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Abstract

There is a debate in the literature on the best method to forecast an aggregate: (1)
forecast the aggregate directly, (2) forecast the disaggregates and then aggregate, or
(3) forecast the aggregate using disaggregate information. This paper contributes to
this debate by suggesting that in the presence of moderate-sized structural breaks in
the disaggregates, approach (2) is preferred because of the low power to detect mean
shifts in the disaggregates using models of aggregates. In support of this approach are
two exercises. First, a simple Monte Carlo study demonstrates theoretical forecasting
improvements. Second, empirical evidence is given using pseudo-ex ante forecasts of
aggregate proven oil reserves in the United States.
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1 Introduction

A classic question of forecasting is whether it is best to forecast an aggregate variable directly,

or to forecast the disaggregates and sum the disaggregate forecasts. The question is gener-

ally posed as one of tradeoffs: disaggregation offers the potential of greater precision, but

at the risk of compounding various sources of specification errors and inefficiencies (Lutke-

pohl, 2006). Castle and Hendry (2010) and Hendry and Hubrich (2011) propose a third,

hybrid method that attempts to capture the strengths of both of these methods without

the weaknesses: forecast the aggregate directly, but include relevant disaggregate variables

in the model specification. They argue that this approach is able to capture the relevant

heterogeneity in the disaggregates while maintaining the efficiency of an aggregate model.

The analytical evidence in favor of Hendry and Hubrich’s (2011) method is a forecast error

taxonomy that compares the performance of a forecast created using an aggregate model to

the performance of a forecast created by summing weighted forecasts of the disaggregates.

However, this taxonomy makes one important assumption that, when relaxed, can affect

their conclusions. They assume that misspecification of the long-run mean is “unlikely in

both [aggregate and disaggregate] taxonomies,” and consequently, there is no preference

given to either approach along this dimension. However, in the periods directly following a

mean shift, the detectability and specification of the mean shift are of fundamental concern

to a forecaster. Critically, as I demonstrate in this paper, there are differences in the ability

of aggregate versus disaggregated methods to detect recent mean shifts, with associated

implications on model selection and forecast accuracy.

I begin by deriving a condensed version of the forecast error taxonomies of Clements

and Hendry (2006) and Hendry and Hubrich (2011). The role of mean misspecification is

highlighted for further examination, especially as it concerns the detectability of recent mean

shifts. I analytically show that under a non-central t distribution, t-tests of the null of no

mean shift have much greater power in models of disaggregates than in models of aggregates

for a range of mean shift magnitudes, assuming IID innovations in the disaggregates. This

low power of detection in aggregate approaches affects attempts at intercept correction (see

Clements and Hendry, 1996 and Santos, Hendry, and Johansen, 2008 for discussion about

intercept correction). Failure to immediately intercept correct a failed forecast has severe

consequences, with resulting increases in forecast bias and RMSE in the following period.

Accordingly, forecasting disaggregates and then aggregating can produce better forecasts

than an aggregate model when there are moderate-sized mean shifts in disaggregates and

innovations are IID.
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I also examine the possibility of applying different significance thresholds α to aggregate

models in hopes of increasing the power of t-tests to detect mean shifts. While higher levels

of α do indeed increase rejection frequency, it is not without consequence. Inappropriate

intercept correction introduces mean misspecification into the forecast. I analytically de-

compose the expected bias of forecasts constructed using an intercept correction strategy

and find that the bias has three components: failure to properly intercept correct (bias is

negative in α), contamination of the intercept correction by the current-period innovation

(bias is positive in α), and false detection of a mean shift (bias is positive in α). This de-

composition allows for levels of α to be simulated that are optimal in the sense that they

minimize expected bias given various criteria. In the example provided, in a model of a

disaggregate, the median bias-minimizing level of α is 0.0005 and the 90th percentile bias-

minimizing level of α is 0.005. Increasing α above 0.005 increases expected bias due to the

possibility of Type I error. On the other hand, in the aggregate-forecast example, the median

bias-minimizing level of α is 0.13—much higher than in the disaggregate case—suggesting

that increased mean shift detection sensitivity may be desirable in models of aggregates. The

bias-minimizing 90th percentile strategy is to maintain the stricter α threshold of 0.003. In

all cases, the disaggregate modeling approach weakly out-performs the aggregate modeling

approach in terms of median bias.

Next, I empirically illustrate these concepts by considering the problem of forecasting

proven U.S. oil reserves. Oil reserves come close to an ideal illustration because innovations

are mostly IID, the aggregation weights are known and constant over time, and the dis-

aggregates are subjected to orthogonal and unanticipated mean shifts. Mean shifts occur

due to a variety of reasons, including drilling innovations, regulation, and discovery. I ini-

tially consider three methods of forecasting aggregate reserves: forecasting disaggregates and

then aggregating, forecasting the aggregate directly using only aggregate information, and

forecasting the aggregate using both aggregate and disaggregate information using an Auto-

metrics algorithm (Doornik, 2009) with Impulse Indicator Saturation (IIS; Santos, Hendry,

and Johansen, 2008). I then also consider two methods of forecast combination: a simple

average of forecasts and a switching forecast that is motivated by analytical predictions from

the prior sections.

