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Abstract

Parsimony can be related to explanatory power, either by noting that each additional requirement for a separate origin of a
feature reduces the number of observed similarities that can be explained as inheritance from a common ancestor; or else by
applying Popper’s formula for explanatory power together with the fact that parsimony yields maximum likelihood trees under No
Common Mechanism (NCM). Despite deceptive claims made by some likelihoodists, most maximum likelihood methods cannot be
justified in this way because they rely on unrealistic background assumptions. These facts have been disputed on the various grounds
that ad hoc hypotheses of homoplasy are explanatory, that they are not explanatory, that character states are ontological
individuals, that character data do not comprise evidence, that unrealistic theories can be used as background knowledge, that NCM
is unrealistic, and that likelihoods cannot be used to evaluate explanatory power. None of these objections is even remotely well
founded, and indeed most of them do not even seem to have been meant seriously, having instead been put forward merely to

obstruct the development of phylogenetic methods.
© The Willi Hennig Society 2008.

Introduction

By the early 1980s parsimony was already well
established as the method of choice among phylogenetic
systematists, but the justification of the method still
seemed incomplete. Kluge and Farris (1969), for exam-
ple, had pointed out that a most parsimonious tree was
the best fit to available characters, but this left open the
question of why that particular measure of fit should be
used. In 1983 I was able to resolve this issue, as well as
several others, by relating parsimony to explanatory
power, that is, by showing that parsimony assesses the
degree to which a tree can account for observed
similarities among terminals as the result of inheritance
from a common ancestor (Farris, 1983). Later (Farris,
2000; Farris et al., 2001) I refined that idea by combin-
ing Popper’s (1959) formula for explanatory power with
a relationship between parsimony and likelihood that
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had been discovered by Tuffley and Steel (1997). Of
course no good deed goes unpunished. My derivations
have been criticized by opponents of parsimony
(de Queiroz and Poe, 2003; Felsenstein, 2004), by
opponents of Popper (Rieppel, 2003), and by inventive
authors with their own distinctive theories on Popper
(Faith, 1992, 2004) and phylogenetic evidence
(Kluge and Grant, 2006). It can be beneficial to examine
such objections, for this can help to clarify points that
might otherwise have been incompletely understood.
My purpose here, accordingly, is to explain why those
criticisms are not well founded.

Explanatory power

My 1983 conclusion can be derived from a few simple
ideas, the first of which concerns what genealogies can
explain (Farris, 1983, p. 18):

Genealogies provide only a single kind of explanation. A
genealogy does not explain by itself why one group acquires a
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new feature while its sister group retains the ancestral trait ... A
genealogy is able to explain observed points of similarity among
organisms just when it can account for them as identical by
virtue of inheritance from a common ancestor.

Of course such explanations would not apply to
purely phenotypic variation. If (as I will assume
throughout) phenotypic variation has been removed
and any errors of observation have been corrected,
similarities not explained by inheritance from a common
ancestor are considered homoplasies, that is, cases of
multiple origins of a feature. Some conclusions (hypoth-
eses) of homoplasy can be supported directly by further
investigation, for example by discovering that structures
previously coded as alike are actually quite different, or
even by corroborating a theory that would explain the
particular multiple origins in question. Important
though such possibilities may be in other contexts, they
are of no interest here, for they mean that there is no
inherited similarity for the tree to explain, and for
purposes of this discussion I will assume that all such
cases have already been eliminated. Homoplasies still
remaining are those that are concluded simply because
they are implied by the tree, so that they have no
supporting evidence of their own. Such hypotheses are
called ad hoc (Farris, 1983, p. 10):

If a conflicting character survives all attempts to remove it by
searching for such evidence, then the conclusion of homoplasy
in that character, required by selecting a placement [of a
terminal on the tree], satisfies the usual definition of an ad hoc
hypothesis. It is required to defend the genealogical hypothesis
chosen, but it is not supported by any evidence separate from
that for the genealogy itself. If external evidence favors
the interpretation of homoplasy, however, that hypothesis is
not ad hoc.

Ad hoc hypotheses of homoplasy, then, correspond to
observed similarities that are explained neither by
inheritance from a common ancestor, nor, so far as is
known, by anything else. They could simply be called
unexplained similarities, and indeed this would often be
clearer, although understanding ““ad hoc hypotheses of
homoplasy” is still necessary when discussing earlier
literature.

As with any scientific theory, it is desirable for a tree
hypothesis to explain as much of available observation
as possible, and this means choosing the tree to
minimize the number of similarities left unexplained.
But some caution is needed when counting ad hoc
hypotheses of homoplasy, for only the number actually
required (implied) by the tree should be counted.
Otherwise one could simply postulate superfluous
homoplasies as “grounds” for criticizing any tree. This
means that the homoplasies counted in evaluating a tree
should be mutually independent, as otherwise some
requirement might be counted more than once. It is
common for homoplasies to be logically interdependent
(Farris, 1983, p. 20):

Suppose that a putative genealogy distributes [the 20 terminals
showing feature X] into two distantly related groups A and B of
ten terminals each. There are 100 distinct two-taxon compar-
isons of members of A with members of B, and each of those
similarities in X considered in isolation comprises a homoplasy
... [But if] X is identical by descent in any two members of A,
and also in any two members of B, then the A-B similarities are
all homoplasies if any one of them is.

But fortunately it is easy to count mutually indepen-
dent homoplasies (Farris, 1983, p. 20):

If a genealogy is consistent with a single origin of a feature, then it
can explain all similarities in that feature as identical by descent.
A point of similarity in a feature is then required to be a
homoplasy only when the feature is required to originate more
than once on the genealogy. A hypothesis of homoplasy logically
independent of others is thus required precisely when a genealogy
requires an additional origin of a feature. The number of logically
independent ad hoc hypotheses of homoplasy in a feature
required by a genealogy is then just one less than the number of
times the feature is required to originate independently.

De Laet (2005) has arrived at the same result by another
argument. To minimize independent unexplained simi-
larities, one need only minimize required extra steps.

The “‘required” steps (or homoplasies) in that pre-
scription are simply those that appear when characters
are fitted to the tree, as in optimization (Farris, 1970).
That a tree “requires’” a certain homoplasy has some-
times been taken to mean that the similarity in question
would falsify the tree, or at least that it would falsify the
tree if the tree were not rescued ad hoc by the hypothesis
of homoplasy. In fact no such interpretation is necessary
for purposes of evaluating explanatory power. Unex-
plained similarities are simply that, and would not
falsify the tree except perhaps on the bizarre assumption
that homoplasy is impossible.

The later refinement (Farris, 2000; Farris et al., 2001)
is based on Popper’s (1959, p. 401) formula for the
explanatory power E of hypothesis i with respect to
evidence e, given background knowledge b, that is, the
power of & to explain e (given b): '

:p(e7hb) _p(e>b)

ple,hb) + p(e, b)

Most of the same comments will apply to Popper’s
(1983, p. 240; cf. Popper, 1963, p. 288; Popper, 1959, p.

400f) corroboration C of & by e (given b), which differs
just in having an additional term in the denominator:

p(e,hb) _p(evb)
(evhb) _p(ehab) +p(e, b)

Here p(e, hb) denotes the probability of e given both b
and A, while p(e, b) is the probability of e given only b, that

E(h,e,b)

C(h,e,b) =
( )p

'T have changed Popper’s (1959, p. 401) symbols to h, e, b and p,
respectively, to ease comparison with other formulae.



J. S. Farris | Cladistics 24 (2008) 1-23 3

is, without 4. In phylogenetic applications /4 would be a
tree hypothesis and e would comprise the matrix of
observed features of the terminals. As for background
knowledge, Popper (1983, p. 236) explained:

By background knowledge we mean any knowledge (relevant to
the situation) which we accept—perhaps only tenta-
tively—while we are testing /.

Similarly (Popper, 1963, p. 288):

Here [b] should be taken as the general ‘background knowledge’
(the old evidence, and old and new initial conditions), includ-
ing, if we wish, accepted theories.

Thus an evolutionary theory (or model) relied on
when inferring phylogeny would be included in the
background, though this would only be justified for
accepted theories, by which Popper (1983, p. 243)
meant:?

If we mean by the degree of acceptability of a theory / the
degree to which # is satisfactory from the point of view of
empirical science—that is, from the point of view of the aims of
empirical science—then acceptability will have to become
topologically equivalent to corroboration.

Further (Popper, 1983, p. 230):

‘When do we—tentatively—accept a theory? Our answer is, of
course: ‘When it has stood up to criticism, including the most
severe tests we can design; and more especially when it has done
this better than any competing theory.’

This means that accepted theories must, as far as is
known, be realistic. A theory that has been rejected has
certainly not stood up to the most severe tests and can
hardly be considered knowledge, background or other-
wise.

As Popper (1959, p. 410) noted, the first term p(e, hb)
in these formulae is the likelihood of % given e (and b),
and it is easily seen from the formula that E(h, e, b)
increases with p(e, hb). As the second term p(e, b) does
not depend on /, the tree with greatest likelihood also
has greatest E(h, e, b). Purely algebraically, then, any
maximum likelihood method would maximize the power
to explain observations e if its model were included in b.
That would be an abuse of Popper’s formula, however,
unless the model were accepted, and realism is seldom
the primary aim of likelihoodists. Felsenstein (1993, in
dnaml.doc), for example, confessed:

This rather disconcerting model is used because it has nice
mathematical properties which make likelihood calculations far
easier.

