)

with an expected value which is non-zero when there are locations shifts:

E [∆yT+1] = τ ′
E [fT − κ∗] + (ρ− 1)E [yT − δ∗] = τ ′

1 (κ1 − κ∗
1) + (ρ− 1) (δ − δ∗) (25)

Thus shifts in the deterministic terms will induce forecastfailure, principally because they are embedded
in ∆yT+1, but not in forecasts of this quantity. The class of equilibrium-correction models is such that
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this problem persists as the origin is extended forward. Forexample, forecastingT +2 from T +1 even
for known in-sample parameters, accurate data and no approximation error, we find:

∆ûT+2|T+1 = ∆yT+2 −∆ŷT+2|T+1 = τ ′
1 (κ1 − κ∗

1) + (ρ− 1) (δ − δ∗) + ǫT+1

This generic difficulty for EqCMs suggests using a robust forecasting device approach which exploits
(25), as in:

∆ỹT+2|T+1 = ∆yT+1 + τ̂ ′
1∆f̂1,T + (ρ̂− 1)∆ŷT

Again, under the simplifying assumptions (known in-sampleparameters, etc), and denoting the forecast
error by∆ũT+2|T+1 = ∆yT+2 −∆ỹT+2|T+1, using (24) gives:

∆ũT+2|T+1 = τ ′ (fT+1 − κ∗) + (ρ− 1) (yT+1 − δ∗) + ǫT+2

− τ ′ (fT − κ∗)− (ρ− 1) (yT − δ∗)− ǫT+1

= τ ′
1∆f1,T+1 + (ρ− 1)∆yT+1 +∆ǫT+2 (26)

which is less dependent on the location shifts.
To the extent that most factor models are also EqCMs, location shifts could have two impacts. The

first is when breaks affect the mapping between the original variables’ information and the derived factors
(i.e., changes in the weights). This is addressed in Stock and Watson (2009), who find a relatively
innocuous effect. Breaks in the coefficients of zero-mean variables or factors in forecasting models also
appear less problematic.

However, breaks due to location shifts within any EqCM forecasting model will induce systematic
mis-forecasting, and the above analysis applies equally tofactor-based models (as illustrated in section
5). In the empirical forecasting exercise in section 8 below, the variables are already differenced once,
so large shifts in equilibrium means are unlikely, and hencesuch formulations already embody a partial
robustness to previous location shifts. Indeed, if in placeof (23), the differenced-data version is used,
then forecastingT + 2 from T + 1:

∆ỹT+2|T+1 = α∆yT+1

when:
∆yT+2 = τ ∗′∆fT+1 + ρ∗∆yT+1 +∆ǫT+2

we have:
ṽT+2|T+1 = τ ∗′∆fT+1 + (ρ∗ − α)∆yT+1 +∆ǫT+2

which is close to (26).

7 Automatic Model Selection

The primary comparison of interest is between automatic selection over variables as against PC-based
factor models in terms of forecasting. Factors are often regarded as necessary to summarize a large
amount of information, but automatic selection proceduresshow this is unnecessary. Selection will
place a zero weight on variables that are insignificant in explaining variation in the dependent variable
according to a pre-specified critical value, whereas principal components will place a small, but non-zero
weight on variables that have a low correlation with other explanatory variables.

One advantage of using an automatic model selection algorithm is that it enables us to remain ag-
nostic initially about the LDGP. If the data are generated bya few latent factors that capture underlying
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movements in the economy such as business cycles, then principal components should be used to fore-
cast future outcomes. On the other hand, if the data are generated by individual disaggregated economic
variables then these should form the forecasting model. By including both explanations jointly the data
can determine the most plausible structure.

A further advantage of model selection is that arbitrary methods to select the relevant principal com-
ponents are not needed. Various methods have been proposed in the literature but most take the principal
components that explain the most variation between the set of explanatory variables, not the most vari-
ation between the explanatory variables and the dependent variable. This would require the correlation
structure between the regressors and the dependent variable to be similar to the correlation structure
within the regressors (see e.g., Castleet al., 2011b). Instead, by selecting PCs based on their statistical
significance, we capture the latter correlation. In the empirical application we find the retained PCs tend
not to be the first few PCs, suggesting that the correlation structure does differ between the dependent
variable and the disaggregates.