The disaggregate forecasting method easily detects mean shifts with very little Type 1

error, making it the preferred method during turbulent periods, but somewhat less efficient

than the aggregate methods. The aggregate methods are also able to detect mean shifts, but

with greater risk of Type 1 error. One alternative to either of these individual approaches is a
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switching method. First, a pre-test for mean shifts on each of the disaggregates is conducted.

Then, if a moderate number of breaks are detected, the disaggregate approach is used to

forecast the period. Alternatively, if either a small or large number of breaks are detected,

one of the more parsimonious aggregate approaches is used. This switching forecast is based

on the analytical result that when mean shifts in disaggregates are either very small or very

large, then power differentials of tests of mean shifts between aggregate and disaggregate

approaches is small. On the other hand, when breaks are moderate in size, the power

differential is large. This switching forecast takes advantage of the best attributes of each

of the forecasting approaches: when times are uncertain, the more resilient, disaggregate-

based approach is used; when times are more certain, then the aggregate approach is more

parsimonious and therefore more efficient.

2 Assumptions and Forecast Error Taxonomy

This section introduces a simple analytical framework in order to examine some of the

important sources of forecast error. I begin with a forecast error taxonomy that decomposes

sources of forecast error into various components, following Clements and Hendry (2006) and

Hendry and Hubrich (2011). This taxonomy is derived for both disaggregate and aggregate

approaches of forecasting an aggregate series. Much of this taxonomy is a condensed version

of Hendry and Hubrich (2011), but with one key departure, the lack of an autoregressive

term in the hypothetical DGP. This simplifies the analysis and allows for greater focus on

the effects of unanticipated mean shifts in the disaggregates.

Of particular interest is the effect of misspecification of the mean across forecasting ap-

proaches. Hendry and Hubrich (2011) suggest mean misspecification to be unlikely asymp-

totically and with no large differences between methods. While the mean is constant, this is

likely the case. In a period where the mean shifts, the cause of forecast error in that period

is indeed not mean misspecification—breaks are impossible to forecast and therefore are un-

modelable. Rather, the source of error is the mean shift itself, which exists as a separate

error cause in the taxonomies.

Where things become more complicated are the periods directly following a mean shift.

The shift exists in-sample, and therefore must be incorporated into any estimate of the mean.

This poses a serious problem: what methods are able to detect and incorporate mean shifts

quickly and accurately? The accuracy of the forecast hinges on the ability of the forecaster

to detect the mean shift and appropriately specify the forecasting model. This problem has

important consequences regarding forecast accuracy across different forecasting approaches.
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Assumptions

Suppose there are n disaggregates in the vector Yt, with each element denoted Yit. The

weighted sum of Yt is defined as the aggregate Y a. The weights are known and do not

change over time.

Y a
t ≡ ω′Yt (1)

Each disaggregate is I(0) with a long-run mean and a structural innovation each period, with

the vector of each denoted by δ and ϵt, respectively. The structural innovations are drawn

from the distribution Ω.

Yt = δ + ϵt for t = 1, ..., T (2)

where ϵt ∼ ID(0,Ω)

There is a break in the vector of means at T that is unknown to the forecaster, giving

YT+h = δ∗ + ϵT+h for h = 1, ..., H (3)

The new DGP is identical in all respects except for this mean shift. The question now

turns to examining sources of forecast error, and how they are similar or dissimilar depending

on the forecasting approach used.

Forecast Error Taxonomy

In this first exercise, the forecaster models Y for each disaggregate. This model is used

to construct forecasts ŶiT+1|T , which give the aggregate forecast Ŷ a
T+1|T ≡ ω′ŶT+1|T . The

resulting forecast error is

ω′ϵ̂T+1|T = ω′δ∗ − ω′δ̂ + ω′ϵT+1 (4)

The disaggregate mean vector δ̂ is nx1 and is asymptotically distributed around δdis

according to
√
T δ̂ ∼ (δdis,Ω/T ) giving estimation error equal to δdis − δ̂. The model used

to estimate δ̂ may also be misspecified, introducing bias equal to δ− δdis. These concepts of

model misspecification and estimation error can be incorporated into Equation 4 by adding

and subtracting both ω′δ and ω′δdis, giving rise to a forecast error taxonomy similar to those

in Clements and Hendry (2006) and Hendry and Hubrich (2011).
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ω′ϵ̂T+1|T = (5)