The lack of realism in most present likelihood models
(see Farris, 1999) arises from restrictive homogeneity
assumptions. The ratio in expected substitution rates
between any two characters is required to be the same in

2As in quotations throughout, italics are as in the original.

all branches of the tree. Sometimes, as in clock models,
the rates are even required to be uniform. But Tuffley
and Steel (1997) introduced a model called No Common
Mechanism (NCM), in which characters may—but are
not required to—vary their relative rates independently,
both within and between branches. Because the inde-
pendent variation is taken only as a possibility, not as a
requirement, NCM would apply to almost any situation,
and so may be accepted as realistic. This is useful
because Tuffley and Steel also showed that maximum
likelihood under NCM selects the same trees as does
parsimony. With the realistic NCM in the background,
then, most parsimonious trees have greatest power to
explain available observations.

History

According to Felsenstein (2004), my earlier paper
(Farris, 1983) had left important issues unsettled.
Remarkably, he was able to draw that conclusion from
a passage on p 8§, the second page of my 30 pp paper
(Felsenstein, 2004, p. 140):

It [the hypothetico-deductive approach] is also invoked by
Farris (1983, p. 8):

Wiley [(1975)] discusses parsimony in a Popperian context,
characterizing most parsimonious genealogies as those that
are least falsified on available evidence. In his treatment,
contradictory character distributions provide putative falsifi-
ers of genealogies. As I shall discuss below, any such falsifier
engenders a requirement for an ad hoc hypothesis of homo-
plasy to defend the genealogy. Wiley’s concept is then
equivalent to mine.

One might note that these discussions [the other was from Wiley
(1981, p. 111)] do not distinguish clearly between parsimony and
compatibility methods ... When a character state arises three
times on a phylogeny, the issue is whether we are to count that as
one invalid character test [ad hoc hypothesis of homoplasy] or
two, and whether the decision is implicit in the works of Popper,
William of Ockham, or Hennig. This question is not directly dealt
with in any of the philosophical writings of phylogenetic
systematists. Phylogenetic systematists have tended to back
parsimony and denounce compatibility. This seems to come, not
from any philosophical principle, but from the feeling that
compatibility discounts a character’s value too rapidly, that there
is still good information to be had from characters that have been
observed to change more than once on a tree.

Of course this was a ruse. I did not address those
issues on p 8, but later I showed exactly how to count ad
hoc hypotheses of homoplasy, by counting extra steps.
That derivation, quoted above, was on p 20. I also
discussed clique methods, in the section titled “Cliques”
on pp 30-33. There I demonstrated that the clique
approach throws away explanation of observed similar-
ities and in the process requires a preposterous assump-
tion (Farris, 1983, p. 31; underlining added):
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The covering assumption utilized is then that excluding a
character [from the clique]—concluding that it shows someho-
moplasy—implies that all points of similarity in that character
are homoplasies.

That is readily recognized as the objection to cliques
that—according to Felsenstein—came only from a
“feeling”. In that section I also pointed out (Farris,
1983, p. 32):

Both [of Felsenstein’s (1979, 1981)] rationalizations of the clique
assumption, it will be seen, have the same defect as the clique
assumption itself.

Perhaps this explains why Felsenstein wanted his
readers to believe that I had not discussed cliques.

Evidently unwilling to address my comments, Felsen-
stein (2004) invented an alternate history in which I had
never made them, the one quoted passage serving to
mislead his readers further by creating the impression
that he was discussing my paper forthrightly. As he also
worked uncertainty about Hennig into his account, it
seems pertinent to note that he had taken a similar
approach before (Felsenstein, 1983, p. 323):

I find it impossible to tell from a reading of Hennig whether he
would have preferred parsimony to compatibility.

Parsimony can apply non-unique derivations as syna-
pomorphies, but clique methods do not. It would then
seem that Felsenstein could not tell from his reading
whether Hennig would have applied non-unique deriva-
tions. But Hennig (1981, p. 23f) would have, and did:

In such a [phylogenetic] classification, the fact that the
Megasecoptera have acquired their neoptery independently
means that they should not be placed in the Neoptera. This is
because there are good reasons for believing that the neoptery
of the Areoptera has arisen monophyletically and is one of the
constitutive characters [synapomorphies] of this group. It is
quite another matter that it has arisen elsewhere as well.

In fact he did so repeatedly, as Farris and Kluge
(1986, p. 299) have summarized:

Hennig (1983, p. 145) lists thecodont dentition as a synapo-
morphy of Archosauromorpha, even though he notes that it is
convergently developed in Mammalia, and even though teeth
are lost in some Archosauromorpha. On page 146 he lists
bipedalism as a synapomorphy of the same group, although
that trait is also developed in some Mammalia and secondarily
lost in many Archosauromorpha. On page 135 he lists loss of
teeth as a synapomorphy of Testudines, although that loss
occurs also in Aves, as well as in other groups. Hennig, then,
certainly does not restrict synapomorphy to similarity in traits
that are uniquely derived.

Most readers would have taken “a reading of
Hennig” to mean that Felsenstein had made a sincere
effort to discover Hennig’s views, and no doubt
Felsenstein expected that interpretation. In fact by
“a reading of Hennig” Felsenstein apparently meant
the opposite.

Felsenstein (2004) seemed more direct in discussing
my later (Farris, 2000) derivation. He reinvoked his
earlier (Felsenstein, 1978) argument that parsimony can
be statistically inconsistent, that is, can yield an incor-
rect tree when the data comprise infinitely many
characters, randomly selected from the statistical
population defined by a suitably chosen model. In his
conception (Felsenstein, 2004, p. 143):

Farris (1999, 2000) ... argues that when a sufficiently realistic
model [NCM] of variation of evolutionary rates among sites is
adopted, parsimony obtains the same tree as likelihood and
hence the tree favored by Popper’s measure. I have already
noted that in such cases the inference can be inconsistent. In
such a case Popper’s formula is corroborating the wrong tree!

But at this point he became less direct. In that case
likelihood would also be selecting the wrong tree! Yet
Felsenstein did not put it that way. Doing so would have
conflicted with an earlier claim of his (Felsenstein, 1978,
p. 408):

Methods of phylogenetic inference which entirely avoid the
problem of statistical inconsistency are already known. Max-
imum likelihood is one of them. I have outlined elsewhere
(Felsenstein, 1973) how this may be done.

That claim was not true (see Farris, 1999) and
Felsenstein (2004) was more circumspect, but he still
wanted to associate likelihood with statistical consis-
tency. He went on (Felsenstein, 2004, p. 143):

If more is known about the distribution of evolutionary rates,
one might be able to use a more specific model that achieved
consistency.

But to be known—as distinguished from imag-
ined—the distribution of rates would have to be estab-
lished as realistic, and this raises another problem.
Consistency can be assured only under relatively simple
models (Steel et al., 1994; cf. Farris, 1999), so that a
model complex enough to be realistic may be too complex
for consistency. As I put it before (Farris, 1999, p. 203):

Guarantees of consistency were never more than a sham issue.
They can be achieved only under absurdly oversimplified
circumstances. In the real world, no method can guarantee
consistency. Nor should this be surprising. The idea that
consistency can be guaranteed in real—as opposed to imagi-
nary—cases is readily recognized as a version of a now-classical
philosophical blunder, the belief that empirical inductions can
be made infallible (for a discussion see Popper, 1972).

Felsenstein (2004) discussed this subject even less than
he did my comments on cliques.

ASP

Kluge and Grant (2006) noted that minimizing steps
no longer corresponds to minimizing homoplasies if the
alignment is allowed to vary (as in POY; see Wheeler
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et al., 2006). While that is well known, they took it to
mean that an entirely new philosophical basis for
parsimony would be needed and proceeded to offer
their own. Their approach was based on the anti-
superfluity principle (ASP), by which they meant that
transformation events should be minimized (Kluge and
Grant, 2006, p. 285):°

The h that which [sic] minimizes the number of transformation
events hypothesized to explain the character-states of terminal
taxa as homologues is optimal.

This seemed much like my conclusion, but whereas
my derivation concerned explaining observed similari-
ties, they aimed to explain character states, and they had
their own conception of character states (Grant and
Kluge, 2004, p. 26):

Character-states are defined conceptually as the least inclusive
historical individuals that result from heritable transformation
events.

If character states were historical individuals, no
character state could originate more than once. What
others might call two origins of the same state would
have been, on Kluge and Grant’s view, origins of
different states individuated by historically distinct
transformation events. That led to a defect in Kluge
and Grant’s (2006, p. 284) formulation of explanation:

The explananda, e, are the character-states (sensu Grant and
Kluge, 2004, [p. 26; quoted above]) of terminal taxa, which are
explained by postulating a particular hypothesis of phylogenetic
relationships (i.e. a hypothesis of cladistic and patristic
relationships; Farris, 1967), h, in light of the background
knowledge of descent, with modification, b. Together, b and h
constitute the explanans.

The patristic part of hypothesis h consisted of
transformations, and those were the same transforma-
tions that individuated the character states in e, so that h
and e overlapped. Popper (1963, p. 288f; quoted in full
later) had a rule against such practices:

This rule for the exclusion of ad hoc hypotheses may take the
following form: the hypothesis must not repeat (except in a
completely generalized form) the evidence, or any conjunctive
component of it.

Kluge and Grant’s concept of character states thus
seems to have led to violating Popper’s rule for exclusion
of ad hoc hypotheses, and they should have been aware
of that rule, as Farris, Kluge and Carpenter (2001, p.
440) had called attention to it. But then why did Kluge
and Grant adopt their concept of character states?
Because (Grant and Kluge, 2004, p. 25):

Character-states have generally been conceptualized as proper-
ties (attributes, features), which logically denies their ability to

*Kluge and Grant (2006) used boldface rather than italics for
Popper’s symbols /4, e and b.

transform or evolve, since properties are class concepts and, as
such, are immutable (Kluge, [2003]). Only individuals (in the
ontological sense) can undergo change.

This was merely a confusion. Evolutionary transfor-
mation in a character simply means that an evolving
population substitutes one state for another. A popula-
tion may substitute a G for a T at some site, and this is
in no way hindered by the fact that G and T themselves
are distinguished by fixed chemical properties. Kluge
and Grant’s concept of character states, then, never had
any legitimate motivation.