The model selection algorithm used isAutometrics, which undertakes a multi-path tree search, com-
mencing from the general model with all potential regressors including variables, factors and lags of both
as well as impulse indicators, and eliminates insignificantvariables while ensuring a set of pre-specified
diagnostic tests are satisfied in the reduction procedure, checking the subsequent reductions with encom-
passing tests. Variables are eliminated if they are statistically insignificant at the chosen criterion whilst
ensuring the resulting model is still congruent and encompassing (see Doornik, 2008). There are various
methods to speed up the search procedure which involve jointtesting.

The multi-path tree search enables perfectly collinear sets of regressors to be included jointly. While
the general model is not estimable initially, the search procedure proceeds by excluding one of the
perfectly-collinear variables initially so selection is undertaken within a subset of the candidate set, but
the multi-path search allows that excluded variable to be included in a different path search, with another
perfectly-singular variable being dropped.Autometricsuses expanding as well as contracting searches
which enables regressors initially excluded to return within different candidate sets. This ‘sieve’ contin-
ues untilN < T and there are no perfect singularities. The standard tree search selection can then be
applied: see Doornik (2009a, 2009b).

8 Forecasting US GDP and Inflation

An empirical forecasting exercise is undertaken to comparethe forecast performance of regression mod-
els based on principal components, variables, or both. We forecast quarterly GDP growth and the quar-
terly change in inflation over the period 1997–2006, as well as considering the corresponding level fore-
casts for GDP and quarterly inflation. Models are selected using Autometricsto handle perfect collinear-
ity, allowing both principal components and variables to beincluded in the candidate set jointly.

A number of authors have assessed the forecast performance of factor models over this period, and
Stock and Watson (2011) review studies which explicitly consider the impact of breaks on factor model
forecasts. One of the key studies is Stock and Watson (2009).They find ‘considerable evidence of insta-
bility in the factor model; the indirect evidence suggests instability in all elements (the factor loadings,
the factor dynamics, and the idiosyncratic dynamics).’ (Stock and Watson (2009, p. 197)). They suggest
estimating the factors on the full historical period acrossthe break (here, the Great Moderation around
1984, see, e.g., McConnell and Perez-Quiros (2000)), but only estimating the forecasting models that
include the factors as explanatory variables on the post-break period. As an alternative strategy to handle
instability in the forecasting models, we use the full estimation sample, but IIS, as explained below.

Finally, it is worth remarking that the simple AR benchmark model forecasts against which the factor
model forecasts are compared have typically found to be difficult to beat systematically over our forecast
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period.3

8.1 Data

The data are taken from Stock and Watson (2009) and consists of 144 quarterly time series for the
United States, over 1959q1–2006q4. There aren = 109 disaggregates in the dataset which are used
as the candidate set of regressors and the set of variables toform the principal components. All data
are transformed to remove unit roots by taking first or seconddifferences (usually in logs) as described
in Stock and Watson (2009) Appendix Table A1. The data available for estimation spanT =1962q3–
2006q4, after various transformations and lags, with the forecast horizon spanningH =1997q1–2006q4.