= ω′(δ∗ − δ) (a) unanticipated mean change

+ ω′(δ − δdis) (b) mean misspecification

+ ω′(δdis − δ̂) (c) estimation error

+ ω′ϵT+1 (d) stochastic innovation

Forecasting Aggregates Directly

Alternatively, a forecaster can model Y a directly using a single, aggregate model. This model

is used to directly construct the forecast Ỹ a
T+1|T . In this case, the resulting forecast error is

ϵ̃T+1|T = ω′δ∗ − δ̃ + ω′ϵT+1 (6)

The estimate of the disaggregate mean δ̃ is now 1x1, and distributed around δagg according

to δ̃ ∼ (δagg,ω′Ωω/T ). This gives the forecast error taxonomy

ϵ̃T+1|T = (7)

= ω′(δ∗ − δ) (A) unanticipated mean change

+ ω′δ − δagg (B) mean misspecification

+ δagg − δ̃ (C) estimation error

+ ω′ϵT+1 (D) stochastic innovation

Comparing Sources of Forecast Error

The following comparison of the two previously established forecast error taxonomies pro-

vides the basis for the remainder of the paper. First, it is clear that (a) and (A), as well as

(d) and (D), are identical. Thus, no differences in forecast performance can be attributed

to either the mean shift or the stochastic innovation. This is not surprising, given that

both are impossible to predict ex ante. Differences therefore must arise due to differences in

specification and estimation error.
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Differences in Estimation Error

Estimation error differences hinge on the structure of the joint distribution Ω from which

innovations are drawn, the aggregation weights ω and the sample size T . As Lutkepohl

(2006) demonstrates, asymptotically, the disaggregate approach is superior due to the elim-

ination of estimation error in the disaggregate parameters. However, in small samples, the

compounding of estimation error in the disaggregates can cause problems such that a more

parsimonious approach is superior. This is the “bias-variance” tradeoff often mentioned in

the forecast aggregation literature (see Friedman, 1997 for one of the many discussions on

the subject). In general, as Hendry and Hubrich (2011) conclude, “it is not possible to make

general statements about whether differences in forecast accuracy are mainly due to the bias

or the variance of the forecast.”

Differences in Mean Misspecification

Mean misspecification is primarily a model selection issue. While Hendry and Hubrich (2011)

note, “long run mean misspecification...is unlikely when the in-sample DGP is constant and

the model is well-specified,” this only statement is only valid in the periods leading up to and

including the break period T . Up until time T +1, the mean can usually be modeled with a

constant term that does not change over time. In period T +1, the break is an unanticipated

mean shift under the classification (a) or (A) in the above taxonomies. In periods following

T + 1, the mean shift has been observed and is now in the data, requiring it to be properly

modeled in order to avoid forecast failure.

Correctly specifying the model when there is a recent mean shift is no small task, as the

DGP has undergone a dramatic change. The “long run” is instead very much the “short run,”

and issues of small-sample statistical testing such as test power become relevant. There are

various strategies of detecting and modeling mean shifts, which will be investigated beginning

with the next section.

3 The Power of Test Statistics

The problem turns to the detection of mean shifts using small-sample statistical tests. This

involves establishing the power of tests evaluating the null of no mean shift when a mean shift

has in fact occurred. Because the null is known to be false, the test statistic follows a non-

central t distribution. In this section, the power of t-tests under a non-central t-distribution

are considered for both the disaggregate and aggregate modeling approaches.

7



In order to further simplify the analysis, some restrictions are placed on Ω and ω. First, Ω

is now assumed diagonal, with the same variance σ2 in each disaggregate, and with normally

distributed structural innovations drawn such that ϵit ∼ IN(0, σ2). Second, ωi = 1 for all

i, which is the case when the aggregate is simply the sum of the disaggregates. Combined,

these assumptions make differences in estimation error (taxonomy categories (c) and (C))

equal to zero, isolating the effects of mean misspecification, (b) and (B) in Equations 5 and

7.1 Under these conditions, as this section shows, tests of mean shifts have lower power in

the aggregate approach versus the disaggregate approach.

Suppose δ is equal to zero until time T , at which the first disaggregate’s mean shifts to

d.2

δit =

⎧
⎨

⎩
0 for t = 1, ..., T

d for t = T + 1, ..., T +H and i = 1

The forecaster tests for breaks each period in order perform intercept correction in future

periods. Intercept correction, which is covered in greater detail in the next section, is a

method of forecast robustification advocated by Clements and Hendry (1996) which involves

correcting a “missed” forecast by an amount related to the forecast error if the error (or

average of past errors) exceeds a certain threshold level of statistical significance. Here, this

requires selecting a threshold level of significance α and testing the following parameter

ρ̂it = δit + ϵit (8)

where E[ρ̂it] = δit and V [ρ̂] = σ2. When the null is known to be false, the t-statistic

follows a non-centered t distribution with a non-centrality parameter ψ. In the case of

δ1T = d,3

E [tρ(ψ)] ≃
δ

σ
≡ ψ (9)

1The aggregate stochastic innovation is the same in both cases and equal to nσ2. In the disaggregate
model, asymptotically,

√
T µ̂i ∼ IN(0,σ2/T ), so summing over n disaggregates,

∑
µ̂ ∼ IN(0, nσ2/T ).