Unfortunately, their character state concept was not
the only ill-motivated part of Kluge and Grant’s
discussion. They also commented on ecarlier treatments
(Kluge and Grant, 2006, p. 278):

Unlike Hennig (1966) and Farris (1980, 1983), Sober (1988, p.
33; see also Farris, 1967; Sober, 1986) took an explicitly
probabilistic position on the presence of apomorphous similar-
ities in different species, viewing

synapomorphies as providing evidence for monophyletic
groups, rather than as absolutely guaranteeing that they must
exist. A 110 character [A and B have apomorphic state 1,
while C has plesiomorphic state 0.] does not deductively
imply that A and B form a monophyletic group apart from C.

The suggestion that Hennig assumed such deductive
implication—which would mean assuming impossibility
of homoplasy—did not come from Sober, who knew
better (Sober, 1988, p. 119):

Hennig is obviously alive to the fact that shared derived
characters may or may not reflect phylogeny.

Kluge and Grant should have known better too, since
Farris and Kluge (1986, p. 299; quoted above) had
already called attention to Hennig’s use of multiply
derived traits. It would seem that Kluge and Grant’s
suggestion said less about Hennig’s ideas than about
their own enthusiasm for attributing faults to others.

Kluge and Grant’s comment about deductive impli-
cation included me as well, but in my case they were not
content with suggesting that I thought homoplasy
impossible. They also complained that I did hypothesize
homoplasy (Kluge and Grant, 2006, p. 280):

The problem we identify in Farris’s (1983) rationale is not its
focus on ad hoc-ness, but rather the premise that a statement
of homoplasy entails an ad hoc hypothesis. Homoplasy
cannot be an ad hoc hypothesis because it is not a
hypothesis; it is an acausal description, not a causal
explanation (Kluge, 1999).

There is actually no requirement that a hypothesis
must be causal, but that question of usage hardly
matters. Their comment could have been relevant as a
substantive criticism only if I had claimed that ad hoc
hypotheses of homoplasy were causal explanations,
whereas in fact I associated those hypotheses with
unexplained similarities. That of course is why such
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hypotheses should be minimized, but Kluge and Grant
(2006, p. 281) went on to find a problem with that
minimization:

Sober (1988, pp. 135-141) reiterated the long-standing criticism

that minimizing an [sic] ad hoc hypothesis of homoplasy
assumes that homoplasies are rare.

As this was their only mention of the minimization
issue, they created the impression that minimization
would pose a difficulty only in connection with ad hoc
hypotheses of homoplasy, so leaving ASP minimization
unthreatened. But Felsenstein (1984, p. 183) had
phrased his accusation more broadly:*

The general pattern is quite simple: if a method involves trying
to find the tree that minimizes the number of occurrences of
some evolutionary event, it implicitly assumes that the event is a
priori improbable, so that its occurrence strains our credulity.

If that had been correct, it would have applied to any
minimization of events, including that used in ASP, so
that at best Kluge and Grant’s account amounted to
expressing an unfounded preference for their own
approach. They also objected to explaining similarities
(Kluge and Grant, 2006, p. 278):

Darwin’s theory of descent or common ancestry does not
require an explanation of similarities among organisms.

It is already such an explanation, but they meant the
opposite, going on (Kluge and Grant, 2006, p. 279):

Similarities, by definition, cannot evolve. Similarity is specified
in relation to one or more properties, which entails intentional
definition. And, that being the case, the properties so defined
must be considered immutable.

In my 1983 paper, similarities were treated as obser-
vations. Observations are not supposed to evolve, even
when they reflect some recent state of populations that
are themselves evolving. But this is only another version
of the confusion underlying Kluge and Grant’s character
state concept. Remarkable though it seems, they appar-
ently could not understand that populations can evolve
simply by substituting one state for another.

Likelihood

Likelihoodists de Queiroz and Poe (2003) wanted to
justify existing maximum likelihood methods as Poppe-
rian. Thus, although they never cited it, they agreed with
my (Farris, 2000) observation that maximizing likeli-
hood p(e, hb) would maximize £ and C. But as they
meant to apply that result to existing maximum likeli-

“If such reasoning were correct, I noted (Farris, 1983, p. 13), least-
squares regression would have to assume that the residual variance is
truly small. Interestingly, Felsenstein (2004) never mentioned his 1984
paper.

hood methods, they did not want to exclude unrealistic
models from background knowledge. Their (de Queiroz
and Poe, 2003, p. 356f) defense of that position was
based on two passages from Popper (1963, p. 238):

While discussing a problem we always accept (if only tempo-
rarily) all kinds of things as unproblematic: they constitute for
the time being, and for the discussion of this particular
problem, what I call our background knowledge. Few parts of
this background knowledge will appear to us in all contexts as
absolutely unproblematic, and any particular part of it may be
challenged at any time, especially if we suspect that its uncritical
acceptance may be responsible for some of our difficulties.

And

The fact that, as a rule, we are at any given moment taking a
vast amount of traditional knowledge for granted ... creates no
difficulty for the falsificationist or fallibilist. For he does not
accept this background knowledge; neither as established nor as
fairly certain, nor yet as probable. He knows that even its
tentative acceptance is risky, and stresses that every bit of it is
open to criticism, even though only in a piecemeal way.

Their interpretation of those passages emphasized
that choice of background theories may depend on the
problem being investigated, that acceptance is tentative,
and that some background knowledge may have been
accepted uncritically (de Queiroz and Poe, 2003, p. 356):

This [first] statement, with its use of the phrases “if only
temporarily,” “for the time being,” and ““for the discussion of
this particular problem,” emphasizes the tentative nature of
many aspects of ... Moreover, Popper’s statement explicitly
acknowledges that » may include components that have been
accepted uncritically, which can hardly be equated with well-
corroborated theories.

And (de Queiroz and Poe, 2003, p. 357):

This [second] statement explicitly rejects the equation of b with
accepted or established (well-corroborated) theories. Further-
more, it emphasizes that any tentative acceptance (i.e. for the
purpose of a particular test) is risky, a caution that reinforces
his earlier point that certain components of » may have been
uncritically accepted and therefore are anything but well
corroborated.

Of course it is true that choice of background depends
on the problem, but that is a matter of relevance and
hardly implies lack of realism, so that de Queiroz and
Poe’s emphasis on that dependence would seem to have
been merely an attempt to create a misleading impres-
sion. Similarly, they wrote as if recognizing acceptance
as tentative would separate acceptance from corrobora-
tion, but that was also misleading, for in fact Popper
always regarded corroboration as a guide to tentative
acceptance (Popper, 1983, p. 230):

When do we—tentatively—accept a theory? Our answer is, of
course: When it has stood up to criticism, including the most
severe tests we can design; and more especially when it has done
this better than any competing theory.
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Further (Popper, 1959, p. 415; underlining added):

As to degree of corroboration, it is nothing but a measure of the
degree to which a hypothesis / has been tested... it is a measure
of the rationality of accepting, tentatively, a problematic guess,
knowing that it is a guess—but one that has undergone
searching examination.

This leaves only their tacit suggestion—paradoxical,
in view of their stress on tentative acceptance—that
uncorroborated theories, once uncritically accepted,
would somehow remain as background knowledge.
Presumably de Queiroz and Poe meant to include the
models used in likelihood methods as ‘‘traditional”
knowledge. Their suggestion, however, was based on
nothing but ignoring Popper’s comment that any part of
the background ‘“‘may be challenged at any time,
especially if we suspect that its uncritical acceptance
may be responsible for some of our difficulties.” Once
challenged—critically tested—either a theory will be
rejected, and so no longer accepted, or else it will be
corroborated, in which case its tentative acceptance will
no longer be uncritical. Any sincere attempt to eliminate
difficulties will thus lead to selecting realistic—corrob-
orated—background theories. de Queiroz and Poe’s
(2003) argument, then, amounted simply to the idea that
scientific investigation should not be sincere.

Indeed, that idea seems to have played a significant
role in the formation of de Queiroz and Poe’s (2003)
position, as can be seen from an earlier comment of
theirs (de Queiroz and Poe, 2001, p. 315):

According to Popper (1963, p. 238), “Few parts of the
background knowledge will appear to us in all contexts
absolutely unproblematic, and any particular part of it may
be challenged at any time, especially if we suspect that its
uncritical acceptance may be responsible for some of our
difficulties” (see also Popper, 1983, p. 188). The provisional
nature of background knowledge described by Popper allows
phylogeneticists to evaluate not only alternative topologies but
also alternative phylogenetic methods or models in terms of
degree of corroboration.

In 2001 they understood correctly’ that background
theories should be corroborated; it was only later that
they decided to ignore this part of Popper’s comments.
That shift was correlated with their treatment of my
(Farris, 2000; Farris et al., 2001) discussion, which de
Queiroz and Poe (2001) never mentioned, and which
called attention to the consequences of Popper’s accep-
tance requirement. When de Queiroz and Poe (2003) at
last mentioned Farris et al. (2001), they had to try to
hide the acceptance requirement in order to maintain
their commitment to existing likelihood methods. They
hoped to create the impression that their preference in

This is not to say that de Queiroz and Poe (2001) understood
Popper correctly in all respects. They certainly did not, as Siddall
(2001) has elegantly pointed out.

methods was consistent with Popper’s ideas, but of
course what they actually showed was just the opposite.

