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Abstract

We present an affine, arbitrage-free, regime-switching dynamic Nelson-Siegel model
of the term structure. We begin the development of the model in continuous time by
presenting a class of general affine hidden Markov models of the term structure. We
highlight what assumptions are necessary to reach tractable versions in this class such
as the Dai, Singleton and Yang (2007) model and our Nelson and Siegel model. We
propose a multi-regime approximate Kalman filter to estimate hidden Markov models.
We then estimate the proposed arbitrage-free hidden Markov Nelson Siegel model on
historical yield curve data. We contrast the model to single-regime alternatives and
conclude that our model performs well in-sample. We find, using likelihood ratio tests,
that regimes are driven by long term means and measurement and transition covariance
matrices. The regimes conform to the periods of expansionary and restrictive mone-
tary policy, but do not coincide exactly with recessions. This suggests that monetary
policy responses over the past three business cycles have been effective, but that those
responses have persisted long after the recessions they intended to address have ended.

JEL classification: C53, C58, E43

Keywords: Term structure, Nelson-Siegel models, regime switching, arbitrage free mod-
els, Kalman filter
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Dynamic Nelson and Siegel models are popular in describing the dynamic properties of the
term structure of interest rates. These models were pioneered by Nelson and Siegel (NS)
(1987), who proposed a flexible parameterization that describes the cross-sectional shape of
the yield curve. The static structure of the model was augmented with dynamic factors by
Diebold and Li (2006). Their dynamic Nelson and Siegel model (DNS) adequately describes
both the cross-sectional and the time-series properties of the yield curve. Although NS models
originated in the yield curve fitting literature, they have been linked to affine term structure
models (ATSMs) though the work of Christensen, Diebold and Rudebusch (CDR) (2009,
2010). CDR demonstrated that an arbitrage-free Nelson and Siegel (AFNS) model can be
derived if certain restrictions are imposed on the general ATSM structure (characterized by
Dai and Singleton (2000)). AFNS models have the advantage, relative to DNS models, of
having a clear theoretical link to other equilibrium term structure models, and of imposing
desirable arbitrage-free restrictions on the time series dynamics of yields.

Nelson and Siegel models have several advantages over other classes of term structure models.
DNS and AFNS models can be cast into a state space representation and are therefore
relatively easy to estimate via a Gaussian Kalman filter (KF). Estimation is performed using
historical term structure data and consequently, the model reflects both the cross-sectional
and time-series properties of interest rates. This is in contrast to arbitrage-free models
(such as Hull and White (1993), Heath, Jarrow and Morton (1992)) that are calibrated to
cross-sectional term structure data only and to ATSMs that require normalizing and other,
typically arbitrary, restrictions for estimation. As a result of their flexibility and tractability,
DNS and AFNS model are well suited for risk management and interest rates forecasting.
They are also used heavily by institutions that do not require exact recovery of market prices,
such as central banks and ministries of finance (for public debt management).

AFNS models, however, have several shortcomings that are shared by many equilibrium term
structure models. In particular, AFNS and DNS models assume that the density of interest
rates is normal and that the interest rate process is stationary. Nonstationarity can best be
understood in this context as the tendency of financial time series to behave differently in
recessions than in expansions. Both are strong assumptions and have important implications
for risk management. The fact that interest rates are not normal is illustrated in figure
1. The top panel plots the kernel density estimator for short and long-term rates based on
monthly data from April 1991 to August 2010. The density estimates are not normal and are
bi-modal, a clear indication of non-stationary behavior. The second panel of figure 1 plots
the density estimate of the slope factor in the DNS and AFNS models estimated on the same
data. This indicates that the bi-modality in interest rates is directly reflected in the dynamic
factors.

Nonstationarity in macroeconomic time series has been documented at least since the work
of Hamilton (1989, 1990), who pioneered the regime-switching methodology. His work was
extended by Kim (1994, 1996), Kim and Nelson (1998, 1999A, 1999B), Gray (1996) and many
others. Regime switching models have been used to model a wide variety of macroeconomic
phenomena, including interest rates, inflation, economic growth and stock prices. The regime
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Figure 1: Densities of Yields and Single Regime Models: The top panel
of this figure presents the kernel density estimate of the 5-year and 30-year
yields and the lower panel plots the densities of the factors in the DNS and
AFDNS models.

dependent dynamics have been often attributed to the business cycle. A hidden Markov
component was introduced into term structure modeling by Lee and Naik (1998) and Hansen
and Paulsen (2000). The origin of the methods based on a marked point process, used in Wu
and Zhang (2010) and this paper can be traced to Landen (2000). These methods were also
used in Bansal and Zhou (2002) and Bansal, Tauchen and Zhou (2003) and Dai, Singleton and
Yang (DSY) (2007). They tested the performance of hidden Markov models and concluded
that they are superior, in some respects, to their single-regime counterparts.

In this paper, we address the inability of these models to accurately describe the dynamics
of interest rates. First, however, we present a solution to a generalized affine arbitrage free
hidden Markov model. The solution takes the form of a pair of ordinary differential equations
(ODEs), as is typical for affine models. The general solution however is not practically viable
under most circumstances. It contains multiplicative terms which depend of the discrete
jumps of the hidden Markov process and are difficult to simplify. We therefore impose
several restrictive assumptions under the risk neutral measure to arrive at tractable models.

In this way, we show the assumptions on the general specification that are necessary to obtain
the DSY model. Further restrictions akin to those imposed by CDR result in a Nelson and
Siegel version of the hidden Markov model. This model maintains the tractable Nelson and
Siegel structure and arbitrage free restrictions, while allowing greater flexibility than single-
regime models to capture multi-modality, heteroscedasticity and other characteristics of the
interest rates.

There have been several papers that model the macro-economy using dynamic Nelson-Siegel
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models as proposed by CDR highlighting their prominence in the academic and practitioner
literature. This paper fits in with a number of investigations that deal with Nelson-Siegel
models and extend the work of Diebold and Li (2006) and CDR. A recent paper in this
strand of the literature is Bernadell, Coche and Nyholm (2005). These authors extend the
work of Diebold and Li to accommodate regime-switching parameters. Another recent paper
is Zantedeschi, Damien and Polson (2011) who extend CDR to allow an unknown number of
regime changes.

Our paper differs from the existing work on this topic in several important ways. First,
we begin the model in continuous time and derive a general continuous-time solution for a
general class of affine term structure models. In contrast, DSY begin in discrete time, by
assuming a form of the pricing kernel. Second, we use the framework of Nelson and Siegel
and results in CDR to infer reasonable restrictions on the regime-switching term structure
such that our model is feasible. We think of feasibility in this context as the ability of the
model to be fitted to the entire term structure (more than a small number of yields) with
relative ease. The KF methodology ensures that our model can be fitted to an arbitrary
(exceeding the minimum based on the number of latent factors) number of yields. The NS
and CDR restrictions ensure that the number of parameters is manageable. In particular,
no normalizing or ad hoc restrictions on the term structure dynamics are necessary in our
model.

We estimate our model on treasury strip data from 1991 to 2010 and benchmark its in-sample
performance to DNS and AFNS models. We use the approximate-maximum-likelihood algo-
rithm (AML) of Kim and Nelson (1999C) and assume that the latent factors are uncorrelated
and that transitions under both the real and risk neutral measures are homogeneous. The
regime-switching arbitrage-free Nelson and Siegel model outperforms all alternative models,
even after we control for the number of parameters in each model. We find that the shape of
the term structure implied by the regime switching model is more consistent with the DNS
model, in that short term yields are matched well cross-sectionally. The λ parameter and
therefore the factor loadings of the regime switching model are also more similar to the DNS
model. The estimated yield adjustment term in our model is significantly different to the
adjustment in CDR and affects each regime differently.

We identify an expansionary and a contractionary monetary policy regime. These regimes
coincide with NBER recession dates, but in general begin at or after the start of a recession
and continue long after the official recession is over. This indicates that monetary policy is
effective in combating recessions. However, these findings also hint at the fact that monetary
policy effects persist long after recessions are over. The regimes appear to be driven by
the mean and variance of the factor dynamics, as well as the state dependent measurement
covariance error matrices. We find that mean reversion differences are not significant across
states. We show, through the use of likelihood ratio tests that significant difference between
the regimes exist and that the market price of risk in indeed priced.

The paper is organized as follows. Section 1 presents the generalized affine hidden Markov
model in a continuous time setting. Section 2 discusses the restrictions that are necessary to
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arrive at our feasible version of the general specification. Section 3 outlines the approximate
likelihood estimator via Kalman filter and its application to a general regime switching term
structure model. Data is summarized in Section 4 and the results of DNS and AFNS model
estimation are given in Section 5. Section 6 summarizes our findings from the estimation of
the hidden Markov Nelson and Siegel term structure model. In particular Section 6 covers:
(i) regime identification and interpretation; (ii) market prices of risk; (iii) comparison to
DNS and AFNS models; and (iv) robustness checks via the likelihood ratio test. Section 7
concludes. Appendices can be found at the end of the document.1

1 General affine hidden Markov model

Dai and Singleton (2001) characterize affine models and consider a general specification with
a general solution due to Duffie and Kan (1996). Although the goal in this paper is not to
characterize all possible forms of affine hidden Markov models, it is instructive to begin with
a general specification and work progressively towards a tractable model though introducing
restriction on the general form. We therefore begin by considering the general specification
of affine models in Dai and Singleton (2000) in combination with a general regime switching
process.