Equivalently, in the aggregate model,
√
T µ̂ ∼ IN(0, nσ2/T ). The resulting difference in forecast error

variance is thus the difference in the squared biases alone.
2The notation and sequence of derivations is based on Santos (2008).

3tρ(ψ) =
ρ̂
σ̂ =

ρ̂−δ
σ + δ

σ√
1

n−1
(n−1)σ̂2

σ2

and E

[
ρ̂−δ
σ + δ

σ√
1

n−1
(n−1)σ̂2

σ2

]
≃ δ

σ .
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The power of the test p is the probability P of rejecting the null

pψ = P [tρ(ψ) > cα|ψ ̸= 0] (10)

Now, consider the aggregate which is the sum of the disaggregates.

Y a
t = δat + ϵat (11)

where δat ≡
∑
δit and ϵat ≡

∑
ϵit. Similarly, other superscripts a denote aggregates. Testing

for a break involves testing the significance of the parameter

ρ̂at = δat + ϵat (12)

where E[ρ̂at ] = δat and V [ρ̂at ] = nσ2. Note that Equations 8 and 12 are nearly identical,

except the error variance is n times larger in the aggregate. The t-statistic is therefore 1/
√
n

as large as in the disaggregate case, with associated lower power.

Assuming σ2 = 1 and n = 10 gives the following power curves during the period of the

break, estimated numerically using STATA’s NCT function (Steichen, 2000). First, looking

at Figure 1a, it is observed that for small mean shifts in Y , it is difficult to reject the null of

no mean shift, so the test has low power at all significance levels. The higher the mean shift

or the lower the significance level, the higher the power of the test. For instance, 80% power

is achieved when d = 2 and α = 0.1, whereas the α = .001 test requires a d = 4 for the

same power.4 When comparing the aggregate to the disaggregate in Figures 1b and 1c, it is

clear that the power of the test is much lower in the aggregate because of the higher error

variance at moderate ranges of mean shifts. For either small or large mean shifts, there is

little difference between the power of tests using the two approaches.

Figure 1: Power of t-tests under a non-central t distribution

4 Intercept Correction using Significance-Based Decision Rules

Intercept correction (IC) is a method of forecast robustification advocated by Clements and

Hendry (1996). In this method, suppose a forecast error êt. Then, the value êt is added

4Obviously, high power due to low significance thresholds is not without costs. Such a decision rule invites
false rejections of a true null, with resulting additions to forecast error. Consideration of the “optimal” value
of α will be considered in later sections.
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to each forecast from t + 1 onward, and this approach is repeated for every t. Clements

and Hendry’s (1996) “always IC” method quickly gets a forecast that has failed due to a

deterministic mean shift back onto the correct path, but at the risk of increasing the noise

in the forecast in cases where the forecast error is not due to a mean shift.

Alternatively, it is possible to create a decision rule governing the IC process. This rule

is generally formed based on a chosen significance level α of a residual or dummy variable

in the final forecasting period before a new forecast is generated.5 If the dummy/residual

is statistically significantly different than zero, then IC is adopted. This framework is often

implemented using impulse indicator saturation (IIS) in an Autometrics model selection

algorithm (see Santos, 2008; Santos, Hendry, and Johansen, 2008; Doornik, 2009; and Castle,

Hendry, and Doornik, 2012).

Typically, these significance levels are somewhat arbitrarily set by convention based on

desired Type I error. However, when it comes to the practice of IC adoption, the chosen α

has real consequences on the accuracy of forecasts (see Castle, Fawcett, and Hendry, 2011).

In the prior section, I establish that detection of mean shifts is more difficult in aggregate

models. Therefore, it is plausible that lowering the significance threshold by choosing a

higher α can increase forecasting performance in aggregate models. It is also likely that

lowering the significance threshold increases the chances of false rejection of the null of no

mean shift (Type I error), as the initial Clements and Hendry (1996) “always IC” approach

does.

These issues of mean shift detection and intercept correction in models of aggregates

versus disaggregates have not been adequately considered in the literature. As the remainder

of this section shows, there are various sources of Type I and Type II error that must be

considered, and each has different effects on expected bias.

Continuing from the prior example, the following is the expected forecast for the aggregate

Yi in period T +1 for the disaggregate, where pα,ψ,δ̂ is the probability of retaining a dummy

variable with magnitude δ̂ under a non-central t distribution with non-centrality parameter

ψ (if ψ = 0, the distribution follows the Student’s t distribution) and a significance level α.