That commitment to existing likelihood methods also
seems to have underlain another part of de Queiroz and
Poe’s (2003) discussion. While otherwise they contended
that unrealistic models could be used as background
knowledge, there was one model to whose realism they
did object, and that was the one related to parsimony,
NCM (de Queiroz and Poe, 2003, p. 358):

At least for some kinds of data, the assumption of no common
mechanism seems more likely to be false. For example, for
pseudogenes and most third-codon positions in protein-coding
genes, where natural selection presumably does not affect the
rate of substitution, it seems reasonable to expect that trans-
formations in all characters have higher probabilities on
branches of long temporal duration than on those of short
temporal duration rather than the probabilities of change being
entirely independent of the temporal duration of branches.

It is not just their double standard and their attempt
to use their expectations in place of evidence that
occasion comment. Their conclusion depended on
inventing their own characterization of NCM (de
Queiroz and Poe, 2003, p. 358):

Under standard parsimony methods and likelihood models that
assume no common mechanism, different characters are
assumed not to evolve under the same evolutionary processes.

13

“Assumed not to,” they said, rather than ‘“‘not
assumed to.” This gave the impression that different
characters would be required to have different rates, and
the situation de Queiroz and Poe thought reasonable to
expect might not have satisfied that condition. But
Tuffley and Steel’s (1997, p. 597) own characterizations
were more lenient:

By “no common mechanism,” we mean that we may choose a
different vector of mutation probabilities for each character,
rather than requiring all of them to evolve according to a single
vector of mutation probabilities, as is usually the case.

And (Tuffley and Steel, 1997, p. 598):

By allowing a different vector [of rates] p for each character, we
are allowing different mechanisms to operate at each site, and
the characters may be said to evolve with “no common
mechanism.”

Different rates are allowed, not required, and “‘we may
choose a different vector”, not “‘we must”’. The rates may
be chosen with complete freedom, and this includes the
possibility that some of them are alike. Even if observed,
what de Queiroz and Poe thought reasonable to expect
would not refute Tuffley and Steel's NCM. It would seem
that de Queiroz and Poe, forced by their preference in
methods to use unrealistic models, were determined to
create the impression that parsimony would also require
an unrealistic model. That their claim itself depended on
an unrealistic (i.e. false) assertion about NCM does not
seem to have deterred them in the slightest.
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de Queiroz and Poe (2003) also objected to my 1983
paper; in fact they had two different objections. One was
(de Queiroz and Poe, 2003, p. 362):

These statements [by Kluge (2001)] are holdovers from an older
interpretation (... Farris, 1983) of how cladistic parsimony
methods conform with Popper’s falsificationist philosophy, an
interpretation that we argue is seriously flawed because it rests on
a questionable assumption not required by more recent interpre-
tations based on Popper’s degree of corroboration (... Farris
et al., 2001). Under the older interpretation, characters that are
incongruent with a particular phylogenetic hypothesis are viewed
as falsifiers of that hypothesis.

Presumably the purpose of this was to lure uninformed
readers into believing that my paper did not concern
relating parsimony to explanatory power. de Queiroz and
Poe (2003, p. 361) obviously did not believe that them-
selves, for their other objection involved explanation:

Farris’s [(1983)] conclusion rests on the questionable proposi-
tion that attributing similarities to inheritance explains those
similarities whereas attributing them to homoplasy does not
count as an explanation but only as a dismissal. On the
contrary, both postulated homologies and homoplasies are
explanatory in accounting for the occurrences of character
states in taxa. Hypotheses of homoplasy may be unparsimoni-
ous and ad hoc (under parsimony models), but that does not
make them nonexplanatory.

That comment seems to admit of two main possibil-
ities. One is that de Queiroz and Poe sincerely intended
to provide legitimate, scientific explanations for one or
more homoplasies. In that case my earlier observations
would apply, including (Farris, 1983, p. 10; quoted in
full above):

If external evidence favors the interpretation of homoplasy,
however, that hypothesis is not ad hoc.

Then the homoplasies in question would not be ad
hoc. But it is only ad hoc hypotheses of homoplasy that
are minimized when selecting a tree, so that de Queiroz
and Poe’s comment would not be relevant to my
procedure. The other possibility is that in calling
homoplasies explanatory, de Queiroz and Poe had in
mind some such stratagem as declaring, “That’s a
homoplasy. Well, that explains why the character is
that way!” In that case one might reasonably dismiss
their comment as effectively meaningless. It seems worth
noting, however, that if such ‘“‘explanations” were
accepted, there would be no reason not to accept such
other “explanations” as, ““That character departs in
respect Y from the tree. That explains why the character
is that way.” As that would apply equally well for any Y
and any tree, accepting such ‘“explanations” would
undermine the idea of identifying a most explanatory
tree even by maximum likelihood, for then the characters
would always be “explained” regardless of the tree. de
Queiroz and Poe’s comment, then, either meant nothing
whatever or else it undercut their own position.

Induction

Rieppel (2003), one of the remaining inductionists,
wanted to portray systematic methods as inductive
rather than Popperian. For this purpose he character-
ized “‘parsimony” as symmetrical in confirmation and
disconfirmation (Rieppel, 2003, p. 262):

Among those [trees], we choose the one that is supported or
confirmed by the largest number of congruent characters. This
most-parsimonious hypothesis symmetrically disconfirms alter-
native hypotheses to the degree that these are inconsistent with
the most-parsimonious hypothesis.

Of course ‘““largest number of congruent characters”
actually described clique methods, but in any case the
connection with induction was supposed to be (p. 262):

Inductive support works symmetrically, confirming or discon-
firming theories or hypotheses to a greater or lesser degree. An
empirically confirmed hypothesis A disconfirms a rival hypoth-
esis B to the degree to which B is inconsistent with A. So if x
confirms hypothesis A, y confirms hypothesis B, and if x carries
a greater evidentiary weight than y, then A is confirmed and B is
symmetrically disconfirmed. In contrast, Popperian falsification
works asymmetrically: If it occurs (if it is accepted that it has
occurred), it is conclusive.

But ““is conclusive” is not a contrast to “confirming A
disconfirms B”, it is simply a change of subject, and in
any event Popper’s approach is hardly limited to
conclusive cases. Indeed, as Popper (1959, p. 406)
explained:®

If i is confirmed or corroborated or supported by e so that
C(h, ¢) > 0, then (a) non-i is always undermined by e, i.e.
C(non-h, e) < 0, and (b) h is always undermined by non-e, i.e.
C(h, non-e) < 0.

This always holds, even when e is inconclusive.
Popper’s corroboration exhibits exactly the kind of
symmetry that Rieppel claimed as an exclusive feature of
induction.

In another attempt to separate parsimony from
Popper, Rieppel (2003, p. 263) contended:

The meaning of “‘explanatory power” as used by Farris (1983)
is not coextensive with the meaning as Popper used this term.

By that he meant, as it turned out three pages later
(Rieppel, 2003, p. 266; brackets in original):

For Popper, the class of (negated) observation statements a
theory entails constitutes its explanatory power (Laudan and
Leplin, 2002; note the difference from Farris’s, [1983] use of the
term). The empirical content of a theory increases with the
increasing number of (negated) observation statements it entails.

In Rieppel’s conception, then, my usage of “‘explan-
atory power” did not agree with Popper’s because

®In the interests of readability, I have changed Popper’s symbols for
hypothesis and evidence in this passage.
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Laudan and Leplin—who must have been selected for
this trait—used “‘explanatory power” for what Popper
called empirical content. That involved at best a
remarkable laxity of usage, as can be seen from one of
Popper’s (1963, p. 391) comments:

It can now be shown quite simply that the maximum degree of
the explanatory power of a theory, or of the severity of its tests,
depends upon the (informative or empirical) content of the
theory.

While explanatory power is certainly related to
empirical content, they are not the same concept, any
more than “‘speed” is the same concept as “speed limit”.
But even if someone else did manage to confuse the two,
that is no criticism of my position.

Rieppel (2003, p. 268) also tried to create the
impression that Popper’s “formalisms” could not be
used in science at all:

The recent systematics literature (... Farris et al., 2001...)
documents extensive use of Popper’s formalisms for degree of
corroboration, severity of test, etc. The concept of probability
used in these formalisms is that of logical probability, the
formalisms therefore are metalinguistic in nature ... In sum, the
formalisms of Popper are statements rendered in the language
of philosophy, not in the language of science; e stands to / not
in the relation of an observation to justified belief (hypothesis)
but in the relation of logical entailment.

So, one would think, Popper would not assess hypoth-
eses on the basis of observation. But that was merely a
deception. The whole point of Popper’s corroboration is
to assess hypotheses on the basis of observation, that is,
the results of tests (Popper, 1959, p. 415):

As to degree of corroboration, it is nothing but a measure of the
degree to which a hypothesis / has been tested ... it is a measure
of the rationality of accepting, tentatively, a problematic guess,
knowing that it is a guess—but one that has undergone
searching examination.

While his wording was less than explicit, Rieppel’s
aim in attributing logical probabilities to Popper while
citing Farris et al. (2001) can only have been to suggest
that Farris et al. were mistaken in using statistical
probabilities to evaluate corroboration, as I did before
(Farris, 2000) and above. That suggestion is itself
mistaken, as can easily be seen from Popper’s (1959)
discussion of calculating P(e) and P(e, ) when evalu-
ating C and E for a statistical hypothesis. Note that the
probabilities in this passage are written in unrelativized
form, that is, with no explicit background, so that P(e)
and P(e, h) correspond to p(e, b) and p(e, hb), respec-
tively, in the formulae seen earlier. The b in P(a, b) here
does not refer to background knowledge but to a
statistical population. Popper (1959, p. 410f) explained:

Now let /& be the statement P(a, b) = r and let e be the
statement ‘In a sample which has size n and which satisfies the
condition b (or which is taken at random from the population

b), a is satisfied in n(r+ 8) of the instances’. Then we may put,
especially for small values of 3, P(e) =~ 25. We may even put
P(e) = 29, for this would mean that we assign equal probabil-
ities—and therefore, the probabilities 1/(n + 1)—to each of the
n + 1 proportions, 0/n, 1/n,... n/n, with which a property a
may occur in a sample of size n... (The equidistribution here
described is the one which Laplace assumes in the derivation of
his rule of succession. It is adequate for assessing the absolute
probability, P(e), if e is a statistical report about a sample. But it
is inadequate for assessing the relative probability P(e, /1) of the
same report, given a hypothesis & according to which the
sample is the product of an n times repeated experiment whose
possible results occur with a certain probability. For in this case
it is adequate to assume a combinatoric, i.e. a Bernoullian
[binomial] rather than a Laplacean distribution.)... We there-
fore find that P(e,h) — P(e), and thus our functions E and C, can
only be large if 3 is small and » large.