We define a market embedded in a filtered probability space (Ω,F , ((Ft)t∈[0,T ]),P). We as-
sume that the basis admits a n-dimensional standard Wiener process W and a m-dimensional
Markov process, under the risk neutral measure Q. The Wiener process drives the dynamics
of the state variables X, which follow a general affine diffusion given by

dXt = κ̃(st)(θ̃(st)−Xt)dt+ Σ(st)
√
V (t, st)dW̃t. (1)

Σ(st) is a non-diagonal, and possibly asymmetric matrix, κ̃(st) is the speed of mean reversion,
θ̃(st) is the long term mean of Xt and V (t, st) is a diagonal matrix with each element of the
diagonal given by

Vii = ai(st) + bi(st)
′Xt. (2)

dW̃t is an n-dimensional correlated Brownian motion. This specification is identical to that in
Dai and Singleton (2000), with one exception. Each coefficient is dependent on a continuous
time Markov chain st, with a Markov state space {0, 1, 2, ..., (m − 1)}. An n-factor regime
switching affine model is also based on the assumption that the instantaneous short rate is a
linear function of state variable X(t) = (X1(t), . . . , Xn(t))′,

r(t) = δ0(st) + δ1(st)
′X(t). (3)

Following the specification in Landen (2000) and Wu and Zeng (2010), we assume that regime

1In this paper we use the terms hidden Markov model, regime switching model and AFNSRS model
interchangeably.

5



transitions are governed by the stochastic differential equation

dst =

∫
E

ζ(z)µ̃(dt, dz), (4)

where the mark space E is defined as E = {(i, j) : i ∈ {0, 1, 2, ,m− 1}, j ∈ {0, 1, 2, ,m− 1},
∀i 6= j}. µ̃ is a marked point process on the mark space (E, 2E), where 2E is the σ− algebra
of E. Each point in the process z ∈ (i, j) represents a transition from regime i to regime j
and is described as a point in E. Any marked point process can be uniquely defined through
its stochastic intensity kernel. We define the stochastic intensity kernel of E by

γ̃(dt, dz) = h̃(z,X(t−))I{s(t−) = i}εz(dz)dt, (5)

where h̃(z,X(t−)), with z = (i, j), is the transition intensity from regime i to j. The function
γ̃ can be interpreted as the conditional probability of a shift from regime i to regime j in
the interval [t, t + dt), conditional on X(t−) and s(t−) = i. Similarly, h̃(z,X(t−)) can be
interpreted as the probability of transition within a unit time (dt = 1) given X(t−) and
s(t−) = i.

Finally, we appropriate the form suggested by Wu and Zeng (2010) and assume that the log
of the regime switching intensity is also affine in the factors.

h̃(z,X) = eh̃0(z)+h̃1(z)′X (6)

We note that h̃(z,X(t)) is both state and time dependent. This form proves to be particularly
tractable since it is consistent with the form of the bond price derived later.

This framework specifies a general affine regime switching model. This structure leads us to
propose a solution to the price of a zero-coupon, unit face value, riskless bond in regime s(t)
with τ periods to maturity as

P (s(t), X(t), τ) = eA(τ,st)+B(τ,st)′X(t), (7)

where A(τ, st) and B(τ, st) are respectively a vector and a matrix of state dependent coef-
ficients. At maturity, the payoff of the bond must be unity. Therefore, A(0, st) = 0 and
B(0, st) = 0. It turns out that, consistent with the single regime model, this model can be
solved in close form, up to a pair of differential equations.

Proposition 1: If the framework is given by (1), (2), (3), (4) and (6), the price of a
zero unit face value, riskless bond in regime s(t), with τ periods to maturity is given by (7),
where A(τ, st) and B(τ, st) solve the differential equations

−∂A(τ,st)
∂τ

+ [κ̃( ˜θ(st)]
′B + 1

2

∑n
i=1[B′Σ(st)]

2
i ai(st) +

∫
E

[e∆sA(τ,st) − 1]eh̃0(dz) = δ0 (8)

−∂B(τ,st)
∂τ

− κ̃′B + 1
2

∑n
i=1[B′Σ(st)]

2
i bi(st) +

∫
E

[e∆sA(τ,st)+h̃0(∆sB + h̃1)− eh̃0h̃1](dz) = δ1(9)

Proof: See Appendix.
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1.1 Admissibility and Identifiability

An affine regime switching model is admissible if Vii(t, st) > 0 for all regimes and i ∈ 1 . . . n.
A model is automatically admissible if bi(st) = ~0. In the case where bi(st) > ~0, the model will
be admissible if a(st) ≥ 0 and when Xt is guaranteed to be positive. This implies that the
mean of Xt must be always non-negative and that the variation at the boundary collapses
to zero. This can be ensured by requiring that: (i) θ̃(st)κ̃(st) ≥ ~0; (ii) Σij(st) = 0 for
1 ≤ i 6= j ≤ n; and (iii) κij(st) ≤ 0 for 1 ≤ i 6= j ≤ n. These conditions are equivalent to the
single regime case and must hold for each regime.

The regime switching model, in its most general form is not econometrically identifiable.
This is because, like other affine models, the model permits invariant affine transformations.
Since latent term structure factors are not observed, their scale and location and volatility
is not unique. Infinite number of solutions are therefore possible, with all being an affine
transformation of any other solution. In order to ground the model parameters, affine models
need to be normalized. In particular, we have to address: (i) the scale of Xt; (ii) the level
of Xt; (iii) interdependencies of state variables; (iv) signs of state variables; and (v) rotation
of the Brownian motions. A large number of normalizations are possible and will not be
outlined here. Dai and Singleton (2000) and Blais (2009), present some candidates that meet
the necessary criteria. In regime switching models, however, parameters in only one out of
the possible m regimes must be normalized. The normalization in one regime ensures that
the factors are pinned down in other regimes as well.

1.2 Change of measure and market prices of risk

In this section, we consider the structure of the pricing kernel, the change of measure, and
the uniqueness of the equivalent martingale measure (EMM). The pricing kernel in this
framework, as derived in the appendix, is given by

Mt = exp
(
−
∫ t

0

(rs +
1

2
λλ′)ds− 1

2

∫ t

0

λ′dW̃t

+

∫ t

0

∫
E

[ψ(z,Xt−)γ̃(ds, dz) + log(1− ψ(ds, dz))µ̃(ds, dz)]
)

(10)

Details of the derivation are given in the appendix.

So far we have specified the dynamics under the risk free measure Q. The estimation of the
model takes place under the real world measure P . In order to specify the P dynamics, we
assume that the market price of factor risk is affine in Xt and that it is given, in general
form, by

λ(t, st) = (Σ(st)
√
V (t, st))

−1(λ0(st) + λ1(st)Xt). (11)

Other parameterizations are possible, but (11) is particularly general since it maintains affine
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structure for all cases where b(st) ≥ 0. Substituting

dWt = λtdt+ dW̃t (12)

into (1), where lambda is given in (11), leads to the dynamics of Xt under the physical
measure,

dXt = κ(st)(θ(st)−Xt)dt+ Σ(st)
√
V (t, st)dWt (13)

where

λ0(st) = κ̃(st)θ̃(st)− κ(st)θ(st) (14)

λ1(st) = κ(st)− κ̃(st). (15)

Market prices of factor risk are not observable and can be inferred from the other model
parameters through (14) and (15). We also assume that the market price of regime switching
risk has the following structure,

1− ψt = eψ0(st)+ψ1(st)′Xt . (16)

Note that the marked point process µ̃ is characterized by its stochastic intensity kernel γ̃
which in turn is fully described by h̃ as shown in (5). The change of measure process can be
implemented by using the relationship h̃ = (1 − ψ)h.2 We take the logs of this relationship
to get

log(h̃(s(t), X(t))) = log(1− ψ(t, s(t))) + log(h(s(t), X(t))). (17)

Using (6), (16) and choosing

ψ0(st) = h̃0(st)− h0(st) (18)

ψ1(st) = h̃1(st)− h1(st) (19)

we can define the stochastic intensity kernel γ(dt, dz) under the physical measure using the
regime switching intensity

h(st, X) = eh0(st)+h1(st)′X . (20)

This discussion shows how the assumed structure for the factors and the regime switching
intensity allows relatively easy transition between the physical and risk-neutral measures.

In this paper, we do not discuss the existence and uniqueness of the pricing kernel or EMM.
This is a nontrivial discussion in the presence of jump processes. An excellent treatment
of this topic is in Bjork, Kabanov, Runggaldier (1997), who show that with a finite mark
space of the type we consider in this paper, market completeness is a necessary and sufficient
condition for the uniqueness of the EMM. We consider a further discussion on this topic
beyond the scope of this paper and assume that the market is (sufficiently) complete in
subsequent discussions

2The change of intensity is described in Bremaud (1981). We refer the interested reader to Chapter VI
for a complete characterization of the mechanism.
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In this section we have shown that regime dependence under Q does not necessarily mean
regime dependence under P and vice versa. Restrictions on the market prices of risk can
be imposed in such a way that this separation of dependence is possible. This fact will
be used later to simplify the models under the measure Q, while maintaining some salient
characteristics of the term structure under the physical measure P .

2 More tractable models

The general model can be restricted in a number of ways to yield different specifications.
Multi-regime models analogous to those characterized in Dai and Singleton (2000) are there-
fore possible. However, affine models are known to suffer some instabilities. Certain param-
eters may be highly correlated leading to flat likelihood surfaces. These shortcomings are
magnified for regime switching models, where the number of parameters is typically larger
than in single regime models. Additionally, there are terms in the general solution that make
estimation particularly difficult. In this section we will consider two models which are rela-
tively simple, but allow sufficient flexibility to capture regime switching behavior in interest
rates.

We focus our efforts on (9), since as will be shown later, (8) can be conveniently simplified.
The particular problem is the integral term, that contains ∆sA(τ, st) and ∆sB(τ, st) as
multiplicative terms. With these terms in the expression, it is not possible to obtain relatively
simple solutions and a tractable model. We can eliminate some of this complexity by making
some simplifying assumptions.