5Alternatively, one can use a weighted average of forecasts, such as performed by Castle et al. (2009).
Another option is to follow Hendry and Santos (2005), who argue that there are gains from “last sample
observation indicators” that are not extrapolated to future periods. These are less risky in the sense they
merely omit the final observation from the model, which often is measured with greater error than other
observations in the sample, as opposed to taking the error and projecting it forward.
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There is a break in i = 1 of size d = ψσ.

E[Ŷ a
T+1|T ] = pα,ψ,δ̂1 δ̂1 +

I∑

i=2

pα,0,δ̂i δ̂i (13)

Substituting δ̂1 = d+ ϵ1T , δ̂i ̸=1 = ϵiT , and ψ = d/σ gives

E[Ŷ a
T+1|T ] = pα,d/σ,d+ϵ1T (d+ ϵ1T ) +

I∑

i=2

pα,0,ϵiT ϵiT (14)

The expected value of Ŷ a
T+1 when the mean shift is known is simply E[Ŷ a

T+1] = d. The

bias of this forecast is the mean misspecification according to Equation 5 (b), defined as

b̂T+1|T ≡ Y a
T+1 − Ŷ a

T+1|T , and the expected bias for the disaggregate approach is therefore

E[b̂T+1|T ] = (1− pα,d/σ,d+ϵ1T )d︸ ︷︷ ︸
Failure to IC

− pα,d/σ,d+ϵ1T ϵ1T︸ ︷︷ ︸
IC Contamination

−
I∑

i=2

pα,0,ϵiT ϵiT

︸ ︷︷ ︸
False IC

(15)

Here, we can see the tradeoff in choosing a significance level α. When α is high, the

probability of rejecting the null of no mean shift is also high. Bias falls to zero in the first

term as 1 − p → 0. On the other hand, the second and third terms increase with α. Error

introduced by the second term may be desirable in the case of a mean shift when the error

and the shift are of the same sign but the mean shift is hard to detect. While introducing

bias by contaminating the IC, in this case, there is less bias than not detecting the break.

The third term is the cost of performing intercept correction when in fact no mean shift has

occurred.

Similarly, for the aggregate, defined as b̃T+1|T ≡ Y a
T+1 − Ỹ a

T+1|T ,

E[b̃T+1|T ] = (1− pα,d/(
√
Iσ),d+ϵ1T

)d
︸ ︷︷ ︸

Failure to IC

− pα,d/(
√
Iσ),d+ϵ1T

ϵ1T︸ ︷︷ ︸
IC Contamination

(16)

Note that the noncentrality parameter falls from d/σ to d/(
√
nσ) in the aggregate case,

reducing the power of tests of mean shifts.

The functional forms of p are quite complicated as shown in the prior section, so numerical

representation of Equations 15 and 16 are shown below. The numerical exercise begins with

one of ten disaggregates facing a mean shift of d = 4 standard deviations in the 100th

period. The ϵis are then independently drawn and hypothesis testing is performed for each

11



α = {0.000, 0.005, ..., 0.150}. Intercept correction is then performed when the null of no

break is rejected, and expected bias is computed following Equation 15. Simulated bias is

presented below for 10,000 replications, first for the disaggregate and then the aggregate

approach. The black line is the median and shaded areas are successive 10% bands.

Figure 2: Expected Bias of Forecasts at Different Levels of α

In Figure 2a, at α = 0, the expected bias is d = 4 because there is no intercept correction

at any threshold. However, this bias can be lowered even with very low levels of α, with the

minimum median bias estimate is achieved at α ≈ 0.0005, while the minimum 90% error

occurs at α ≈ 0.0035. Past this value, the benefits of increased detection of the break are

more than offset by the danger of intercept correcting when in fact there was no break.6

On the other hand, the median bias from the aggregate approach (shown in Figure 2b) is

monotonically decreasing in α, while the 90% confidence interval of the bias slowly increases

due to IC contamination.

Figure 3: Difference in Median Bias, Aggregate Approach minus Disaggregate Approach

5 An Illustration: Forecasting U.S. Proven Oil Reserves

In this section, I take the role of a forecaster attempting to produce pseudo ex ante forecasts

of U.S. aggregate proven (or “proved”) oil reserves in the 2008-2012 period. This variable

is ideal to illustrate the concepts in the prior section because its innovations are mostly IID

in the disaggregates and it is subject to unanticipated mean shifts due the recent discovery

and widespread adoption of hydraulic fracturing and horizontal drilling techniques.

There are 47 different distinct areas with oil reserves, which make up the entirety of

the total U.S. reserves. These mutually exclusive regions can consist of states, sub-regions

within large states (such as Texas), or offshore areas (areas in the Gulf of Mexico or off of the

coast of California). Figure 4 shows U.S. proven oil reserves and Cushing, Oklahoma spot

crude oil prices from 1986-2012. Reserves had been previously trending downwards from

1986-2008, then abruptly reversed course from 2009-2012. The question which motivates

6It should be emphasized that these simulations consider the case where the innovations are IID. Non-
diagonal covariance matrices will have varying power differences. For example, if correlations between
innovations are negative, then innovations in disaggregates will cancel in the aggregate, increasing the power
to detect mean shifts using aggregate approaches. Alternatively, if the correlations between innovations are
positive, then the power of tests using aggregate approaches decreases.
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this forecasting exercise is when and how could this mean shift in the growth rate of proven

oil reserves be detected?