Both the binomial distribution on possible sample
frequencies and the discrete uniform distribution
P(e) = 1/(n + 1) are obviously ordinary, statistical
probabilities, and just as obviously, such probabilities
can be used in calculating C and E. It is surprising that
Rieppel (2003) was unaware of this, considering that
Farris et al. (2001, p. 440) had quoted the same passage.

Finally, Rieppel et al. (2006, p. 186) maintained:

One [approach], the hypothetico-deductive method, proves a
bad fit with phylogenetic systematics because it requires an
excessively strong assumption of the relationship that obtains
between hypotheses of descent and the available evidence.

The assumption they had in mind was that phyloge-
netic hypotheses could be deductively assessed on the
basis of observed character distributions. In that case
homoplasy would have to be impossible, or else (Rieppel
et al., 2006, p. 188):

Only if independent criteria were available to reliably distin-
guish “true” synapomorphy from homoplasy would a Poppe-
rian form of falsificationism be applicable to systematics.

One reviewer of this paper regarded the alleged bad fit
as a “fundamental, and if true, devastating claim about
the relevance of Popper’s work to systematics”. That
was at best wishful thinking. My (Farris, 2000; Farris
et al., 2001) derivation, discussed above, uses Popper’s
formulac but does not require anything like the
assumption Rieppel et al. suggested. To actually show
something about the relevance of Popper’s work, an
argument would need at the least to consider the
relevant parts of Popper’s work. Among those relevant
parts are Popper’s use of statistical probabilities, and it
has already been seen how Rieppel (2003) avoided
considering that subject.

FCT

According to Faith (1992, 1999, 2004, 2006) and co-
authors (Faith and Cranston, 1992; Faith and Trueman,
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1996, 2001) Popperian corroboration could be assessed
by the PTP’test (of Faith and Cranston, 1991). The
Faith/Cranston/Trueman view (FCT) involved other
innovations as well. “Evidence” became degree of fit,
and “background knowledge” became a null model
(Faith, 1992, p. 268):

The test statement(s) or purported evidence, e, for the hypoth-
esis is the degree of cladistic structure found, as measured by the
length of the mpt [most parsimonious tree]. Thus, the test
statement is produced by the application of cladistic parsimony,
as a goodness-of-fit criterion, to the observed taxonomic data.

The background knowledge, b, reflects other provisionally
accepted explanations relating to how a given tree length could
result from such an analysis. Faith and Cranston (1991, 1992)
argue that this general background knowledge can be repre-
sented by a null model, in which the characters are free to co-
vary randomly.

While those revisions were presented as Popperian,
they seem to have had a further purpose, for they were
immediately applied as grounds for objecting to phylo-
genetic methods (Faith, 1992, p. 267):

Carpenter [(1992)] emphasizes cladistics’ underlying assumption
that common ancestry can explain shared features; this
assumption therefore might be interpreted as providing our
background knowledge [but] ... the mpt [most parsimonious
tree] is the least, not most. corroborated hypothesis based on
this limited view of background knowledge.

That application continued (Faith and Trueman,
2001, p. 342):

[Corroboration] p(e, hb)—p(e, b) as used in cladistics, (¢ = data)
implies only fit, whereas true corroboration requires consider-
ation of p(e, b) for e equal to fit itself.

Similarly (Faith, 2004, p. 5):

Suppose we have data, 4 and the assumptions of some
phylogenetic inference method, corresponding to a model, m.
Phylogenetic hypotheses selected to make p(h, dm) large are ad
hoc, having little empirical content because / offers little content
beyond the data plus the model.

But neither those criticisms nor the FCT revisions
themselves could be justified on legitimate Popperian
grounds, as will soon be apparent.

FCT relied on its own ‘corroboration” formula,
which Faith (1992) arrived at by replacing Popper’s C
with 1-p(e, b). To accomplish that he simply ignored the
denominator of C while maintaining that p(e, hb) would
always be unity (Faith, 1992, p. 268):®

7So called because in 1990 I suggested the name (an acronym for
“permutation tail probability”’; cf. Farris, 1996) in a conversation with
Faith. Faith and Cranston (1991) thereupon arrived at the PTP test by
renaming a test originally introduced by J. Archie in 1985 (see
Legendre, 1986, p. 137; cf. Archie, 1989). The method and the name
aside, however, the idea that PTP could assess corroboration was
entirely Faith’s own.

8Faith (1992, 1999) always dropped the italics from Popper’s p.

The more general expression of corroboration is a function of
p(e, h & b)—p(e, b)[sic]. However, the first term here is always
equal to 1: because e is the length of the most parsimonious tree
for these data, and / implies that a cladistic analysis of the data
was carried out, it follows that p(e, & & b) [sic] is equal to the
probability of obtaining a most parsimonious tree of the
observed length, given a cladistic analysis of the observed data,
and this must equal 1.

It will be seen later that such reasoning violates
Popper’s (1963, p. 288) rule for exclusion of ad hoc
hypotheses, but Faith ignored that rule just as he did the
denominator. Replacing C with 1-p(e, b) suited Faith’s
purposes because then PTP would seem to determine
“corroboration”, since he identified p(e, ) with PTP,
that is, with the tail probability from the PTP test
(Faith, 1992, p. 268):

A low probability, corresponding to p(e, b), [sic] and reflecting
by definition a degree of corroboration and boldness, is found if
the corresponding PTP value is low.

Of course, being a tail (cumulative) probability, PTP
could hardly be p(e, b) as the latter is a point probability,
but Faith (1992) ignored that problem as well. FCT
“corroboration” thus became what I shall denote Q:

0=1-PTP

But this leads at once to still another problem, for
Q is obviously a probability—the head probability
complementary to the PTP tail probability—and a
legitimate measure of corroboration cannot be a
probability, as Popper (1983, p. 243) emphasized:

For all satisfactory definitions—that is to say for all those
which are topologically equivalent to [the formula for C
above]—the following theorem holds: Degree of corroboration
is not a probability; that is to say, it does not satisfy the rules of
the calculus of probability.

The same problem would apply to 1-p(e, b) itself,
which is also a probability, p(non-e, b). Faith (1992)
ignored that problem too, nor did any advocate of FCT
ever address it.

But Faith and Trueman (2001) took another ap-
proach to justifying Q as ‘“‘corroboration”. As they
presented it, every step of turning Popper’s C into Q
followed from their fit assumption, their view that
“evidence”” meant fit. The fit assumption provided their
reason for discarding the denominator of C, as will be
seen later, and it also furnished their rationale for
maintaining that p(e, hb) must always be unity (Faith
and Trueman, 2001, p. 334):

ple, hb) = 1because h, as given, provides the observed level of fit.

They invoked the fit assumption once more to
defend identifying cumulative probability PTP with
Popper’s p(e, b). The latter, they explained, had to be
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a cumulative probability, precisely because “evidence”
meant level of fit (Faith and Trueman, 2001, p. 334):

ple, b) reflects the probability that ¢* [from a randomization]
will match e. Note e is indicated by the tree length, but, as
evidence, it implies that a level of fit has been achieved (*‘degree
of cladistic structure”, Faith, 1992); this evidence, therefore,
would be matched by any randomization that produced a fit as
good or better.

Finally, they appealed to the fit assumption again in
order to dispose of a problem created by identifying
“corroboration” with 1-p(e, b). The problem had been
pointed out by Carpenter et al. (1998, p. 107):

By pretending that p(e, hb) could be frozen at unity “so that the
first term can be ignored”, Faith (1992: 266) arrived at a
formulation [1-p(e, b)] that would absurdly make the ““‘corrob-
oration of /"’ independent of /.

1-p(e, b) would be independent of /& because (Farris,
1995, p. 115):

In Popper’s formula, p(e, b) is the probability of the evidence
given just the background, without the hypothesis. It therefore
makes no sense to say [as Faith (1992) did] that a certain /
makes p(e, b) highest (or lowest, for that matter).

But Faith and Trueman (2001, p. 336) explained:’

For the inclusive framework [FCT], p(e, b) varies among
hypotheses because evidence is based on fit.

Of course all that would have applied only if“‘evidence™
had been fit. To establish that “evidence” was fit, Faith
and Trueman (2001, p. 336f) offered an example:

Popper’s own writings document how evidence is linked directly
to the hypothesis of interest, for example, “In order to find a
good test statement e—one which, if true, is highly favorable to
h—we must construct a statistical report e...” (Popper,
1959:410). Far from the claim [by Farris (1995)] that “evidence
and hypothesis in his [Popper’s] formulae were meant to be
separate”, Popper presents examples where evidence is derived
from the hypothesis and argues that such a link is desirable. We
conclude that evidence e as goodness-of-fit derived by using tree
h provides a sensible Popperian test-statement.