8.1.1 Principal Components

Let xd (= ∆x) denote the(T + h× n) matrix of disaggregated variables which have been transformed
to non-integrated by appropriate differencing, andΩ̂ then×n sample correlation matrix. The eigenvalue
decomposition is:

Ω̂ = ĤΛ̂Ĥ′ (27)

whereΛ̂ is the diagonal matrix of ordered eigenvalues(λ̂1 ≥ . . . ≥ λ̂n ≥ 0) andĤ = (ĥ1, . . . , ĥn)
is the corresponding matrix of eigenvectors, withĤ′Ĥ = In. The sample principal components are
computed as:

ẑ = Ĥ′x̃d (28)

where x̃d =
(
x̃d
1, . . . , x̃

d
T

)′
is the standardized data,̃xdj,t =

(
xdj,t − xdj

)
/σ̃xd

j
∀j = 1, . . . , n where

xdj = 1
T

∑T
t=1 x

d
j,t andσ̃xd

j
=

[
1
T

∑T
t=1

(
xdj,t − xdj

)2
]1/2

. When the principal components are estimated

in-sample,h = 0, whereash = 1, . . . ,H for recursive estimation of the principal components.

8.2 Impulse indicator saturation

Stock and Watson (2009) identify a break in 1984, associatedwith the Great Moderation of output. They
find instability and hence the coefficients on the factors in the forecasting models are not constant across
this period. However, they argue that the factors can be reasonably well estimated by PCs even when the
individual loadings are subject to instability and more accurate factor model forecasts are found to result
from estimating the factors on the whole sample, but the forecasting models only on the period after 1984.
As such, we estimate the principal components over the full sample period but rather than restricting the
estimation sample to post-1984, we use IIS to account for parameter stability. Rather than imposing a
break at this point we test for the presence of breaks and outliers jointly with the selection procedure by
applying IIS. This procedure adds an impulse indicator for every observation to the candidate regressor
set, but in blocks. There is a small efficiency loss under the null of no breaks but the procedure has power
to detect both outliers and location shifts when there are breaks, see Castle, Doornik and Hendry (2010).
Autometricsincludes a Chow test for parameter constancy in its congruency testing so the resulting
selected models will be well-specified.

3For example, in terms of forecasting inflation, Stock and Watson (2010) argue that simple univariate models, such a random
walk model, or the time-varying unobserved components model of Stock and Watson (2007) are competitive with models with
explanatory variables. Stock and Watson (2003) are relatively downbeat about the usefulness of leading indicators forpredicting
output growth, and see also Clements and Galvão (2009) for evidence using higher-frequency data.
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8.3 Forecasting models

The forecasting models are obtained by undertaking selection on the general unrestricted model (GUM):

∆yt = γ0 +

Jb∑

j=Ja

γj∆yt−j +
n∑

i=1

Jb∑

j=Ja

βi,j∆xi,t−j +
n∑

k=1

Jb∑

j=Ja

κk,jzk,t−j +
T∑

l=1

δl1{l=t} + ǫt (29)

where∆yt is the first difference of log real gross domestic product or the quarterly change in quarterly
inflation.

Forecasting models are obtained by undertaking selection on (29) usingAutometricswhere we set:
(i) κ = 0, i.e. select over variables only;
(ii) β = 0, select over factors ony; and
(iii) κ 6= 0 andβ 6= 0, i.e. jointly select variables and factors;
where the intercept and lags of the dependent variable are included in all models. For the three forecasting
specifications we consider:
(a)δ = 0, no IIS; and
(b) δ 6= 0, with IIS,
resulting in six forecasting model specifications.

Three forecast horizons are recorded, including 1-step, 4-step and 8-step ahead direct forecasts. For
the 1-step ahead forecasts we setJa = 1 andJb = 4, allowing for 4 lags of the dependent and exogenous
regressors. For 4-step ahead direct forecasts we setJa = 4 andJb = 7, and 8-step ahead forecasts set
Ja = 8 andJb = 11.