First, we assume that the speed of mean reversion, κ̃ is not regime dependent. Second,
we assume that the regime switching intensity (h̃) under the risk neutral measure is not
dependent on Xt i.e. h̃1 = ~0 , and third we assume that Vii(t, st) for i ∈ 1 . . . n is independent
of both st and Xt i.e. bi = ~0 for i = 1 . . . n. Additionally, we assume that ai(st) = 1
for i ∈ 1 . . . n which is necessary because ai(st) and Σ(st) can not be uniquely identified.
Although these assumptions seem strong they are not as restrictive as they appear.

Although κ̃ is regime independent, an appropriate choice of the market price of risk parame-
ters allows κ to be regime dependent. Therefore, mean reversion under the real world measure
will exhibit dependency on the current state. The assumption on the regime switching inten-
sity also imposes a restriction only under the measure Q. Under the risk neutral measure,
the Markov chain is homogeneous, while under the measure P it can be heterogeneous and
dependent on st. The last assumption is binding in that the covariance matrix of factors is
independent of the value of st under both measures. This implies that the distribution of the
factors and therefore interest rates is no longer conditionally (non-central) Chi-squared, but
is conditionally Gaussian

Finally, we assume that the factor coefficients are regime independent i.e. ∆sB(τ, st) = ~0.
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Consequently, ∆sB(τ, st) = ~0 and since h̃1 = ~0 and we have∫
E

[e∆sA(τ,st)+h̃0(∆sB(τ, st) + h̃1)− eh̃0h̃1](dz) = 0. (21)

We summarize the preceding discussion in the following corollary.

Corollary 1: Under the framework given in (1)-(6) and the regime independence of κ̃ and
B(τ) the factor independence of Σ, h̃1 and V , (8) and (9) can be written as a system of two
differential equations

dA(τ, st)

dt
+ (κ̃ ˜θ(st))

′B(τ) +
1

2

n∑
i=1

[B′Σ(st)]
2
i +

∫
E

[e∆sA(τ,st) − 1]eh̃0(dz) = δ0 (22)

dB(τ)

dt
− κ̃B(τ) = δ1 (23)

The expressions (22) and (23) are a continuous-time analog to the system of ODEs that
DSY obtain in discrete time.

The DSY model is much more general. However, even in this form a large number of param-
eters need to be estimated, even when the number of regimes is small. We propose additional
restrictions that yield an arbitrage free, dynamic, hidden Markov Nelson and Siegel model
of the term structure as outlined in corollary 1.

2.1 Nelson and Siegel hidden Markov model

The general form of the Nelson-Siegel model is given by

y(T − t) = Lt + St(
1− e−λ(T−t)

λ(T − t)
) + Ct(

1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)) (24)

where Lt, St and Ct are the level, slope and curvature factors respectively. We can associate
Lt with X1,t, St with X2,t and Ct with X3,t and set n = 3. It is easy to see that the
instantaneous yield (as T − t→ 0) is given by rt = Lt + St. To harmonize the notation, we
let rt = X1 +X2 and therefore δ0 = 0 and δ1 = (1, 1, 0)′.

Additionally, the mean reversion parameter (κ̃) and the long run mean (θ̃) of the state
variable diffusion in (1) are chosen such that the system given by expression (23) has the
the same structure as equation (24). CDR propose a restriction on κ̃ for the single regime
case. The convenient assumptions made in the previous section, however, ensure that this

10



restriction also works here. We therefore choose

κ̃ =

 0 0 0
0 λ −λ
0 0 λ

 . (25)

With Proposition 1 and the above assumptions in hand, we can state the solution of an
arbitrage free Nelson and Siegel hidden Markov model.

Proposition 2: If the instantaneous risk-free rate is given by rt = X1 + X2 and state
variables follow the diffusion given by dX1

dX2

dX3

 =

 0 0 0
0 λ −λ
0 0 λ

 θ̃1

θ̃2

θ̃3

−
 X1

X2

X3

 dt+ Σ

 dW1

dW2

dW3

 (26)

the price at time t of a risk-free pure discount bond with maturity at time T is given by
P (s(t), X(t), T ) = eA(T,st)+B(T,st)′Xt where A(T, st) and B(T, st) are given by B1

B2

B3

 =

 −(T − t)
−1−e−λ(T−t)

λ

(T − t)e−λ(T−t) − 1−e−λ(T−t)

λ

 (27)

and

Ajn+1 = −(κ̃θ̃(st))
′B − 1

2
B′Σ(st)Σ(st)

′B − log
(

Σ(st)
S
k=0π

jke−A
k
n

)
(28)

where Ajn denotes the the constant term of a risk-free pure discount bond with n periods to
maturity in state j, and πjk is the transition probability from state j to state k.

Proof. If κ̃ is given by (25), we can write (23) as dB1/dt
dB2/dt
dB3/dt

 =

 1
1
0

+

 0 0 0
0 λ 0
0 −λ λ

 B1

B2

B3

 . (29)

This system of ordinary differential equations solves to (27), with the boundary conditions
Bi(T, T ) = 0 for i = 1, 2, 3. This proves the first statement in Proposition 2.

To show (27), we consider the dynamics of the yield adjustment term in Proposition 1, given
by (22). The first term in this expression denotes the rate of change of A with respect to
time and can be discretized to yield

dA

dt
= Ajn+1 − Ajn. (30)
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This denotes the change in A over a unit period, given that the current state is j.

The final term on the left hand side of equation (22) is∫
E

[e∆sA − 1]eh̃0(dz) (31)

From the definition of regime switching intensity in section 1 , the term eh̃0 can be interpreted
as the probability of a transition from state j, under the risk-neutral measure 3, denoted by
πQ. Introducing this notation yields∫

E

e∆sAπQ(dz)−
∫
E

πQ(dz) (32)

We add and subtract the probability of not transitioning, πQj,j and since
∫
E∪{j,j} π

Q(dz) = 14

we get ∫
E

e∆sAπQ(dz)− 1 + πQj,j (33)

If transition does not take place, ∆sA = 0 and we can therefore move πQj,j into the integral.
Simlifying and using the first order Taylor series approximation of the log function yields∫

E∪{j,j}
e∆sAπQ(dz)− 1 ≈ log

(∫
E∪{j,j}

e∆sAπQ(dz)

)
(34)

The integral over the entire mark space in discrete time corresponds to a summation over all
possible states. This allows us to replace the integral with a summation. Furthermore, we
have ∆sA = Ajn − Akn. Hence, we can write the right hand side of (34) as

log

(
S∑
k=0

e−A
k
nπQ

)
+ Ajn (35)

Substituting (35) and (30) into (22) proves (28).

The form of the intercept term in Proposition 2 is identical to the solution in DSY. Here we
show from continuous time how this form arises. The intercept term (28) differs considerably
from the intercept derived in CDR. The CDR intercept is obtained in close form and does
not depend on κ̃θ̃ since the authors assume θ̃ to be a null vector. In our solution, the value of
the intercept has to be obtained numerically by recursion. This is an unfortunate byproduct
of the dependence on the log term in (28). This is not unduly onerous, since typically, a
relatively small number of maturities are used in estimation.

3Note that in the discrete time setting dt = 1. Hence the interpretation of h̃ (and by assumption eh̃0) as
the probability of regime switching is intuitive.

4The singleton is a measure-zero set;
∫
E
πQ(dz) =

∫
E∪{j,j} π

Q(dz) = 1.
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3 Estimation

3.1 State space representation

The model characterized in expressions (26), (27) and (28) can be cast in the state space
form. It is customary to model interest rates rather than the bond price directly. We can
obtain the expression for the yield by taking the log of the bond price P (s(t), X(t), τ) as
given in (7) and dividing it by the time to maturity.

R(t, τ) = − ln(P (s(t), X(t), τ))

τ
= −A(τ, st)

τ
− B(τ)′Xt

τ
(36)

Typically, a number of yields are available for estimation- each corresponding to a different
maturity. We sort the yields by their maturity and stack them into a vector R(t). We

define the vector Ȧ(st) and a matrix Ḃ by similarly stacking −A(τ,st)
τ

and −B(τ)
τ

. Lastly, we
formalize the econometric specification of (36) by introducing a vector of errors that follow
a multivariate normal distribution. The assumption of normality is typical in these models
and is made by CDR, DSY, Diebold and Li (2006) and others. However, we assume that the
error term is conditionally normal, thereby allowing its variance to depend on the unobserved
process st. The measurement equation in the state space system is given by

R(t) = Ȧ(st) + Ḃ′X(t) + Z(st)et. (37)

where et is a vector of orthogonal error terms and Z(st)Z(st)
′ is a variance-covariance matrix.

The transition equation is characterized by the dynamics of the term structure factors Xt,
given under the risk neutral measure in expressions (1) and (26). However, estimation takes
place under the physical measure. We assume that the dynamics of Xt under this measure
are given expression (13). The most notable difference between (1) and (13) is that under
the physical measure the speed of mean reversion κ(st) is regime dependent and that it is
not bound by the restriction in (25). This is possible through a particular parameterization
of the market price of interest rate risk that we give in (14) and (15).

We obtain the transition equation in discrete time by solving and discretizing the SDE in
(13).