Despite their mention of “examples’ this was the only
one they presented, and their one example consisted
entirely of the sentence fragment quoted here—the
ellipsis was theirs. As one might then suspect, the most
interesting aspect of their example was what they
omitted. That sentence fragment was extracted from
Popper’s (1959) discussion of statistical hypotheses, of
which the part concerning Popper’s calculation of P(e)
was quoted above in connection with Rieppel’s views,
and that part does not support Faith and Trueman’s

°As will be seen later, Faith and Trueman (2001) based their
“inclusive philosophical framework” on their supposition that cor-
roboration could be “decoupled” from falsification—an idea so
thoroughly mistaken that it seems best to avoid the term.

conclusions. In their view, recall (Faith and Trueman,
2001, p. 336; underlining added):

For the inclusive framework, p(e, b) varies among hypotheses
because evidence is based on fit.

In that case Popper’s evidence is certainly not based on
fit, for p(e, b) corresponds to P(e) and Popper’s
P(e) = 1/(n + 1) does not vary among hypotheses.
P(e) depends only on the sample size n, not on the
hypothesis /2, which is specified by the value of r in P(a,
b) = r.Farris (1995, p. 115; quoted above) and Carpenter
et al. (1998, p. 107; quoted above) were thus entirely
correct in pointing out that p(e, b) does not depend on /,
and that, consequently, 1-p(e, b) can hardly measure the
corroboration of 4. But then 1-p(e, b) could hardly be
corroboration in any case, being a probability.

The same example refutes the FCT identification of
PTP with p(e, b). According to Faith and Trueman
(2001), their fit assumption implied that p(e, ) must
be a cumulative probability. Yet Popper’s discrete
uniform distribution P(e) = 1/(n + 1) cannot possi-
bly be a cumulative probability and is plainly a point
probability, in which case cumulative probability PTP
cannot be identified with p(e, b). Indeed, Faith and
Trueman’s fit assumption itself is obviously false. On
that assumption p(e, b) would be a distribution on
degrees of fit. Yet Popper’s P(e) is clearly not a
distribution on degrees of fit, but is instead a
distribution on possible sample proportions, that is,
possible data. P(e) assigns the same probability “to
each of the n + 1 proportions, 0/n, 1/n, ... n/n, with
which a property ¢ may occur in a sample of size n”
(Popper, 1959, p. 411; quoted in full above).

Replacing Popper’s C with Q was thus entirely
unjustified, and Faith and Trueman’s (2001) fit assump-
tion was flatly incompatible with Popper’s concept of
evidence. But then how did Faith and Trueman
conclude just the opposite? Of course they avoided any
mention of how Popper calculated P(e), but that was not
the only relevant information that they omitted. Con-
sider their argument again and recall that the ellipsis in
the quotation was theirs (Faith and Trueman, 2001,
p. 336; quoted in full above):

Popper’s own writings document how evidence is linked directly
to the hypothesis of interest, for example, “In order to find a
good test statement e—one which, if true, is highly favorable
to h—we must construct a statistical report e...” (Popper, 1959,
p. 410).

What they quoted from Popper referred to identifying
a test-statement that, if true, would be highly favorable
to A, but they took the quotation to mean that “evidence
is linked directly to the hypothesis of interest” and that
(same page; quoted in full above):

Popper presents examples where evidence is derived from the
hypothesis.
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They argued, that is, as if “evidence’” would be just
the favorable-if-true test-statement itself. But in reality
evidence need not even be consistent with such a test-
statement, and in fact that was just what Faith and
Trueman’s ellipsis concealed, as is evident from Popper’s
(1959, p. 410) unabridged comments:

In order to find a good test-statement e—one which, if true, is
highly favourable to ~—we must construct a statistical report e
such that (i) ¢ makes P(e,1)—which is Fisher’s likelihood of /
given e—large, i.e. nearly equal to 1, and such that (ii) e makes
P(e) small, i.e. nearly equal to 0. Having constructed a test
statement e of this kind, we must submit e itself to empirical
tests. (That is to say, we must 7y to find evidence refuting e.)

A test-statement that, i true, would be highly
favorable to & is of course a prediction of 4, in particular
one for which P(e) is much smaller than P(e, /). But
making the prediction—formulating the favorable-if-
true test-statement—does not in itself produce evidence.
On the contrary, testing the prediction (and so the
hypothesis) requires empirical evidence—observa-
tion—and a sincere attempt to find observations that
refute that test-statement.

Faith and Trueman’s (2001) attempt to create the
impression that “evidence is derived from the hypoth-
esis” thus rested on using ellipsis to conceal the
distinction between prediction and empirical observa-
tion, so allowing the pretense that “evidence” consisted
of the predictions of a hypothesis. Of course that
pretense was absurd, but Faith and Trueman found it
useful because the idea that “‘evidence is derived from
the hypothesis” was connected to other aspects of FCT.
To support his claim that p(e, #b) must be unity, for
example, Faith (1992, p. 266) maintained that the
“evidence” would follow from % and b:

The first term [of C] is the probability of e given both / and b,
and will be unity when e follows from / and b. In the present
context, this will be the case (see below) [p. 268, quoted above],
so that the first term can be ignored.

If that were correct, “evidence” would be ‘“‘derived
from the hypothesis”. With an accurate reading of
Popper’s discussion, however, such connections instead
uncover further weaknesses of FCT. Thus the fact that
empirical evidence may refute a prediction of 4, directly
contradicts the FCT supposition that p(e, hb) must
always be unity, for as Popper (1983, p. 242) pointed out:

What about an empirical evidence ¢ which falsifies / in the
presence of »? Such an e will make p(e, hb) equal to zero.

Faith and Trueman relied on omission again in
objecting to what they portrayed as a claim of mine
(Faith and Trueman, 2001, p. 336; quoted in full above):

Far from the claim [by Farris (1995)] that “evidence and
hypothesis in his [Popper’s] formulae were meant to be
separate”, Popper presents examples where evidence is derived
from the hypothesis and argues that such a link is desirable.

What they did not mention was Popper’s reason for
keeping the hypothesis separate from the evidence,
although I had called attention to it (Farris, 1995, p. 115):

[Faith’s (1992, p. 267)] “p(e, h & b) = 1 for all »” means that
any tree /1 is supposed to make its length e certain, but in fact a
tree by itself has no such effect. A tree determines a length only
in combination with data... [Faith (1992)] has mixed the data
into the tree, ignoring Popper’s (1963, p. 288) warning, quoted
before, that including such ad hoc elements only makes
nonsense of “‘corroboration”.

This referred to Popper’s (1963, p. 288f) discussion of
ad hoc hypotheses:

My definition [of corroboration] does not automatically exclude
ad hoc hypotheses, but it can be shown to give most reasonable
results if combined with a rule excluding ad hoc hypotheses.
[footnote] This rule for the exclusion of ad hoc hypotheses may
take the following form: the hypothesis must not repeat (except in
a completely generalized form) the evidence, or any conjunctive
component of it. That is to say x = ‘This swan is white’, is not
acceptable as a hypothesis to explain the evidence y = ‘This
swan is white’ although °‘All swans are white’ would be
acceptable; and no explanation x of y must be circular in this
sense with respect to any (non-redundant) conjunctive compo-
nent of y.

If the data were included in the hypothesis, then the
hypothesis would obviously repeat a conjunctive com-
ponent of the evidence, violating Popper’s rule for
exclusion of ad hoc hypotheses. Popper’s example of
evidence, ‘This swan is white’, it may be added, shows
no sign of being a level of fit.

Faith and Trueman (2001) did not entirely repeat
Faith’s (1992) argument, but they did repeat his mistake.
They still identified e with fit and they still wanted to
conclude that (Faith and Trueman, 2001, p. 334):

ple, hb) = 1 because A, as given, provides the observed level of
fit.

How /1 was supposed to provide fit became clear on
the next page (Faith and Trueman, 2001, p. 335;
underlining added):

In the inclusive framework, the fit value interpreted as evidence
e follows from the nominated hypothesis, given the data and the
method defining fit.

Of course the fit value would follow from the hypoth-
esis given the data! But this would not imply p(e, hb) = 1
unless the data were included in the condition /b of that
conditional probability, and the FCT background con-
sisted just of the randomization null model. To arrive at
ple, hb) = 1, then, Faith and Trueman evidently planned
to include the data in the hypothesis /4 just as Faith (1992)
had done, again violating Popper’s rule for exclusion of
ad hoc hypotheses.

Faith and Trueman (2001) never addressed that rule;
neither did Faith (2004, 2006). Evidently they could deal
with that difficulty only by avoiding any reference to it.
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But then much the same applies to the rest of Popper’s
comments. The sentence fragment Faith and Trueman
presented as proof that Popper would agree with their
views is actually the beginning of a section that refutes
their assumptions that “evidence” would mean fit, that
Popper’s p(e, b) would depend on the hypothesis, that p(e,
b) would be a cumulative probability, that p(e, hb) would
always be unity, and that Q could be used in place of C.
Faith and Trueman were able to maintain their position
only because they avoided mentioning the relevant parts
of Popper’s discussion.

Tails

Nor was that situation atypical, as will be evident
from Faith and Trueman’s (2001) further defense of
their supposition that cumulative probability PTP could
be identified with Popper’s p(e, b). Farris et al. (2001)
made two observations on that subject. The first
involved likelihood (Farris et al., 2001, p. 439):

Because PTP is a cumulative probability, equating PTP with
ple, b) would mean that p(e, b) must also be a cumulative
probability; if so, then p(e,hib) would have to be a cumulative
probability as well, because p(e, hb) differs from p(e, b) only in
the added condition 4. Yet p(e, hb) cannot be a cumulative
probability, for it is a likelihood. Maximum likelihood estima-
tion procedures always maximize point probabilities or densi-
ties (see Lindgren, 1962), not cumulative probabilities.

The second has already been discussed (Farris et al.,
2001, p. 440):

[In Popper’s (1959, p. 410f) discussion of statistical hypotheses,
quoted above] P(e, h) is thus the Bernoullian (binomial)
probability of obtaining so many a’s with sample size n and
parametric frequency r. That is a point, not a cumulative,
probability and the same is obviously true of the discrete
uniform distribution P(e) = & = I/(n + 1).