One of the problems that factor forecasts face is the need to difference to stationarity in order to com-
pute the principal components. This implies that any structural breaks in the levels will be differenced
out. Many variables are second differenced to obtain stationarity so breaks in growth rates will also be
removed. A consequence of the differencing is that the resulting forecasts will be robust to breaks, but
if interested in levels, accurate forecasting of the differences will be of little comfort. Hence, we also
report the implied level forecasts (in logs to avoid the transformation bias). As the forecasts are direct
h-step forecasts rather than dynamic forecasts we assume theforecast origin,T , rolls forward rather than
remains fixed at 1996q4. Differences between the levels and difference forecasts would be exacerbated
with dynamic forecasts. The levels forecasts for log GDP andquarterly inflation are computed as:

ŷT+k+h =

h∑

i=1

∆ŷT+k+h + yT+k for k = 0, . . . ,H − h (30)

whereh = 4 and8 for the 4-step and 8-step ahead forecasts respectively. Note that the 1-step ahead
forecast errors will be the same for the levels and differences. We would expect more accurate growth
forecasts to perform better in levels given (30) but level shifts captured by dummies could influence
the level forecasts when integrating out and so we assess themulti-step levels forecasts as well. For
the 4-step forecasts we evaluate over 37 forecasts as we require forecasts for the period 1997q1-1997q4
to obtain the level forecast of 1997q4, and likewise for the 8-step ahead forecasts we evaluate over 33
forecasts.

We also compute three benchmark forecasts including the random walk and AR(1) forecasts com-
puted directly and iteratively:

∆ŷRW
T+k+h = ∆yT+k (31)

∆ŷ
AR(D)
T+k+h = β̂0 + β̂1∆yT+k (32)

∆ŷ
AR(I)
T+k+h =

h−1∑

i=1

γ̂0γ̂
i
1 + γ̂h1∆yT+k (33)
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for k = 0, . . . ,H − h andh = 1, 4 and8.
For the variable and factor forecasts there areN = 441 regressors in (29) with no IIS andN = 579

with IIS. There areT = 138 observations in-sample. We set the significance level for selection at
α = 1% with no IIS, resulting in approximately 4 regressors being retained on average under the null that
no regressors are relevant, and we setα = 0.5% for IIS, which gives a null retention of approximately 3
regressors. When both variables and factors are included there areN = 877 regressors with no IIS so we
setα = 0.5%, again delivering just over four retained regressors underthe null, and with IISN = 1015
so we setα = 0.25% which would result in roughly two and a half regressors underthe null. Hence,
overfitting is not a concern despite commencing withN ≫ T . Parsimony can be achieved by controlling
the significance level, with the cost a loss of power for regressors with a significance level close to the
critical value. As a check we consider a super-conservativestrategy by setting the significance levels
even tighter; table 2 summarizes the selection significancelevels.

Variables Factors Both
No IIS IIS No IIS IIS No IIS IIS

Number of regressors 441 579 441 579 877 1015
Conservative 1% 0.5% 1% 0.5% 0.5% 0.25%
Super-conservative 0.5% 0.1% 0.5% 0.1% 0.1% 0. 05%

Table 2: Significance levels used for model selection.

We first consider in-sample selection and estimation, wherethe forecasting model is selected and
estimated overt = 1, . . . , T , with 40 forecasts computed overk = 1, . . . ,H, resulting in 90 forecasting
models.

We evaluate the forecasts onRMSFE, noting the caveat that theMSFE criterion may not result in a
definitive ranking as the measure is not invariant to non-singular, scale preserving linear transformations,
see Clements and Hendry (1993b, 1993a).

8.4 Results

8.4.1 In-sample estimation and selection

First we consider the forecast performance of factors, variables or both when the forecasting model
is selected and estimated in-sample for GDP. Table 3 recordsthe in-sample model fit and number of
retained regressors for selection with IIS. In-sample, themodel fit is generally better for the variables
than factors. Tightening the significance level results in fewer retained regressors and a worse model fit.
Few dummies are retained on average, and the retained dummies are clustered around 1984 supporting
the results of Stock and Watson (2009) who identify a break in1984.

Table 4 records the averageRMSFE for each of the forecasting models, averaged across horizon,
whether IIS is applied and the selection significance level for GDP and GDP growth. Forecasting with
factors is preferable to forecasting with variables for GDPgrowth, but it performs worse for the levels
forecasts. It is difficult to beat an AR(1) model, either iterative or direct.