Xt = (I − e−κ(st)∆t)θ(st) + e−κ(st)∆tXt−1 + Φ(st)εt (38)

where I is an identity matrix and

Φ(st)Φ(st)
′ =

∫ ∆t

0

e−κ(st)sΣ(st)Σ(st)
′e−κ(st)′sds. (39)

If κ is diagonalizable and given that the variance-covariance matrix Σ(st)Σ(st)
′ is constant,

we can solve (39) explicitly to yield

Φ(st)Φ(st)
′ = ΛΓΛ−1, (40)

where the (i, j)th element of matrix Γ is given by
σij
λiλj

(1− e−λiλj∆t). σij is the (i, j)th element

of the variance-covariance matrix Σ(st)Σ(st)
′ and Λ is the eigenvector of κ(st).
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3.2 Approximate-ML algorithm for hidden Markov models

Gaussian state space models can be estimated via a Maximum Likelihood (ML) approach
in conjunction with a Kalman filter. For an outline of the estimation methodology for a
single regime model, please refer to DNS and CDR. Estimation by maximum likelihood is
also possible in a multi-regime case but with a the standard KF.

The modification, as outlined by Kim and Nelson (1999C) is as follows. First notice that the
measurement and transition equations have different coefficients for each realization of st.
Hence, given a particular starting value, X0, the KF algorithm will filter m state variables
in the first step (i.e. X1 will have m possible values from the recursion), where m is the
number of regimes despite the fact that there is only one independent observation (R(t)) for
each point in time t. Therefore at step 1, there are m possible values values of X1. If this
process is repeated, at step 2, there would be m2 values of X2 and so on. The algorithm
would explode rapidly to mt possibilities at the tth step. This is not tractable, even for small
t.

Kim (1994) proposed an approximation that allows the collapse of the paths in each step.
This is achieved by taking expectations of the different paths for each t and the number of Xt

is thereby reduced to m. The conditional probability of each regime at time t is calculated
using the Hamilton filter (Hamilton (1989)). In the remainder of this section we outline this
algorithm as applied to our regime switching arbitrage free NS model.

For notational purposes, we simplify notation of certain elements in expressions (37), (38)
and (40) as follows,

βi = e−κ(st=i)∆t (41)

αi = (I − βi)θ(st = i) (42)

H i = Φ(st = i)Φ(st = i)′ (43)

W i = Z(st = i)Z(st = i)′ (44)

Ai = Ȧ(st = i) (45)

Additionally, Πij
t is the transition probability from regime i to regime j under the physical

measure5, n is the number of factors and q is the number of available yields. The steps of
the approximate KF are as follows.

Predicted state (m×m× n): X ij
t|t−1 = αj + βjX i

t−1

Predicted covariance (m×m× n× n): Σij
t|t−1 = βjΣi

(t−1)β
j′ +Hj

Innovation residual (m×m× n): ηijt = R(t)− Aj −BX ij
t|t−1

5We note that in a general setting, the transition probability may be time-dependent. A simple way to
incorporate heterogeneity is to assume that each entry in the transition matrix depends on some independent
variables though a logit transformation.
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Innovation covariance (m×m× q × q): F ij
t = BΣij

t|t−1B
′ +W j

Kalman gain (m×m× q × q): KGij
t = Σij

t|t−1B(F ij
t )−1

Updated state (m×m× n): X ij
t|t = X ij

t|t−1 +KGij
t η

ij
t

Updated covariance (m×m× n× n): Σij
t|t = (1−KGij

t B
′)Σij

t|t−1

Each superscript ij refers to a matrix or a vector that corresponds to a transition from
regime i to regime j, for each t. Ignoring this notation, the algorithm above is identical to
the standard KF.

At each t, as discussed above, the updated states and covariances are collapsed into m vectors
or matrices respectively. This is done by weighing each X ij and Σij by the probability of
transition to a state i from state j via the following approximations

Xj
t =

(
m∑
j=1

P ij
t X

ij
t|t

)
/P j

t ,

Σj
t =

(
m∑
j=1

P ij
t (Σij

t|t + (Xj
t −X

ij
t|t)(X

j
t −X

ij
t|t)
′)

)
/P j

t ,

where

P ij
t =

lijt∑m
i=1

∑m
j=m l

ij
t

,

lijt = N
(
ηijt , F

ij
t

)
Πij
t P

i
t−1,

and

P j
t =

m∑
i=1

P ij
t .

lijt can be understood as the likelihood that a transition from i to j took place, given that the
data at time t has been observed. P ij

t is the transition probability implied by the likelihood
values and P j

t−1 is the unconditional probability of state j, which is calculated as the sum of
all transitions to that state. Finally, the log-likelihood is calculated as

L =
T∑
t=1

[
m∑
i=1

m∑
j=1

N
(
ηijt , F

ij
t

)
Πij
t P

i
t−1

]
. (46)

4 Data

We estimate the Nelson and Siegel regime switching model on US treasury strip curve from
Bloomberg. The data consists of strip yields for 3 and 6 month and 1, 2, 3, 4, 5, 7, 8, 9, 10,
15, 20, 25 and 30 year maturities from April 1991 to August 2010 at monthly frequency. This
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represents 233 time series and 15 cross-sectional observations. The period under consideration
spans three recessions and two expansions(according to NBER) and contains diverse term
structure outcomes. Figure 2 plots the data and Table 4 provides information on the central
moments and persistence of the individual series.

Table 1: Data Summary: This table presents the descriptive statistics and
autocorrelation of each of the 15 yields used in this paper. The yields are
monthly from April 1991 to August 2010, for a total of 233 time series
obsrvations per series.

Central moments, median, min and max Autocorrelations

Mean Median Stdev Skew Kurt Min Max Lag 1 Lag 2
3-month 0.0355 0.0403 0.0189 -0.4523 -1.2201 0.0010 0.0625 0.9904 0.9812
6-month 0.0368 0.0420 0.0192 -0.4550 -1.2012 0.0018 0.0654 0.9921 0.9834
1-year 0.0386 0.0440 0.0191 -0.4445 -1.0947 0.0027 0.0728 0.9903 0.9783
2-year 0.0418 0.0453 0.0183 -0.4185 -0.9529 0.0052 0.0769 0.9870 0.9706
3-year 0.0443 0.0463 0.0172 -0.3706 -0.8839 0.0077 0.0778 0.9844 0.9650
4-year 0.0466 0.0481 0.0163 -0.2856 -0.8519 0.0108 0.0785 0.9814 0.9600
5-year 0.0483 0.0491 0.0155 -0.1815 -0.8311 0.0139 0.0799 0.9796 0.9548
7-year 0.0515 0.0511 0.0140 0.0561 -0.8283 0.0197 0.0833 0.9754 0.9480
8-year 0.0527 0.0517 0.0136 0.1301 -0.8121 0.0220 0.0843 0.9750 0.9470
9-year 0.0537 0.0524 0.0134 0.1848 -0.8166 0.0246 0.0851 0.9745 0.9461
10-year 0.0550 0.0533 0.0130 0.2299 -0.7562 0.0261 0.0857 0.9732 0.9429
15-year 0.0580 0.0569 0.0123 0.3312 -0.7094 0.0315 0.0873 0.9725 0.9432
20-year 0.0588 0.0573 0.0121 0.3353 -0.7329 0.0313 0.0870 0.9755 0.9489
25-year 0.0586 0.0573 0.0121 0.3249 -0.7845 0.0297 0.0860 0.9756 0.9497
30-year 0.0578 0.0564 0.0123 0.2956 -0.7993 0.0266 0.0848 0.9751 0.9487

5 DNS and AFNS models

In this section we present the results of two models that will be used as benchmarks in the
analysis of our regime switching model. In particular, we estimate the three-factor dynamic
Nelson-Siegel model of Diebold and Li (2006) and the arbitrage-free Nelson and Siegel model
developed by CDR. There are other models that could have been used for comparison, but
the DNS and AFNS models are well documented in the literature and relatively popular
in practice. Additionally, they are particularly comparable to our model as they are both
three-factor Nelson-Siegel type models and can be estimated via the KF. In what follows we
briefly outline the specification of the models and the estimation methodology and results.

The measurement equation for the DNS model is given by

R(t) = BX(t) + Zet (47)

where B is a matrix of Nelson and Siegel factor loadings, that consists of stacked −B(τ)
τ

vectors in expression (27). Z is a diagonal matrix of standard deviations and et is a vector
of orthogonalized error terms. The transition equation is given by

Xt = (1−K)µ+KXt−1 + Φεt (48)
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Figure 2: Yield Plot: This figure plots the 3-month, 2-year and 20-year
strip yields from April 1991 to August 2010.

where µ is the long run mean of the factors Xt and ΦΦ′ is the covariance matrix. As before
εt are orthogonal errors terms which are assumed to be uncorrelated with et. The matrix
K = ΥEΥ−1 is assumed to be diagonalizable, where Υ are the eigenvectors with diagonal
elements normalized to 1, and where E is a diagonal matrix of eigenvalues. This separation
was necessary so that the estimated model dynamics could be restricted to ensure stationary
behavior of the factors. The estimated coefficients of the model are presented in Table 2.

Table 2: DNS Model Results: This table presents the results from the
dynamic nelson and Siegel model. The λ for this model was estimated to
be 0.0509(0.0007). The first two columns of he table give the eigenvalues
and eigenvectors of the matrix K respectively. The next column presents
the long term mean of the term structure factors and the last column is the
square-root of the covariance matrix ΦΦ′.

E Υ Mean Φ Matrix
Diag(E) Υ.,1 Υ.,2 Υ.,3 µ Φ.,1 Φ.,2 Φ.,3
0.9668 Υ1,. 1.0000 -0.0609 1.6197 0.0036 Φ1,. 0.0891

(0.0293) (0.1387) (0.6991) (0.0006) (0.0025)
0.8888 Υ2,. -4.3653 1.0000 -0.7009 -0.0010 Φ2,. -0.0387 0.0091

(0.0501) (6.9670) (0.8698) (0.0006) (0.0038) (0.0044)
0.9999 Υ3,. -0.4925 -0.6042 1.0000 0.0063 Φ3,. 0.0026 -0.0034 0.0023

(0.0067) (1.1185) (0.4823) (0.0004) (0.0001) (0.0003) (0.0001)

For comparison purposes, the matrix K in this case is given by

K =

 1.0023 0.0079 0.0017
−0.0821 0.9379 0.0896
0.0608 0.0197 0.9153
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and

ΦΦ′ =

 0.0094 −0.0038 0.0004
−0.0038 0.0016 −0.0001
0.0004 −0.0001 0.0001

 .