No advocate of FCT ever addressed the second point,
but Faith and Trueman (2001), who had seen Farris
et al.’s manuscript before submitting their own paper, did
respond to the comment about likelihood—in a way.
They avoided any mention of p(e, hb) as likelihood while
“restating” the formula for C so that “p(e, hb)” was
turned into something else (Faith and Trueman, 2001,
p. 334):

Inclusiveness of the corroboration framework can be under-
stood by restating formula 1 for corroboration. Ignoring [the
denominator], the corroboration C of an hypothesis %, given
data d, fit-as-evidence e, method/model/assumptions m, and
background knowledge b, is:

C(h,e,b) = p[Fit(h,d,m), hb] — p[Fit(h,d,m), b]

That is, they gratuitously substituted “Fit (&, d, m)”
for Popper’s e in the numerator of C. Among possible

measures of fit (see their Table 1) they listed the
likelihood of the hypothesis, which they wrote as p(d,
hm), for the probability of data d given & and
“method/model/assumptions” m. Being a likelihood,
p(d, hm) would be a point probability, but—on their
view—the p in the formula for C instead denoted
cumulative probability, so that “p(e, hb)” would have
been a cumulative probability K(p(d, hm), hb) of a
likelihood value.

Of course their restated formula was sheer invention.
Nothing in Popper’s (1959, 1963, 1972, 1983) discussion
resembles Faith and Trueman’s (2001) formulation, and
their position is immediately seen to be vacuous, as
Popper’s p(e, hb)—that is, P(e, h)—is itself Fisher’s
likelihood (Popper, 1959, p. 410; braces and underlining
added):

{ In order to find a good test-statement e—one which, if true, is
highly favourable to /—we must construct a statistical report e }
such that (i) e makes P(e, i)—which is Fisher’s likelihood of /
given e—large, i.e. nearly equal to 1, and such that (ii) e makes
P(e) small, i.e. nearly equal to 0.

Again Faith and Trueman relied on ellipsis. The part
within braces is the sentence fragment that they (Faith
and Trueman, 2001, p. 336; quoted above) tried to use
as evidence that Popper would agree with them, whereas
the underlined part refutes their position. They avoided
that difficulty by the simple expedient of cutting Popper
off in mid-sentence.

Faith and Trueman (2001) employed their elliptical
quotation technique still again when discussing some
earlier comments that I (Farris, 1995) had made on the
cumulative probability issue. As they presented it, I had
misidentified PTP as a point probability (Faith and
Trueman, 2001, p. 333):

Farris (1995, p. 107) claimed that “Faith’s version of p(e, b) is...
the probability of obtaining the observed L [tree lengthJunder
the null model...”, and that PTP is equated with this quantity.
PTP, which is indeed equated with p(e, b), would then
correspond to calculating the permutation tail probability as
a point probability. However, in all its applications, PTP has
never been calculated as a point probability and indeed was
defined (Faith and Cranston, 1991, 1992) as a tail probability.

Note that the ellipses were theirs. It will be informa-
tive to compare their version with my actual comments
(Farris, 1995, p. 107):

Faith’s version of p(e, b) is then p(L, N), the probability of
obtaining the observed [tree length] L under the null model N.
That Faith equates logical probability [i.e. p(h, b)] with both
PTP and p(L, N) poses a difficulty in itself, for PTP can differ
greatly from p(L, N) in value, as will be illustrated later.

That illustration of the difference between p(L, N) and
PTP was included in my discussion of a further problem,
that Faith (1992) had substituted PTP for p(L, N)—i.e.
for p(e, by—when evaluating “corroboration” (Farris,
1995, p. 109):
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Substituting PTP for p(L, N) is simply bad statistics. PTP is a
tail (cumulative) probability, while p(L, N) is the probability of
a single value. The distribution from Farris (1991: 89) example
ONE illustrates the distinction:

L 4 5 6 7
P(L,N) 0.022 0.276 0.690 0.012
PTP 0.022 0.298 0.988 1.000

In view of this example and my observation that
“PTP is a tail (cumulative) probability’”’, it is not
possible that Faith and Trueman (2001) actually
believed that I had calculated PTP as a point probabil-
ity. Evidently they intended to mislead their readers, and
their purpose in this can only have been to conceal the
fact—which they never addressed—that cumulative
probability PTP cannot sensibly be identified with point
probabilities such as Popper’s p(e, b) and p(h, b).

I discussed Faith and Trueman’s (2001) use of ellipsis
in a paper that I presented at the 2001 meeting of the
Willi Hennig Society. Faith was also present, and
perhaps for that reason he later took a different
approach to defending the FCT position on cumulative
probabilities, seeming to confront the issue directly
(Faith, 2004, p. 6):

Farris et al. (2001) also argued that Popper used only point
probabilities, while a PTP test uses a tail probability. But the
discussion of the Neptune example illustrates how such a tail
probability is a natural part of any assessment of degree of
improbability of evidence that good (or better).

That directness proved illusory, for Faith never
addressed Farris et al.’s (2001, p. 239f; quoted above)
comments on likelihood and the obvious point proba-
bility P(e). Nor did he provide any explanation of how
he arrived at his own position (Faith, 2004, p. 4f):'

Popper (1959, p. 415) argues that logical probability can be
suggested by statistical material, and that the quantification of
probabilities and content statements that make up corrobora-
tion may depend on statistical considerations:

apart from those applications of probability theory in which we
can measure probabilities in the usual way (with the help of
either the assumption of equal probabilities as in dicing or with
the help of statistical hypotheses) I see no possibility of
attaching numerical values (other than zero or one) to our
measures of probability or content (Popper, 1963, p. 397).

This supports the interpretation of the PTP tail probability as
an indicator of the p(e, b) value critical to corroboration
assessment.

He seems to have drawn his conclusion about PTP
completely gratuitously, from a passage that does not

19popper’s (1963, p. 397) comment actually read ““0 or 1 instead of
‘“‘zero or one”.

mention tail probabilities at all and in fact concerns a
different subject.

Faith’s (2004) argument from the Neptune example
was even more obscure, as he cited Popper (1983)
without providing page numbers. Fortunately, Popper
(1983) mentioned Neptune in only three passages,
beginning with (Popper, 1983, p. 237):

For example, let e be the first observation of a new planet
(Neptune) by J. G. Galle, in a position predicted by Adams and
Leverrier, and let # be Newton’s theory upon which their
prediction was based. Then e certainly supports ~—and very
strongly so. Yet in spite of this fact e also follows from theories
which, like Einstein’s, entail non-/ (in the presence of b).

The support is strong because (Popper, 1983, p. 247):

Adams and Leverrier’s predictions, which led to the discovery
of Neptune, were such a wonderful corroboration of Newton’s
theory because of the exceeding improbability that an as yet
unobserved planet would, by sheer accident, be found in that
small region of the sky where their calculations had placed it.

That the object was a planet—was moving—is the
crucial point (Popper, 1983, p. 237):

Thus James Challis, to whom Adams had given the results of
his calculations, actually observed Neptune close to the
calculated orbit before Galle. But the star he saw did not seem
to move, and he did not think his observation sufficiently
significant to compare it with later observations of the same
region which would have disclosed its motion. The presence of
some unknown star of eighth magnitude close to the calculated
place, was in itself quite probable on his background knowledge
and therefore did not appear significant to him. Only that of a
moving star, a planet, would have been significant, because
unexpected—though not on Adam’s calculations.

How was this supposed to lead to PTP? According to
Faith (2004, p. 4):

The improbability involved a tail probability analogous to that
of PTP; Neptune was observed some x units from the predicted
place, but the evidence statement for Newton’s theory was the
observation of a planet that close—x units or less (not the
observation at exactly x units).

Yet Popper did not say “tail probability”, or “x units
or less”, or even ““x units from the predicted place™, but
that Neptune was observed “in a position predicted by
Adams and Leverrier”. The improbability that made for
strong corroboration, furthermore, had nothing to do
with tail probabilities, but arose instead from the fact
that Neptune was moving rather than stationary. Faith’s
conclusion was again purely gratuitous, merely an
attempt to put his own words into Popper’s mouth.

I called attention to Faith’s (2004) gratuitous conclu-
sion of tail probabilities in a paper that I presented at the
2004 meeting of the Societé Frangaise Systematique, in a
session at which Faith was also present. Perhaps for that
reason, Faith (2006) made no attempt to show by any
quotation, or even gratuitous paraphrase, that Popper
used tail or cumulative probabilities. In fact, although
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Faith (2006) still persisted in referring to PTP as assessing
corroboration, he never mentioned the cumulative prob-
ability issue. It would appear that he could no longer think
of any reason for his position.

The situation was no better for the FCT assumption
that “evidence” meant fit, Faith’s (2004) defense of
which was also based on the Neptune example (Faith,
2004, p. 4):

The evidence for Newton’s theory was a measure of the degree
of fit of observations to the hypothesis and corroboration
depended on a judgment that this evidence was improbable
without the hypothesis.

This was still another gratuitous interpretation, for
Popper (1983, p. 237; quoted in full above) said that the
evidence was the position of a new planet:

For example, let e be the first observation of a new planet
(Neptune) by J. G. Galle, in a position predicted by Adams and
Leverrier, and let 7 be Newton’s theory upon which their
prediction was based.

Once more Faith simply substituted his own words
for Popper’s, as indeed became even more obvious in the
2006 version of his comments (Faith, 2006, p. 555):

In one such example, the hypothesis was Newton’s theory and
the evidence was the observation of a new planet, Neptune, in a
position close to [sic] that predicted by the hypothesis. Thus, the
evidence was given by goodness-of-fit of observations to the
hypothesis.