The best performing models on a minimumRMSFE criterion are the AR(1) models both iterated
and direct. The worst performing forecasts are the 8-step ahead factor forecasts. We disentangle these
results in figures 1 and 2 by looking at the forecast performance over the forecast horizon in panel (a),
whether IIS was applied or not in panel (b) and the selection criterion in panel (c). We plot the results
for the 1-step ahead levels forecasts in figure 2 for comparison despite them being identical to those in
figure 1.

For GDP growth the factor model performs best at short horizons but worst at longer horizons. The
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1-step 4-step 8-step
Cons Super Cons Super Cons Super

Variables
σ̂ 0.559 0.669 0.629 0.711 0.702 0.799
No. regressors 9 5 14 7 9 5
No. dummies 2 1 1 2 5 4
Factors
σ̂ 0.657 0.702 0.718 0.798 0.671 0.813
No. regressors 5 4 8 4 12 5
No. dummies 2 1 6 2 5 2
Both
σ̂ 0.553 0.753 0.712 0.819 0.767 0.788
No. regressors 9 2 9 4 9 6
No. dummies 2 0 1 0 2 4

Table 3: In-sample model fit for GDP growth forecasting models selected with IIS:̂σ = equation stan-
dard error, No. regressors and No. dummies record the numberof regressors and, as a subset, the
number of dummies retained, and Cons and Super are the conservative and super-conservative strategies
respectively.

Variables Factors Both RW AR(D) AR(I)
∆ŷT+k 0.666 0.600 0.650 0.666 0.485 0.491
ŷT+k 1.931 1.971 1.925 3.509 1.324 1.336

Table 4: RMSFE (×100) for GDP and quarterly GDP growth, with benchmark Random Walk, direct
AR(1) [AR(D)] and iterative AR(1) [AR(I)] forecasts.
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Figure 1: AverageRMSFE for GDP growth(∆ŷT+h)
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Figure 2: AverageRMSFE for log GDP(ŷT+h)

variable model improves in forecast accuracy at the 8-step horizon. There is some benefit to IIS but few
indicators are retained on average given the tight significance level used for selection (no more than six)
and the indicators retained are roughly the same for the factors and variables models. A tighter signif-
icance level does improve the variable model forecasts suggesting parsimonious models are preferable,
but there is little improvement to the forecasts in the factor model. In levels, worsening factor forecasts
as the horizon increases is evident. IIS yields greater improvements as the few dummies that are retained
will be translated to level shifts capturing the shift in 1984.

Figures 3 and 4 record the distribution of forecast errors for variables (panel a), factors (panel b) and
both (panel c) for GDP growth and the level of GDP respectively.4 In growth rates, the forecast errors
are close to normal for variable and factor models. The levels forecasts have a fatter upper tail and some
evidence of bimodality but there are no significant differences between the variable and factor model
forecast errors.

We next consider the results for inflation. Table 5 records the in-sample model fit and number of
retained variables for selection with IIS. In-sample, selecting over variables results in a better model fit
than factors or both at all horizons, in keeping with the GDP results. Direct models at longer horizons
do not always result in a worse fit, and neither does a tighter significance level, despite fewer regressors
retained for the super-conservative strategy. Few dummiesare retained on average suggesting that the
differencing to stationarity has removed most breaks, although more dummies are retained at longer
horizons as direct models exclude factors and variables at lags shorter than the forecast horizon.

Table 6 reports the forecast results for inflation, averagedacross horizon, selection significance level
and whether IIS is applied. In differences, including both variables and factors outperforms the individual

4For GDP growth there are 480 forecast errors for each model specification. For the levels distributions we include the
1-step levels forecasts (which are identical to the difference forecast errors), resulting in 440 forecast errors.
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Figure 3: Distribution of forecast errors for GDP growth averaging across horizon, IIS/no IIS and selec-
tion strategy.