The AFNS model is an arbitrage-free extension of the DNS model above. In practice, this
implies that the measurement equation includes an intercept term which is dependent on the
tenure of the corresponding yield, λ, the decay parameter and the covariance of the interest
rate factors. The measurement and transition equations are given by

R(t) = A+BX(t) + Zet (49)

Xt = (I − e−κ∆t)µ+ e−κ∆tXt−1 + Φεt (50)

where A is the intercept term,6 B, Z and et are as in (47), κ is a diagonalizable matrix and
∆t = 1/12 since yields are observed at monthly frequency. The covariance matrix is given by

ΦΦ′ = ΛχΛ−1, (51)

where Λ is the eigenvector of κ. χ is given by χij =
σij
λiλj

(1− e−λiλj∆t), where σij is the (i, j)th

element of the instantaneous factor covariance matrix ΣΣ′. The estimates from this model
are given in table 5.

Table 3: AFNS Model Results: This table presents the results of the AFNS
model. The first two columns respectively present the eigenvalues and eigen-
vectors of the matrix κ. The next column gives the long term mean of the
term structure factors Xt. The rightmost column shows the estimates of the
square root of the instantaneous covariance matrix of Xt. The λ for this
model is 0.2243(0.0058).

κ Mean Σ Matrix
λ Λ.,1 Λ.,2 Λ.,3 µ Σ.,1 Σ.,2 Σ.,3

0.0012 Λ1,. 1.0000 -0.3875 -0.1475 0.0818 Σ1,. 0.0084
(0.0143) (0.4409) (0.1459) (0.0191) (0.0002)
0.2999 Λ2,. 0.8605 1.0000 0.3503 -0.0212 Σ2,. -0.0056 0.0108

(0.1764) (0.9913) (0.2399) (0.0185) (0.0008) (0.0005)
2.2675 Λ3,. 0.1061 -0.5607 1.0000 -0.0020 Σ3,. 0.0008 -0.0002 0.0198

(0.6005) (0.4557) (0.2519) (0.0097) (0.0018) (0.0014) (0.0015)

The matrices e−κ∆t and ΦΦ′ are given by,

e−κ∆t =

 0.9857 0.0143 0.0183
0.0348 0.9648 −0.0428
0.0561 −0.0471 0.8526


and

ΦΦ′ =

 4.11× 10−06 −2.42× 10−06 4.66× 10−07

−2.42× 10−06 1.17× 10−05 −3.99× 10−06

4.66× 10−07 −3.99× 10−06 3.75× 10−05

 .

6The explicit form of A is cumbersome and will not be restated here. We refer the interested reader to
CDR (2010).
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6 Regime switching model results

In this section, we present the estimation results of the Nelson and Siegel arbitrage free
regime switching model and contrast them to the single-regime alternatives presented in
the previous section. Before beginning to estimate the model, however, we make several
simplifying assumptions. First, we assume that two regimes are sufficient to capture the
nonstationary behavior of interest rates. This choice is motivated through theoretical and
practical arguments. In particular, the understanding of regimes is often tied to expansions
and recessions. Monetary policy responds to macroeconomic phenomena and it is therefore
natural to expect expansionary and recessionary monetary regimes. This choice is also moti-
vated by a large number of previous studies, which nearly exclusively assume the existence of
only two regimes. Finally, the densities of interest rates and factors in figure 1 are bi-modal.
This indicates that a mixture of two normal densities should be sufficient to model interest
rate behavior. From a practical perspective, increasing the number of regimes leads to a
significant increase in the number of parameters. In term structure models, which typically
rely on a large number of parameters (including the latent factors), more than two regimes
are untenable.

Second, we assume that the latent factors are independent. This is a natural assumption,
established in the literature (Nelson and Siegel (1987); CDR). Furthermore, we have no
reason to believe a priori that the level, slope and curvature should be correlated. In fact,
the factors are often linked to principal components, which are independent by construction.
The assumption of independence improves convergence and results in a highly tractable model
that can be estimated in practice relatively easily. As a result of independence, the coefficient
of the lagged factors e−κ(st)∆t and the volatility matrix Φ(st) in expression (38) are diagonal.

Third, we follow Diebold and Li (2006) and CDR and assume that the measurement co-
variance matrix is diagonal. This is a somewhat strong assumption because the underlying
economic rationale is that three factors are sufficient to capture the correlation structure
of yields. Additionally, we assume that the measurement covariance matrix Z(st)Z(st)

′,
given in expression (37) is regime dependent.7 This assumption converts expression (28) in
proposition 2 to the form

Ajn+1 = −(κ̃θ̃(st))
′B − 1

2

3∑
i=1

[BiΣii(st)]
2 − log

(
Σ(st)

S
k=0π

jke−A
k
n

)
(52)

which simplifies the estimation by reducing the number of parameters to be estimated.

Finally, we assume that the transition probability under the measure P is also independent of
the factors Xt and time.8 This assumption increases the feasibility of the model and reduces

7In Hypothesis 6 of section 6.3 we investigate the validity of this assumption.
8A time-dependent market price of risk could have been obtained by assuming a time-dependent transition

probability matrix. Each element of the transition probability could be a function of several time varying
endogenous or exogenous variables. The factors are ideal candidates for endogenous variables and interest
rates (used in DSY) as exogenous variables.
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the number of factors to be estimated.

The model estimates conditional on the states are presented in Table 4. The top panel shows
the parameters in Regime 1 and the lower panel for Regime 2. The λ for this model is 0.6032
(0.0166) and is highly significant as per the standard error in the parentheses. The negative
log likelihood of the model is −19267.2, and in this metric, as in all the others, it dominates
the single regime models. The estimated homogeneous transition probabilities are given by
expression (53). The superscripts P and Q denote the physical and risk-neutral measures
respectively.

Table 4: Arbitrage-free Nelson and Siegel Hidden Markov Model Results:
The parameter values for the model under the measure P are given for
Regime 1 and 2. κ is the mean reversion parameter. θ is the mean. αQ is as
in equation (42) under the risk-neutral measure Q. Σ is the measurement
covariance matrix.

Regime 1

κ., 1 κ., 2 κ., 3 θ αQ Σ., 1 Σ., 2 Σ., 3
κ1, . 0.0012 0.0848 0 Σ1, . 0.0061

(0.0480) (0.0026) (0.0003)
κ2, . 0.2515 -0.0243 -0.0018 Σ2, . 0.0098

(0.1846) (0.0052) (0.0004) (0.0006)
κ3, . 1.4119 0.0042 0.0094 Σ3, . 0.0226

(0.5338) (0.0045) (0.0007) (0.0015)
Regime 2

κ., 1 κ., 2 κ., 3 θ αQ Σ., 1 Σ., 2 Σ., 3
κ1, . 0.1448 0.0397 0 Σ1, . 0.0060

(0.1646) (0.0278) (0.0004)
κ2, . 1.1807 -0.0499 -0.0012 Σ2, . 0.0117

(0.4321) (0.0059) (0.0004) (0.0011)
κ3, . 3.0173 -0.0386 -0.0014 Σ3, . 0.0410

(1.1811) (0.0063) (0.0009) (0.0055)

ΠP =


0.9679 0.0321

(0.0278)
0.0763 0.9237

(0.0115)

 ΠQ =


0.7504 0.2496

(0.0409)
0.0010 0.9990

(0.0202)

 (53)

In order to compare the model to the DNS and AFNS models, we present the matrices βi

and H i (as specified in expressions (41) and (42)). These are comparable to K, e−κ∆t and
ΦΦ′ matrices in Section 5. We note that stationarity was imposed on each regime in the
hidden Markov model and for both single-regime models.

β1 =

 0.9999 0 0
0 0.9792 0
0 0 0.8890

 β2 =

 0.9880 0 0
0 0.9063 0
0 0 0.7777



H1 =

 3.05× 10−06 0 0
0 7.81× 10−06 0
0 0 3.79× 10−06

 H2 =

 2.97× 10−06 0 0
0 1.04× 10−05 0
0 0 1.10× 10−04
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Regime 1 is characterized by higher long run factor means. The first element of the θ vector
corresponds to the level factor, which in a Nelson-Siegel setting, captures the behavior of
the longest maturity yield. The second element is the mean of the slope factor. We have
shown in section 2.1 that in DNS models X1 + X2 (the sum of the level and slope factors)
approaches the instantaneous short rate. This relationship is intuitive, since it corresponds
to the level of the short rate and a duration adjustment. The long term instantaneous short
rate in Regime 1 is 6.05% and -1.02% in Regime 2. The implied negative rate in Regime 2 is
a consequence of very low short rates in 2010. Both short rates and long rates are higher in
Regime 1 than in Regime 2. The long run slope is higher in regime 2, which is consistent with
what has been observed historically. This narrative is collaborated by figure 3, which plots
the average model-implied term structure of interest rates, per regime. These estimates are
also contrasted to average model-implied term structure in single regime models. The term
structure is higher in Regime 1 than in Regime 2. We also observe that the term structure
of the DNS and AFNS models are below term structure in Regime 1 and above Regime 2 for
maturities up to 25 years.