Figure 4: Proven Oil Reserves and Prices, 1986-2012

Following Farzin (2001), proven oil reserves are modeled as a function of extraction rates

µ, mean shifts d, oil prices, and IID innovations. Prices affect proven oil reserves for two

reasons: first, prices incentivize oil search and discovery which is costly; and second, prices

affect reserves by definition because reserves are the quantity which, “with reasonable cer-

tainty, are recoverable under existing economic and operating conditions,” according to the

U.S. Energy Information Administration. The mean shifts in the growth rate are location-

specific, and can be positive (i.e. horizontal drilling technology) or negative (i.e. Arctic

National Wildlife Refuge exploration restriction). The stochastic specification of this model

is

∆resit = µi + dit + β∆pricet + ϵit (17)

where d consists of an unknown, small number of breaks for each cross-sectional unit.

A Dickey-Fuller test cannot reject the null of a unit root in the log-level of oil prices (both

with and without a trend) at any significance level, and rejects the null at the 1% level in

the first-difference, suggesting oil prices are an I(1) process. Lag selection by AIC and SBIC

each gives a lag length of zero. Therefore, oil prices are modeled as a random-walk-with-drift

process.

∆pricet = λ+ εt (18)

The break timings are unknown to the forecaster but the forecaster knows breaks some-

times occur, so a detection strategy is devised. Intercept correction is performed for all future

periods when one of the following conditions is met: 1) the current period model residual

exceeds a certain threshold level of significance based on a chosen significance level α; 2)

if the most recent two residuals are statistically indifferent from each other and different

than zero; and finally, 3) if the most recent three residuals are statistically indifferent from

each other and different than zero. Case (1) is obvious as classic intercept correction, but

methods (2) and (3) allow for intercept correction if a smaller break exists for two or three

periods, respectively. These two additional cases ensure that breaks are incorporated into

future forecasts eventually, though sometimes it takes multiple periods to be sure of a break.

This forecasting strategy is then implemented using three modeling approaches. In all
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cases, 1-step forecasts of the growth rate of the log-difference are estimated conditional on

the estimated price drift λ̂.7 Then, the forecasted level is created by multiplying the log-

difference by the prior period’s level.

In the first of three approaches, forecasts are constructed using the aggregate model with

no disaggregate information. In the second, the disaggregates are modeled and forecasts

are constructed for the disaggregates, and the aggregate forecast is created by summing the

disaggregate forecasts. Finally, an Autometrics routine is implemented following Doornik

(2009) using an aggregate model, but with a full information set of aggregate and lagged

disaggregate elements. In this third method, impulse indicator saturation (IIS) is performed

as well (see Castle, Doornik, and Hendry, 2012). The use of lagged disaggregates gives

equivalent 1-step forecasts to a VAR, which is what Hendry and Hubrich (2011) use to

incorporate disaggregate information. Forecasts are then constructed based on the model

chosen from this algorithm.

Aggregate-Only Forecast

Figure 5 shows recursive 1-step forecasts using the aggregate-only approach. The blue line is

the actual, the red shows aggregate forecasts with no intercept correction, and the green line

shows forecasts with intercept correction if p-value of the t-test of the residual (or residuals)

is less than α/2. In Panel 5a, the decision to intercept correct is made in 2010 based on

large, similar residuals for 2009 and 2010. Accordingly, the forecasts for 2011 and 2012 are

relatively accurate. On the other hand, in Panel 5b, 2008 is determined to be in need of

intercept correction, with resulting forecast failure in 2009. This case is representative of the

danger of Type I error in intercept correction. On the other hand, the more liberal threshold

gives quick adjustment to the miss in 2009 and provides forecasts that are back on track for

2010 on. Panels 5c and 5d are similar to but noisier than Panel 5b, suggesting that a more

stringent criteria in the α = [0.0001, 0.001] range is preferable.

Figure 5: Forecasts using Aggregate-Only Models

71-step forecasts are considered because at longer time horizons, the test power differential between the
aggregate and disaggregate approaches falls with the length of the forecast horizon. I leave the derivation of
forecast power differentials as a function of forecast horizon length to further research.
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Aggregating Forecasts of Disaggregates

Figure 6 shows recursive 1-step forecasts constructed using the disaggregated approach. As

before, the blue line is the actual, the red shows aggregate forecasts with no intercept correc-

tion (but constructed using the disaggregate approach), and the green line shows forecasts

with disaggregated intercept correction. In Panel 6a, a mean shift is detected in 2008 in 4 of

the 47 disaggregates. These corrections, along with 7 breaks in 2009 result in a small miss

in 2009. However, because of the new breaks detected in 2009, the forecasts for 2010-2012

are back on track.