Factors 

−0.05 0.00 0.05

10

20

30

40
Factors Variables 

−0.05 0.00 0.05 0.10

10

20

30 Variables Both 

−0.05 0.00 0.05

10

20

30 Both 

Figure 4: Distribution of forecast errors for log GDP averaging across horizon, IIS/no IIS and selection
strategy.

models, but it is difficult to beat an AR(1) model, either direct or iterative, as in GDP growth. Variables
perform better than factors, particularly in levels, due toworsening forecast performance of factors at
longer horizons.

The best performing models on a minimumRMSFE criterion are the factors models selected using a
super-conservative strategy at the short 1-step horizon, both with and without IIS, but the worst perform-
ing models are also the factor models, but over the longer 8-step horizon, selected using a conservative
strategy. Thus, factor models appear more useful for the shorter forecasting horizons. In order to exam-
ine the results more closely, figures 5 and 6 record results for the forecast horizon in panel (a), whether
IIS was applied or not in panel (b), and the selection significance level in panel (c).
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Figure 5: AverageRMSFE for annual change in inflation(∆ŷT+k)
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1-step 4-step 8-step
Cons Super Cons Super Cons Super

Variables
σ̂ 0.240 0.283 0.293 0.290 0.227 0.296
No. regressors 20 12 17 13 21 12
No. dummies 2 1 4 8 8 3
Factors
σ̂ 0.263 0.336 0.299 0.318 0.311 0.327
No. regressors 15 7 20 14 21 20
No. dummies 5 1 4 13 7 6
Both
σ̂ 0.266 0.284 0.302 0.356 0.284 0.334
No. regressors 14 11 12 10 13 8
No. dummies 4 3 4 3 1 3

Table 5: In-sample model fit for inflation forecasting modelsselected with IIS:̂σ = equation standard
error, No. regressors and No. dummies record the number of regressors and, as a subset, the number
of dummies retained, and Cons and Super are the conservativeand super-conservative strategies respec-
tively.

Variables Factors Both RW AR(D) AR(I)
∆ŷT+k 0.535 0.582 0.491 0.577 0.416 0.415
ŷT+k 0.687 0.981 0.656 0.469 0.444 0.464

Table 6:RMSFE for quarterly inflation and the quarterly change in inflation, with benchmark Random
Walk, direct AR(1) [AR(D)] and iterative AR(1) [AR(I)] forecasts.
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Figure 6: AverageRMSFE for quarterly inflation(ŷT+k)

In differences, variables models and both factors and variables models are roughly constant over the
forecast horizon but the factor models perform worse on average as the horizon increases. There are
some gains to IIS for variable models or factor models but thegains are small. Tightening the selection
criterion does improve the forecasts, with the more parsimonious models for the variable models and
factor models yielding a smallerRMSFE.

Transforming to levels highlights the worsening forecast accuracy of the factor model over the fore-
cast horizon. The transformation can result in differing rankings, as can be seen at the 8-step horizon
where the variable model is preferred in levels but the combined model is preferred in differences. Fur-
thermore, a looser strategy is preferred for the factor models as opposed to the difference models. The
differences between the combined and variable models are small because most of the retained regressors
for the combined model are variables. Adding in many additional factors is not costly if selection is
undertaken at a conservative or super-conservative strategy.

Figures 7 and 8 record the distribution of forecast errors for the variable, factor and combined models.
The forecast errors are approximately normally distributed for the variable models. In levels the factor
model has a fatter lower tail, but again there is no systematic difference in forecast errors for the different
models.
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Figure 7: Distribution of forecast errors for the quarterlychange in inflation averaging across horizon,
IIS/no IIS and selection strategy.

8.4.2 Selection and estimation method

Finally, we assess whether the selection and estimation method used impacts on forecast accuracy. We
consider four methods, including:
(1) In-sample selection and estimation, where the forecasting model is selected and estimated over
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Figure 8: Distribution of forecast errors for quarterly inflation averaging across horizon, IIS/no IIS and
selection strategy.

t = 1, . . . , T ;
(2) In-sample selection with recursive estimation, where the model is selected overt = 1, . . . , T but both
the parameters and the eigenvalues are recursively estimated over the forecast horizon,T = 1, . . . , T+h;
(3) Recursive selection and estimation, where the model is both selected and estimated over the forecast
horizon,t = 1, . . . , T + h, including the eigenvalues of the principal components, sothe model specifi-
cation can change with each new forecast; and
(4) Partial recursive selection and estimation, in which the previous selected model is forced so selection
occurs only over the additional variables or factors. Insignificant variables are not dropped if retained in
the previous selection.