Factor dynamics in Regime 1 appear to be more persistent (as can be seen from β1, β2

matrices), although later we show that the difference in persistence are not significant. The
same can be said about the persistence of the states, under both measures. The transition
probability ΠP indicates that the probability of transitioning to Regime 2 from Regime 1
is only 3.21%. The probability of a return to Regime 1 is more than twice that (7.63%).
This relationship is consistent with the well-documented asymmetry of the business cycle.
Expansions should be more pervasive then contractions and this is reflected in the monetary
policy response. Our model captures this regularity well. The covariances in the transition
equation in Regime 1 are less than or equal to the covariances in Regime 2 as can by seen
from H1 and H2.

This analysis suggests that Regime 1 is a contractionary monetary policy regime, character-
ized by high interest rates and low volatility. Regime 2 is an expansionary monetary policy
regime, that captures periods of low rates and relatively high volatility. This conclusion is
consistent with the fact that Regime 1 is more persistent and that Regime 2 exhibits higher
slope of the term structure. The interpretation of the regimes is validated by figure 4 which
plots the states over time. Regime 2 transpired between April 1991 and January 1993, from
April 2001 to October 2003 and from November 2007 to May 2010. These intervals are
associated with loose monetary policy related to combating three recessions in 1991, 2001
and 2008-2009. The 1991 recession, as dated by NBER, ended in March 1991, one month
before the start of our sample. The NBER dates for the 2001 recession are from March to
November 2001. The most recent slowdown is dated from December 2007 to June 2009.
Our model accurately captures all or part of both recessions. Our estimates indicate that
loose monetary policy persists long after the recessions it intended to address were over. In
other words, monetary policy impulse persisted for many months after recovery began. This
may indicate that monetary policy has been highly effective in combating recessions, but
that interest rates were kept too low for too long over the last three business cycles or that
persistent monetary easing is necessary to sustain economic recovery..
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Figure 3: Average Term Structure: The average term structure for the was
computed as the mean of the filtered values for each of the 15 yields. For
the regime switching model, this was done for each regime.

These results and interpretation are in line with related literature. Bansal and Zhou (2002)
and DSY both identify a high and a low interest rate regime, although in both cases, the
regime selection seems to be driven by the monetary experiment in the 1980’s. Our sample
excludes this period and this allows us to focus on recent monetary phenomena. The inter-
pretation of the regimes is also consistent although in Bansal and Zhou (2002) and DSY,
the regimes are associated with economic expansions and contractions. We have argued
above that in our case it is productive to distinguish between macroeconomic and monetary
regimes. Furthermore, the link to monetary policy rather than macroeconomic activity is
more natural in this framework, since there is no direct process by which GDP enters the
model.

6.1 Market prices of risk

As in any equilibrium model, there exist market prices of risk for each source of randomness.
Although we have developed our model under the risk neutral measure, it is still possible,
under certain assumptions (outlined in Section 1.2), to infer the market prices associated
with the interest rate factors and the state process. We begin by analyzing the market price
of regime switching risk.

We note that the assumptions in Section 1.2 imply that the state transitions under the risk
neutral measure Q are independent of the term structure factors. Furthermore, as discussed
in the beginning of this section, the same is assumed for the transitions under the measure
P . Consequently, the market price of regime switching risk is constant and is given as the
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Figure 4: Regimes: This figure shows the evolution of the regimes across
time from 1991 to 2010. The economy is said to be in a particular regime
if the probability of that regime (P jt outlined in section 3.2) is greater than
0.5. The shaded regions of the figure represent the NBER recessions over
the sample period.

log ratio of the transition probability under measure P to the transition probability under
measure Q,9

log(
ΠP

ΠQ
) =

(
−0.2546 2.0526
−4.3348 0.0784

)
,

where the (i, j)th element represents the market price of risk of switching from regime i to
regime j.

Consistent with intuition, the price of regime switching risk is greatest when transitioning
from Regime 1 to Regime 2. In other words, the cost of hedging in a contractionary monetary
policy regime is higher than the cost of hedging in an expansionary regime. This implies that
investors place a large premium on hedging against economic downturn, when the economy
is in a boom state. The second highest price of regime switching is associated with the
continuation of Regime 2. This is consistent with the hedge against an economy remaining
in a recession, given that it is in one already. This result is also intuitive, since when the
marginal utility of consumption is high, investors are less willing to allocate resources towards
hedging future consumption shocks.

9This is true because in discrete time h̃(z,X) and h(z,X) in expressions (6) and (20) are the transition
probabilities ΠP and ΠQ. This, in combination with the assumption of independence from Xt and with

expression (16) yields log( ΠP

ΠQ ) = −ψ0. The resulting expression is consistent with the parameterization of
the market price of regime switching risk in DSY.

23



Figure 5: Market Prices of Interest Rate Risk: This figure shows the evo-
lution of the market prices of risk, defined in equation (11). Sub-figure i
corresponds to λi. λ1 is the market price of risk of the level, λ2 is the mar-
ket price of risk of the slope and λ3 is the market price of risk of the curvature
factor.

The factor risk can be seen through the evolution ~λ given in equation (11) over time. The
estimated market prices of factor risk, based on expressions (14) and (15), are given in figure
5. The market prices are higher in Regime 2 for all factors. The excess return in a monetary
expansion regime is low and the risk (measured by the variance of the factors) is high. The
difference between the prices in Regime 2 and Regime 1 can be primarily attributed to the
mean reversion coefficient under the real measure (κ(st)).

Economically, a high market price of interest rate risk during recessions is meaningful. The
higher risk aversion of investors during recessions leads to bond purchases which drive down
bond yields even further than they would be under monetary easing. This increases the price
of bonds and causes significant interest rate risk for bond holders.

6.2 Comparison to single regime models

In this section we compare the regime-switching model to the DNS and AFNS models in-
troduced in Section 5. We compare the three models in terms of in-sample fit, but we also
contrast the factors loadings, yield adjustment vectors and the factor dynamics.

The overall fit of the regime-switching model is superior, in-sample, to the DNS and AFNS
models. Table 5 presents the likelihoods of the estimated models together with the Akaike
information criterion (AIC), the Bayesian information criterion (BIC) statistics and the num-
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ber of parameters in each model. Regime switching models provide a superior description of
the dynamics of the term structure even after controlling for a larger number of parameters.
We note that a large number of the estimated parameters (15 of the 34 parameters in the
single-regime models and 30 of the 57 parameters in the regime-switching model) pertain to
the measurement covariance matrix. Note that this superior performance is in spite of the
assumption that the factors of the regime switching model are uncorrelated. We make no
such assumption about the DNS and AFNS models. This strengthens the argument in favor
of the viewing the level, slope and curvature factors as orthogonal.

Table 5: In-sample fit comparison: The negative log-likelihood, number of
parameters, AIC and BIC values are given for the regime-switching model
and the DNS and AFNS models.

Model Log Likelihood Parms AIC BIC
DNS -18625 34 -37182 -37065
AFNS -18876 34 -37685 -37568
AFNSRS -19267 57 -38420 -38223

The improvement in the likelihood is also illustrated by the superior cross-sectional fit of the
model. Figure 6, plots the cross-sectional fit of the DNS, AFNS and the regime-switching
model at four dates.10 There is a trade-off between fitting short term and long term yields, as
indicated by the fit of the DNS model relative to the AFNS model. The DNS model fits the
short end of the yield curve well in this sample, but does not accurately capture the shape
at the long end of the yield curve. Conversely, the AFDNS model tracks the long yield well,
but fails to capture short term yields adequately. This regularity is not specific to the four
dates chosen and is a feature of this sample.

The regime-switching model also appears to capture the short term structure well, but is
out-performed by the AFNS model at longer horizons. On average however, it does better
than the AFNS model with short yields and better than the DNS model with long yields.
The model also seems to capture short yields as well as the DNS model. The similarity
with the DNS model can also be seen from the graph of the factor loadings (figure 7). The
similarity in the loadings is also reflected in λ.

Given the concurrence in the loadings, the difference in the cross-sectional fit of the regime-
switching and DNS models is due to the yield adjustment vector Ȧ(st). This term affects
the level, slope and curvature of the term structure, conditional on a particular regime.
Figure 8, plots the yield adjustment terms for the AFNS model (DNS model does not have
an adjustment term) and for each regime of the hidden Markov model. The restrictions
imposed in the AFNS model force the adjustment to be a monotonic function of τ .11 In

10The fit for the regime-switching model is based on the probability weighted expectation of the term
structure on those dates, where the probability is given by the unconditional probability that the system is
in regime i. The conditional expectation of the term structure corresponds to the measurement equation in
expression (37), where the factors Xt are taken from the updating step of the KF described in Section 3.

11CDR are able to achieve a closed form solution for the yield adjustment term in a single-regime setting
by assuming that θ̃ is zero.
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Figure 7: Slope and Curvature Factor Loadings: This figure shows the slope
(upper panel) and the curvature (lower panel) loadings for the three models.
The DNS and the regime swithcing model are nearly indistinguishable.

contrast,the yield adjustment term in the regime switching model permits several inflection
points granting it greater flexibility. This is possible due to the recursive nature of the
solution for A(st) in (28).

The yield adjustment term for instantaneous yields is zero in both regimes. As maturity
increases, the regime-dependent adjustments diverge, but remain related through the log-
arithmic term in A(st). The yield adjustment term in Regime 1 adjusts the short yields
downwards flattening the yield curve. It hits the minimum at the five-year maturity and
then increases thereafter. In contrast, the adjustment in Regime 2 steepens the term struc-
ture at the short end and reaches a maximum at the 10-year maturity. This leads to increased
curvature of the yield curve in Regime 2. It is important to note, however, that the yield
adjustment term is small relative to the curve implied by the factor loadings and the term
structure factors. As a result, the yield adjustment has a limited effect on the cross-sectional
shape of the term structure. However, this small adjustment guarantees that the model is
arbitrage-free. The fact that the adjustments in the AFNS and regime-switching models are
relatively small suggests that the DNS is almost (but not entirely) arbitrage free.