Successive weakening of α serves to make the disaggregates more sensitive to intercept

correction, but unlike the aggregate case, this reduces forecast accuracy. The forecasts for

2009 become less accurate due to the greater number of false breaks detected in 2008 using

the lower acceptance thresholds. Perhaps most alarmingly, the pre-2008 forecasts become

noisier as α increases. Combined, these results suggest α = 0.0001 to be the preferred

threshold for intercept correction.

Figure 6: Forecasts using Disaggregate Models

Aggregate Model using Disaggregate Information

Figure 7 shows recursive 1-step forecasts constructed using the Autometrics model selection

algorithm (see Doornik, 2009) on an information set consisting of each disaggregate and a

full set of time dummy variables with variable retention significance threshold α. This in-

corporates Hendry and Hubrich’s (2011) notion of capturing disaggregate information, and

improves on it by employing a model selection algorithm using a general-to-specific (GETS)

approach. The method here encompasses the aggregate-only with intercept correction strat-

egy in Section 5 because similar decision rules governing the selection of dummy variables

in the Autometrics algorithm are used in the decision to intercept correct large residuals.

Higher levels of α tend to perform better than low levels, but all appear to produce

somewhat noisy forecasts. The algorithm retains some unusual variables with questionable

signs. For example, West Virginia, with only about 0.1% of U.S. reserves, has a significant,

negative effect on U.S. reserves in nearly every year’s model when α = 0.1 or α = 0.01.

Thresholds stricter than α = 0.001 do not retain a constant term in most models. Despite

these odd correlations (or lack thereof) in the final models, the forecasts tend to be fairly
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accurate on average.8

Figure 7: Forecasts using Aggregate Models with Disaggregate Information

Comparison of Forecasts

Figure 8 shows the best forecasts of each of the prior methods. Pre-2009, the disaggregate

forecasts perform slightly worse than the aggregate forecast. Despite the theoretical superi-

ority of the GETS algorithm combined with a large information set, the forecasts produced

by the resulting model appear to be noisier. In 2009, we see how much the Type I error from

the 2008 mean shift detection reduces forecast accuracy. In the aggregate model case, the

large residual in 2008 is misinterpreted as a break and causes forecast failure in 2009, whereas

this does not occur in the disaggregate approach. However, for 2010, the 2009 mean shift is

captured almost perfectly by the 2009 intercept in the aggregate model, whereas it is only

partially accommodated in the disaggregate estimates, and not at all using the aggregate

model with disaggregate information. In general, the median error appears is lower in the

aggregate model, but with a greater possibility of forecast failure. Disaggregation appears

to act as insurance, not just against large breaks, but against Type I error in the detection

of breaks as well.

Figure 8: Best Forecasts using Alternative Modeling Approaches

Based on the results from the bias exploration in Section 4, a switching decision rule

is devised in hopes of incorporating the strengths of the approaches. Recall that for both

high and low magnitude mean shifts, there is little power differential in the detection of

mean shifts in aggregate versus disaggregate models. Accordingly, there is little to gain by

disaggregating when mean shifts are either non-existent or large. Figure 9 shows the fraction

of areas (both nominally and weighted by fraction of total reserves) where a mean shift is

detected at the α = 0.0001 significance level.

8These noisy forecasts may be due to omitted variable bias in the estimates of the other parameters.
This is important because in the hybrid method that they propose—forecasting aggregates using additional
disaggregate information—estimates are especially vulnerable to this omitted variable bias. If a disaggregate
right-hand-side variable model-encompasses other disaggregates prior to the break, then the information in
the variable is proxying for information in other disaggregates. When this correlation becomes nonconstant
by means of an unmodeled mean-shift, the resulting error is projected onto the other disaggregates for which
it was a proxy.
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Figure 9: Fraction of Disaggregates with Identified Mean Shifts in Particular Year

A moderate number of (weighted) breaks appears in 2003, 2004, and 2008, with a large

number of breaks in 2009. All other periods have very low (or zero) numbers of breaks. Based

on this, a “switching forecast” is generated using forecasts from the disaggregate approach

with intercept correction in 2003, 2004, and 2008, and using the aggregate approach with

intercept correction in all other periods. Given that this is a weighted average of forecast

with weights equal to one or zero, I also present a forecast with equal weights (50% to each).

Both of these forecasts perform quite well, as shown in Figure 10.