Figure 9 records theRMSFEs for GDP growth with IIS using the conservative strategy foreach
estimation method. There are no clear advantages to using any specific selection and estimation method.
Recursive estimation marginally outperforms in-sample estimation but there are cases where in-sample
estimation is preferred, for example the factor model at 4-step and the variable model at 8-step. Recursive
selection and estimation can be worse at longer horizons, with partial recursive selection providing a
slightly more robust selection method. In general, the differencing and IIS has accounted for the in-
sample breaks and so there is little difference between selection and estimation methods for GDP growth.
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Figure 9: Distribution of forecast errors for the quarterlychange in inflation averaging across horizon,
IIS/no IIS and selection strategy.

Figure 10 records theRMSFEs for the quarterly change in inflation with IIS using the conservative
strategy for each estimation method. At 1-step and 4-step there is very little difference inRMSFEs
between the selection and estimation strategies, but at 8-step there is weak evidence to suggest recursive
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estimation or partial recusrive estimation and selection is preferred, particularly for variables.
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Figure 10: Distribution of forecast errors for the quarterly change in inflation averaging across horizon,
IIS/no IIS and selection strategy.

9 Conclusion

There have been many analyses of the forecast performance ofeither factor models or regression models,
but few examples of the joint consideration of factors and variables. Recent developments in automatic
model selection now allow for more regressors than observations and perfect collinearities. This enables
the set of regressors to be extended to include both factors,as measured by their static principal com-
ponents, and variables, to be jointly included in regression models. The natural extension is to consider
which methods perform best in a forecasting context; the objective of this paper.

One of the key explanations for forecast failure is that of structural breaks. When the underlying
data generating process shifts, but the forecasting model remains constant, forecast failure will result.
As both regression models and factor models are in the class of equilibrium correction model, they both
face the same problem of non-robustness to structural breaks. In our empirical example we use impulse-
indicator saturation to account for breaks in-sample, and the IIS could be used to implement intercept
corrections if an indicator variable were retained for the last in-sample observation. We find there is some
advantage to using IIS for forecasting as the unconditionalmean is better estimated in differences. As the
data are differenced to stationarity in order to estimate the principal components, few impulse-indicators
are retained. Backing out levels forecasts does highlight the non-stationarity due to level shifts (e.g.
the structural break in 1984) and a further extension would be to consider selection of the variables in
levels, augmented by the stationary principal components which may pick up underlying latent variable
dynamics.

The empirical application considered both GDP and inflation, and their differences, computing fore-
casts usingAutometricsto select forecasting models that include either principalcomponents, individual
variables, or both. The results are mixed but suggest that factor models are more useful for nowcast-
ing or short-term forecasting (e.g. 1-step ahead) but theirrelative performance declines as the forecast
horizon increases. For direct multi-step forecasting autometrics selection over variables (or variables
and PCs) tends to forecast better than factor forecasts, suggesting that there are benefits to selecting the
weights based on the correlation withyt+h. There is little evidence to suggest that recursive estimation
or recursive estimation and selection is better. A more robust alternative of partial recursive estimation
and selection is proposed. There are gains to using IIS, but atight significance is needed to control the
retention rate.

The ability to undertake model selection jointly on factorsand variables avoids imposing an LDGP
specified in just variables or factors and circumvents the need for arbitrary selection of factors. Thus it
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is a useful tool, both for in-sample modelling and for forecasting out-of-sample. Whether the data are
generated by latent factors or observable variables will depend on the phenomenon being analysed, and
can be determined by the data itself using model selection techniques.
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