The filtered term structure factors corroborate the fact that the regime-switching model
shares certain characteristics with the DNS model. The regime-switching factors are closer
to the DNS factors, but are highly correlated with the AFNS model as well. The correlation
between the factors in Regime 1 and the DNS factors is particularly high. The AFNS
model curvature factor does not conform with the curvature factors of the other two models.
Curvature is typically the hardest factor to estimate and appears to be effected by the
relatively high yield adjustment term in the AFNS model.
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Figure 8: Yield Curve Adjustment Term: The yield adjustment term is
given by A(st) in expression (37), in the case of the regime switching model.
The adjustment is different for each regime, as shown in the figure. The DNS
model does not have a yield adjustment term and the close form solution for
the adjustment in the AFNS model is given in CDR.

Figure 9: Estimated Level Factors: This figure plots the estimated level
factor (X1) for the estimated models.
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Figure 10: Estimated Slope Factors: This figure plots the estimated slope
factor (X2) for the estimated models.

Figure 11: Estimated Curvature Factors: This figure plots the estimated
curvature factor (X3) for the estimated models.
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The similarity in the factors is not surprising. The KF updates the factors based on data
available as of time t. It is therefore natural to expect that the model performs well in-
sample. All models rely on three factors and in each case the loadings are assumed to be
regime independent. Additionally, the yield adjustment terms are relatively small. The gains
in likelihood for the regime-switching models therefore originate from the specification of the
transition equation or from the regime dependence of the measurement covariance matrix.
These will be explored next.

6.3 Robustness tests

In the previous discussion and Table 4, we have shown that regimes exist in our sample
and that many term structure parameters are regime dependent. However, some questions
remain. Are the differences between parameters in Regime 1 and Regime 2 statistically
significant? Are the regimes driven by the differences in means, variances or the mean
reversion parameter? Is the risk of regime switching priced? Is the measurement covariance
matrix regime independent? To answer these questions we formulate several hypotheses and
test them using likelihood ratio tests.

Hypothesis 1(a): θRegime 1 = θRegime 2

Hypothesis 1(b): θ̃Regime 1 = θ̃regime 2

Hypothesis 2: ΣΣ′Regime 1 = ΣΣ′Regime 2

Hypothesis 3: κRegime 1 = κRegime 2

Hypothesis 4: θ̃Regime 1 = θ̃regime 2 = ~0
Hypothesis 5: ΠP = ΠQ

Hypothesis 6: ZZ ′Regime 1 = ZZ ′Regime 2

Table 6 summarizes the results of the tests. The first column identifies the hypothesis that
was tested, followed by the likelihood of the restricted model, the total number of parameters
estimated and the difference between the degrees of freedom relative to the unrestricted
model. The last column presents the probability of acceptance under the null. The first row
corresponds to the unrestricted model.

The findings from the model are consistent with the observation of business cycles. The
tests show that we can reject Hypotheses 1(a) and 1(b); that the long term means, both
under both measures are significantly different from each other. This is to be expected and
evidence of monetary policy in the expansionary regime under both measures. We also reject
Hypothesis 2; the transition covariance matrices represented by ΣΣ′ in expression (39) is
regime dependent partly explaining the observed heteroskedasticity of the factors in the DNS
and AFNS models. We cannot reject Hypothesis 3 at the 5% significance level. This indicates
that the mean reversion parameters under the physical measure are not statistically different
from each other. Under the risk free measure, κ̃ is assumed to be regime invariant. This
conclusion is surprising, given the large difference in persistence implied by the parameters
in table 4.
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Table 6: Hypothesis Test Results: This table summarizes the results of
the likelihood ratio tests that were used to test Hypotheses 1 - 6. The first
column of the table givens the number and a description of the hypothesis.
The next column shows the negative log likelihood value of the model under
the specific hypothesis. The remaining columns present respectively the
total number of parameters in the model, the number of restrictions and the
probability that the null hypothesis is true.

Regime Switching Models Likelihood N Diff DF Prob
Unrestricted -19267 57
Equal θ (Hypothesis 1(a)) -19259 54 3 0.0008

Equal θ̃ (Hypothesis 1(b)) -19260 55 2 0.0004
Equal variances (Hypothesis 2) -19258 54 3 0.0002
Equal κ (Hypothesis 3) -19264 54 3 0.0675

θ̃ = 0 (Hypothesis 4) -19077 53 4 <0.0001
Market price of risk = 0 (Hypothesis 5) -19236 55 2 <0.0001
Equal Measurement covariances (Hypothesis 6) -18941 42 15 <0.0001

We also test specifically that θ̃Regime 1 = θ̃regime 2 = ~0 (Hypothesis 4). We reject the hypothesis
and conclude that the long term mean under the risk neutral measure is different from zero
in at least one regime.12 Hypothesis 5 tests whether the market price of risk exists by testing
whether the state transition matrices under measures Q and P are equal. We find that
Hypothesis 5 is rejected and that in our sample, the risk of regime switching is priced. This
conclusion is consistent with DSY, although in their model, the transition probability under
the real world measure is heterogeneous.

Finally, we test whether the measurement covariances are identical across regimes (Hypothesis
6). Failure to reject the hypothesis means that the errors in the measurement equation do
not change with the regime i.e. that the model captures all regime-dependent behavior in
yields. Unfortunately, we reject Hypothesis 6 and conclude that there are residual regime-
switching elements that are not explained by the model. Furthermore, it appears that the
differences in the covariance matrices are one of the major drivers of the regimes. However we
observe that forcing the covariances to be equal does not destroy the regime structure. When
viewed together these findings suggest that there is scope for improving this model possibly
by the specification of a more robust measurement equation. This highlights the trade-off
that exists between models that have robust econometric specifications and economically
defensible (arbitrage-free) ones.

12Motivated by the need to make the model admissable in A0(3) sense (see Dai and Singleton (2000)),
CDR assume that θ̃ = ~0. However, we do not impose this restriction because the homoskedasticity of the
model structure in this paper (i.e. ~bi = ~0) guarantees identifiability. Additionally, because δ0 and δ1 are fixed
in this model, we consider it unnecessary to restrict the long term mean of the factors.
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7 Conclusion

We present an affine, arbitrage-free regime-switching dynamic Nelson-Siegel model that gen-
eralizes the dynamic Nelson-Siegel model of Christensen, Diebold and Rudebusch (2010). In
the process of deriving this model we show, in detail, what restrictions need to be imposed
on the general affine arbitrage-free hidden Markov model in order to obtain tractable specifi-
cations. We show that the resulting Nelson and Siegel regime switching model has the level,
slope and curvature factors of CDR and the yield-adjustment term derived in DSY.

We propose an approximate maximum likelihood algorithm to estimate regime switching
term structure models based on Kim and Nelson (1999C). This is in contrast with other
authors who have assumed that the term structure is matched exactly at only a few points.
We estimate the model on data from April 1991 to August 2010. This data spans two business
cycles and includes two NBER recessions. We exclude the period of the monetary experiment
in the 1980’s, since this has been studied by a number of regime switching studies and may
affect regime recognition in the most recent period.

We identify two regimes: (i) an expansionary monetary policy regime, characterized by low
long term mean of interest rates, but high volatility; and (ii) a contractionary monetary policy
regime, with high levels of interest rates and low volatilities.Our regime labeling is different
from comparable studies, which usually identify expansionary and recessionary macroeco-
nomic regimes. We find that although our regimes capture the NBER recession dates, they
persist long after the recession has ended. This suggests that monetary policy is effective in
combating recessions, but monetary easing persists too long.

In line with the intuition, we find that the contractionary monetary policy regime is far
more persistent than the expansionary monetary policy regime (which coincides with NBER
recessions). We find that the market prices of regime switching risk are highest when investor
are faced with the threat of transition into Regime 2 - the recessionary regime - and that the
highest market price of regime switching risk is associated with the probability of transitioning
into Regime 2 from Regime 1. We find that the market price of interest rate risk is consistently
higher in Regime 2 compared to Regime 1. During recessionary periods when investor risk
aversion increases, the difference between the risk neutral and physical measures increases
causing an increase in the market prices of interest rate risk. The dynamics of the market
price of regime switching and interest rate risks in a two-regime framework is interesting and
we leave this research for future work.

We compare our model to single regime benchmarks, the DNS and AFNS model in particular
and find that in-sample, our model outperforms these models, even when we control for the
increased number of parameters using the AIC and BIC criteria. We show that the estimated
average term structure in our model fits neatly on either side of the other models. We also
document that the shape of the yield adjustment term in our model is significantly different
to that in CDR. This is due to the fact to that no unnecessary restrictions were placed on
the long term mean under the risk neutral measure.
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We also test for equivalence in regime switching parameters. In particular, we show that
although the long term means and variances of the regimes are regime dependent, the mean
reversion term appears regime invariant. This restriction can be imposed in estimating this
model in practice, with no significant loss of fit over this period. Consistent with DSY, we
find that market price of regime switching risk is priced and that measurement covariance
is regime dependent. This suggests that some regime switching features of the yield remain
unexplained in our model.

One of the main features of our model is that it is feasible and relatively easy to implement.
Our model requires the estimation of 27 term structure parameters (excluding measurement
covariance matrix). In contrast DSY (2010) estimate a 50 parameter model, but impose a
number of ad hoc (and identifying) restrictions to reduce that to 33 parameters.