Figure 10: Forecast Combinations: Switching and Average Forecasts

The following table of RMSEs shows the GETS algorithm along with impulse indicator

saturation, despite its sometimes unintuitive model estimates, forecasts better than any other

aggregate model. Intercept correction is also demonstrated to be of critical importance

to getting a forecasting model back on track after a mean shift, as demonstrated by the

superiority of the IC forecasts relative to the no IC forecast. The disaggregate approach

with intercept correction shows that in the case of proven oil reserves in the United States,

the power of test statistics to detect mean shifts is of fundamental importance. The switching

model produces slightly better point forecasts than any single model.

Table 1: RMSE of Different Forecasts

Forecast RMSE
Aggregate Model, no IC 2.56%
Aggregate Models, IC α = 0.001 2.16%
Aggregate with Disagg. Information, Autometrics with α = 0.001 1.79%
Disaggregate Models, IC α = 0.0001 1.65%
Average Forecast 1.85%
Switching Forecast 1.56%

6 Conclusions

In this paper, I examine some of the issues fundamental to the choice of methods when the

goal is to forecast an aggregate. Building on prior work by Clements and Hendry (2006),

Hendry and Hubrich (2011), and many others who address this topic, I consider the possi-

bility that unanticipated mean shifts occur in disaggregates, and the conditions under which
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they are quickly detectable in aggregate versus disaggregate modeling frameworks. This

relaxes a fundamental assumption in Hendry and Hubrich (2011), who assume that mean

misspecification is small in both aggregates and disaggregates, and can be largely ignored.

While this is true in the long run, in the periods directly following a mean shift, the spec-

ification of the mean is actually a very important problem, as the failure to incorporate a

mean shift into a forecasting model is a major source of forecast failure.

In the analytical section, I begin by first showing that there exists a substantial dif-

ferential in the power of non-central t-tests of the null of no mean shift when modeling

disaggregates individually versus an aggregate. This is consequential when these tests are

part of intercept correction decision rules (Clements and Hendry, 1996; and Castle, Doornik,

and Hendry, 2012). Because they are consequential and there is a differential in detection

power, I explore the possibility of different significance level thresholds for mean shift de-

tection. Using a Monte Carlo simulation, I show that the optimal significance threshold for

intercept correction, α, is less in a model of a disaggregate than in a model of an aggregate,

and is very low (α = [0.0001, 0.001]) in the example considered.

This conclusion regarding α is based, in part, on a bias decomposition that is helpful to

understand sources of forecast failure following a mean shift. There are three main sources

of bias: first, failure to detect a mean shift results in no intercept correction (bias decreases

in α). Second, a detected mean shift is impossible to distinguish from innovations in the

period, leading to contamination of the intercept correction (bias increases in α). Finally, in

disaggregate approaches, there is the possibility of Type I error, or the false detection of a

mean shift (bias increases in α).

In the empirical section, I present a real-world illustration of each of the types of error in

the bias decomposition in the prior section. U.S. proven oil reserves exhibit characteristics

that are ideal for this sort of analysis because new discoveries, technologies, and regulations

are, for the most part, independent. Over the 2000-2012 time period, there are large residuals

and structural mean shifts in both disaggregates and aggregates. Disaggregate modeling

facilitates detection of these mean shifts with less Type I and II error. On the other hand,

disaggregation is costly in the sense that it increases the noisiness of the aggregate forecast.

Aggregate models are much more parsimonious and produce better forecasts during periods

without breaks. However, it is much more difficult to detect breaks, leading to both Type I

and Type II errors in their identification.

The superior forecast is based on the following forecasting procedure. First, disaggregates

are tested for breaks. Then, if no breaks or a large number of breaks are detected, an
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aggregate model is used to forecast. On the other hand, if moderate number of breaks are

detected, then each disaggregate is forecasted and the results are summed. This approach is

consistent with the analytical prediction that mean shift detection is superior in disaggregates

when the mean shifts are of a moderate size, but not too small (neither approach can detect)

or large (both can easily detect). In this particular case, this strategy out-performs both

wholely disaggregate and aggregate approaches, including the approach advocated by Hendry

and Hubrich (2011) of incorporating disaggregate information into aggregate models. This

is operationalized by modeling an aggregate using a full information set of the disaggregates

along with impulse indicator saturation (Santos, Hendry, and Johansen, 2008) in Autometrics

(Doornik, 2009).
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Figure 1: Power of t-tests under a non-central t distribution
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Figure 2: Expected Bias of Forecasts at Different Levels of α
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Figure 3: Difference in Median Bias, Aggregate Approach minus Disaggregate Approach
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Figure 4: Proven Oil Reserves and Prices, 1986-2012
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Figure 5: Forecasts using Aggregate-Only Models
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Figure 6: Forecasts using Disaggregate Models
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(b) α = 0.001
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Figure 7: Forecasts using Aggregate Models with Disaggregate Information
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Figure 8: Best Forecasts using Alternative Modeling Approaches
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Figure 9: Fraction of Disaggregates with Identified Mean Shifts in Particular Year
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Figure 10: Forecast Combinations: Switching and Average Forecasts
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