The restrictions imposed in this paper are grounded in the NS representation of the term
structure. For instance, we assume that our κ has a specific structure under the risk-neutral
measure. But this structure leads to a system of ordinary differential equations; the solution
of which gives the level, slope and curvature factors of the yield curve. Additionally we
assume that the term structure factors are independent. This is a natural assumption in
term structure literature as the level, slope and curvature factors are often related to the
first three principal components which are, by construction, orthogonal. In estimating our
model we do impose several simplifying assumptions. In particular we assume that the price
of regime switching risk is constant, or equivalently, that the transition matrix under the real
world measure is homogeneous. This ensures that ease of estimation is maintained, but it
also circumvents the specification of the heterogeneous transition probability.

In this work, we present a model which is feasible enough so that one-step-ahead forecasting
becomes possible in a flexible but easy-to-implement setting. In a follow-up paper we focus on
the true test of a model such as the one presented in this paper-out-of-sample performance.
Such regime switching models which are able to consider dramatic changes in macroeconomic
conditions can be of immense practical importance in a volatile economic environment. An
additional topic for investigation would be to make the transition probability matrix het-
erogeneous and investigate whether the transition probabilities yield insights into the risk
aversion parameters of the market. We leave these investigations for future research.
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Appendix

Marked point processes

Definition: An E-marked point process is a paired sequence (Tn, Yn)n≥1 where (i) Tn is a point
process and (ii) Yn is a sequence of E-valued random variables.

We may define a counting process on the set A ∈ 2E as

Nt(A) =
∑
n≥1

1Tn≤t1Yn∈A. (54)

We can thus establish a relationship between the continuous and discrete time version of this
notation as Nt(A) = µ((0, t], A) where µ is as given in (4). Denote Nt = Nt(E) i.e.

∫
E

in
continuous time is equivalent to

∑
E,i 6=j in discrete time.

Derivation of the Pricing Kernel

As shown in Bremaud (1981), given any Wiener process (Wt) and a marked point process
(µ(dt, dz)) a local martingale (Mt) can be represented as

dMt

Mt−
= −rtdt− λtdW̃t −

∫
E

ψ(z,Xt−)[µ̃(dt, dz)− γ̃(dt, dz)], (55)

where λ is the market price of diffusion risk and ψ is the market price of regime-switching
risk. From this, we may use the exponential formula (Bremaud, 1981) to obtain the solution
to Mt

Mt = exp
(
−
∫ t

0

(rs +
1

2
λλ′)ds− 1

2

∫ t

0

λ′dW̃t +

∫ t

0

∫
E

ψ(z,Xt−)γ(ds, dz)
) Nt∏
n=1

(1− ψ(Tn, Yn)).

(56)
Recognizing that (1 − ψ(Tn, Yn)) = explog((1−ψ(Tn,Yn))) and using the definition of dNt we
obtain the pricing kernel in (10).

The continuous version (without jumps) of the Radon-Nikodym derivative is typically ex-
pressed as

dQ

dP
= E(−

∫ t

0

λsdWs) (57)

where E denotes the stochastic exponential. We can extend this formula to the case with a
jump described by a marked point process by extending the Radon-Nikodym derivative as

dQ

dP
= E

(
−
∫ t

0

λsdWs +

∫ t

o

∫
E

ψs[µ̃(ds, dz)− γ̃(ds, dz)]
)
. (58)
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Hence, using the results in Bremaud (1981), we express the Radon-Nikodym derivative for a
change of measure in the explicit form

dQ

dP
= exp

(
−1

2

∫ t

0

λλ′ds−
∫ t

0

λsdWs

+

∫ t

0

∫
E

ψsγ̃(ds, dz) +

∫ t

0

∫
E

log(1− ψs)µ̃(ds, dz)
)
, (59)

where in the last expression we have used an argument similar to (56) and (10).

Proof of Proposition 1

Define f = eA(τ,st)+B(τ,st)′Xt . By the multivariate Ito’s Lemma for semi-martingales (Protter,
2003) df = ∂f

∂t
+ ∇T

Xf.dX + 1
2
dXT .∇2

Xf.dX + [f(t,Xt, st, T ) − f(t−, Xt−, st−, T )]. We can
show that the first three terms on the right hand side resolve to

f(−∂A(τ, st)

∂τ
−X ′∂B(τ, st)

∂τ
)dt+ fB′dX + f

1

2
B′Σ(st)V (s(t))Σ(st)

′Bdt. (60)

Collecting the dt terms together, we have

df

f
= [(−∂A(τ, st)

∂τ
−X ′∂B(τ, st)

∂τ
) +B′[κ̃( ˜θ(st)−X)] +

1

2
B′Σ(st)V (s(t))Σ(st)

′B]dt

+B′Σ(st)
√
V (s(t)))dW +

1

f
[f(t,Xt, st, T )− f(t−, Xt−, st−, T )].

The last term in this expression pertains to the regime shift. This term can be expressed as∫
E

∆sfµ̃(dt, dz). The compensator function can be subtracted and added back within the dt
term. This gives us

df

f
=

[
(−∂A(τ, st)

∂τ
−X ′∂B(τ, st)

∂τ
) +B′[κ̃( ˜θ(st)−X)] +

1

2
B′Σ(st)V (s(t))Σ(st)

′B

+
1

f

∫
E

∇sh̃I{s = i}εz(dz)
]
dt+B′Σ(st)

√
V (s(t)))dW

+
1

f

∫
E

∆sf(µ(dt, dz)− γ̃µ(dt, dz)).

No arbitrage implies that the instantaneous expected return of all assets equal the short-term
risk-free interest rate under the risk-neutral measure. Hence, we have

(−∂A(τ, st)

∂τ
−X ′∂B(τ, st)

∂τ
) +B′[κ̃( ˜θ(st)−X)] +

1

2
B′Σ(st)V (s(t))Σ(st)

′B

+
1

f

∫
E

∇sh̃I{s = i}εz(dz) = r. (61)
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Separating the vector and scalar components, we can re-write this equation as

− ∂A(τ, st)

∂τ
+ (κ̃ ˜θ(st))

′B +
1

2
B′Σ(st)V (s(t))Σ(st)

′B +
1

f

∫
E

∆sfh̃I{s = i}εz(dz)

− X ′
∂B(τ, st)

∂τ
−X ′κ̃′B = r. (62)

Consider the term
∫
E

∆sfh̃I{s = i}εz(dz). This expands to∫
E

[eA(τ,s+ζ)+B(τ,s+ζ)′X − eA(τ,s)+B(τ,s)′X ]h̃I{s = i}εz(dz).

f does not depend on the mark space, E. Hence, we bring this factor outside the integral
and write ∫

E

[eA(τ,s+ζ)+B(τ,s+ζ)′X − eA(τ,s)+B(τ,s)′X ]h̃I{s = i}εz(dz)

= f

∫
E

[e∆sA(τ,st)+∆sB′X) − 1]h̃I{s = i}εz(dz).

Substituting into equation (62), we obtain

− ∂A(τ, st)

∂τ
+ [κ̃( ˜θ(st)]

′B +
1

2
B′Σ(st)V (s(t))Σ(st)

′B

+

∫
E

[e∆sA(τ,st)+∆sB′X) − 1]h̃I{s = i}εz(dz)−X ′∂B(τ, st)

∂τ
−X ′κ̃′B = r. (63)

Consider the term
∫
E

[e∆sA(τ,st)+∆sB′X) − 1]h̃I{s = i}εz(dz). Substituting from (6) we have

∫
E

[e∆sA(τ,st)+∆sB′X) − 1]h̃I{s = i}εz(dz)

=

∫
E

[e∆sA(τ,st)+∆sB′X) − 1]eh̃0(z,X)+h̃1(z,X)′XI{s = i}εz(dz)

=

∫
E

[e[∆sA(τ,st)+h̃0(z,X)]+[∆sB+h̃1(z,X)]′X − eh̃0(z,X)+h̃1(z,X)′X ]I{s = i}εz(dz).

From the Taylor series expansion [e[∆sB+h̃1(z,X)]′X ≈ 1 + [∆sB + h̃1(z,X)]′X and similarly,

eh̃1(z,X)′X ≈ 1 + h̃1(z,X)′X. Substituting into (63) yields

− ∂A(τ, st)

∂τ
+ [κ̃( ˜θ(st)]

′B +
1

2
B′Σ(st)V (s(t))Σ(st)

′B

+

∫
E

[e∆sA(τ,st) − 1]eh̃0 + [e∆sA(τ,st)+h̃0(∆sB + h̃1)− eh̃0h̃1]′XI{s = i}εz(dz)

− X ′
∂B(τ, st)

∂τ
−X ′κ̃′B = r.
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The current state is known, and so we set I{s = i} = 1. Since the integral is taken over the
entire mark space, we can also set εz = 1.

− ∂A(τ, st)

∂τ
+ [κ̃( ˜θ(st)]

′B +
1

2
B′Σ(st)V (s(t))Σ(st)

′B

+

∫
E

[e∆sA(τ,st) − 1]eh̃0(dz) +

∫
E

[e∆sA(τ,st)+h̃0(∆sB + h̃1)− eh̃0h̃1]′X(dz)

− X ′
∂B(τ, st)

∂τ
−X ′κ̃′B = r

Substituting for V (s(t)) from (2)

− ∂A(τ, st)

∂τ
+ [κ̃( ˜θ(st)]

′B +
1

2

n∑
i=1

[B′Σ(st)]
2
i ai(st)] +

1

2

n∑
i=1

[B′Σ(st)]
2
i bi(st)Xi(t)]

+

∫
E

[e∆sA(τ,st) − 1]eh̃0(dz) +

∫
E

[e∆sA(τ,st)+h̃0(∆sB + h̃1)− eh̃0h̃1]′X(dz)

− X ′
∂B(τ, st)

∂τ
−X ′κ̃′B = r

Using (3) and separating the vector factors δ1 of X(t) from the scalar δ0 we have (8) and (9).
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