Faith’s argument amounted to a play on words. He
found an example in which the evidence did fit the
hypothesis and portrayed that as meaning that “evi-
dence” was fit! But it would have been harder for plays
on words to obscure the information to which Farris
et al. (2001, p. 440) called attention:

Popper’s (1959, p. 410f; quoted above)] P(e) and P(e, h) are
simply distributions on the number of a’s in a sample of n
independent observations, not on any variable that could be
regarded as a measure of fit. Identifying evidence with fit, in fact,
directly violates a rule that Popper (1972, p. 288) discussed while
emphasizing the importance of avoiding ad hoc hypotheses:
[Popper’s rule for exclusion of ad hoc hypotheses, quoted above].

Accordingly, no advocate of FCT ever addressed those
points. Again, FCT could be maintained only by avoiding
mention of the relevant parts of Popper’s discussion.

Unity

Faith and Trueman (2001) also tried to defend their
assumption that p(e, hb) must be unity. Farris et al.
(2001, p. 439) had refuted that assumption by quoting
Popper (1983, p. 242):

What about an empirical evidence ¢ which falsifies / in the
presence of »? Such an e will make p(e, hb) equal to zero.

Faith and Trueman’s response consisted of never
mentioning Popper’s actual comment and substituting
their own version (Faith and Trueman, 2001, p. 335):

Popper (1959) sees low corroboration as corresponding to some
degree of falsification of /1 exactly when e is “negative” evidence
interpretable as falsifying /4. On such occasions, p(e, hb) is <0,
but p(e, b) typically is positive, and we have negative values for
corroboration given by p(e, hb) — p(e, b).

Their version was complete nonsense, as no proba-
bility can be <0. It seems remarkable that the author of
a significance test would have been unaware of that fact.

Fixing p(e, hb) artificially at unity leads to a difficulty
that I have pointed out before (Farris, 1995). As PTP
cannot exceed unity, setting p(e, #b) = 1 in FCT
“corroboration” Q = 1-PTP means that Q cannot be
negative. But according to Popper (1983, p. 241):

If e supports / (given the background knowledge /) then C(#, e,
b) is positive. If e undermines / (so that non-e supports /) then
C(h, e, b) is negative. If e does neither, so that it is independent
of & in the presence of b, then C(h, e, b) equals zero.

If interpreted as if it were Popper’s C, then, Q could
never have indicated unfavorable evidence. Faith and
Trueman (2001) did not acknowledge this problem
directly, but they did propose what might have seemed
to be a solution. Their fit assumption, they explained,
would imply that evidence would always be favorable,
with the added benefit that the denominator of C could
be dispensed with (Faith and Trueman, 2001, p. 335):

When the evidence considered for phylogenetic trees is always
positive (as it is for goodness-of-fit measures: trees differ only in
how good is the goodness-of-fit), the standardization function
[denominator] in formula 1 [for C] can be ignored.

This would not have been limited to trees. The same
would have applied whenever “evidence” could be
equated to fit, and—on the FCT view—that would have
included every field from which Popper had ever drawn
an example. Now it was no longer a defect that fixing
ple, hb) at unity would prevent recognition of unfavor-
able evidence, because there was no longer such a thing
as unfavorable evidence!

Faith and Trueman attributed great importance to
that idea. In their conception, doing away with unfa-
vorable evidence—and so with falsification—allowed a
“decoupled” interpretation that would provide the basis
for a whole new approach, an “inclusive philosophical
framework” (Faith and Trueman, 2001, p. 331):"

We defend and expand our earlier proposal for an inclusive
philosophical framework for phylogenetics, based on an inter-
pretation of Popperian corroboration that is decoupled from the
popular falsificationist interpretation of Popperian philosophy.

"“Expand our earlier proposal for an inclusive philosophical
framework™ was a pure example of revising history. No previous FCT
paper had mentioned an “inclusive framework”.
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In the process it decoupled their approach from
Popper’s (1983, p. 188):

Our tests are attempted refutations; [they] are designed—de-
signed in the light of some competing hypothesis—with the aim of
refuting, if possible, the theory which we wish to test.

This is entirely incompatible with the supposition that
evidence can only be favorable, for obviously there can
be no sincere attempt at refutation unless it is logically
possible to obtain evidence against the hypothesis being
tested. The same conflict means that Faith and Tru-
eman’s idea, considered as a description of Popperian
corroboration, was patently false. If evidence were
always favorable, Popper would never have regarded
any hypothesis as refuted, whereas (Popper, 1963, p.
242):

An example is the marvelous theory of Bohr, Kramers and
Slater of 1924 which, as an intellectual achievement, might even
rank with Bohr’s theory of the hydrogen atom of 1913. Yet
unfortunately it was almost at once refuted by the facts—by the
coincidence experiments of Bothe and Geiger.

And (same page):
Even Newton’s theory was in the end refuted.

Further (Popper, 1963, p. 239):

An excellent recent example is the rejection, in atomic theory, of
the law of parity; another is the rejection of the law of
commutation for conjugate variables.

Indeed (Popper, 1959, p. 131):

The unequivocal negative result which Kepler reached by the
falsification of his circle hypothesis was in fact his first real
success.

But even beyond being obviously false, Faith and
Trueman’s (2001) position was literally paradoxical. As
was seen earlier, evidence favorable to & must be
unfavorable to non-#, and conversely (Popper, 1959,
p- 406):

If i is confirmed or corroborated or supported by e so that
C(h, ¢) > 0, then (a) non-i is always undermined by e, i.e.
C(non-h, e) < 0, and (b) h is always undermined by non-e, i.e.
C(h, non-¢) < 0.

In that case it is clearly impossible for evidence to be
always favorable.

Although that property of Popperian corroboration
had been pointed out before, by Carpenter et al.
(1998),'* Faith and Trueman (2001) never addressed

2Carpenter et al. (1998) were commenting on the position of Faith
and Trueman (1996), which was just the opposite of Faith and
Trueman’s (2001) in this respect, but just as paradoxical. According to
Faith and Trueman (1996, p. 582), “In fact, both monophyly and
nonmonophyly hypotheses could be falsified.” When the observed
value for D falls in the middle of the distribution of difference values
(Fig. 2), both hypotheses would be falsified.”

the paradoxical nature of their position. Nor did Faith
(2004, 2006),"* but by then he had already abandoned
the decoupled interpretation. This emerged in Faith’s
response to Rieppel (2003), who at least was aware that
Faith and Trueman’s (2001) position was inconsistent
with Popper’s (Rieppel, 2003, p. 269; braces added):

Faith and Trueman (2001:331) escaped from large parts of what
I have explained because they explicitly decoupled corrobora-
tion from “‘the popular falsificationist interpretation of Poppe-
rian philosophy” (rendering it Popper*: Faith, 1999). Thus, the
meaning with which Popper used the concept of degree
of corroboration cannot be coextensive with the meaning
bestowed on that concept by Faith and Trueman (2001;
see remarks above on semantic analysis)... {Popper linked
corroborability to testability (Popper, 1983, p. 245) and stated
that ““scientific tests are always attempted refutations’ (Popper,
1983, p. 243). For him, corroboration was thus embedded in a
falsificationist context.}

Faith (2004) did not mention the first part of Rieppel’s
discussion—the part that described Faith and Trueman’s
(2001) views—but cited only the comment within the
braces. To that comment he replied (Faith, 2004, p. 7):

In response, I note first that the focus of the inclusive
framework on corroboration does not deny falsification. But
more importantly, it does link corroboration emphatically to
tests as attempted refutations.

Now the “inclusive framework™ did not involve
decoupling corroboration from falsification! While
hardly presented as such, this was in fact a retraction.
Or rather it was an erasure, for Faith (2004, 2006) never
mentioned the decoupled interpretation or Faith and
Trueman’s (2001) idea that evidence would always be
favorable. Nor, accordingly, did Faith (2004, 2006) any
longer mention the underlying reason for those ill-
considered proposals, his (Faith, 1992) erroneous sup-
position that p(e, ib) must always be unity.

Admitting that p(e, hb) can vary led to new problems
for FCT. Like Faith and Trueman (2001, p. 335; quoted
above) Faith (2004, p. 6) still wanted “‘evidence” to
mean fit:

In the inclusive framework, evidence e typically follows from
the nominated hypothesis, as a statement of that hypothesis’ fit
to some observed data.

As before, if e followed from 4, then p(e, hb) would be
unity. Consequently, while he certainly did not admit it
explicitly, by abandoning his claim that p(e, #b) must be
unity, Faith (2004) contradicted his view of “evidence”.

BExcept that Faith (2004, p. 9) tried to change history: “In de
Queiroz and Poe’s criticisms of PTP as corroboration assessment, low
corroboration of / is claimed to necessarily imply high corroboration
of a not-h hypothesis. However, both hypotheses could have low
Popperian corroboration, based on the current evidence (Faith and
Trueman, 1998 [sic/—it should be 1996] present a simple example).”
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Faith (2004, p. 2) also still wanted to interpret PTP as
assessing corroboration:

PTP tests (Faith, 1990; Faith and Cranston, 1991) provide one
example of corroboration assessment, in using background
knowledge based on random character covariation and evi-
dence based on fit from application of cladistic parsimony.

Of course that idea rested on misidentifying PTP with
ple, b), but it also involved neglecting p(e, hb). In Faith’s
(1992, p. 266; quoted in full above) original argument,
this was supposed to be justified by the claim that p(e,
hb) would always be unity, ““so that the first term can be
ignored”. But as Faith (2004, 2006) no longer contended
that p(e, hb) would always be unity, some new reason for
ignoring p(e, hb) would now have been required. Yet he
suggested no such reason, and in fact he did not even
mention the issue. It seems that one was now supposed
to ignore Popper’s p(e, hb) purely on faith.'*

Background knowledge

Because PTP is calculated under a randomization null
model, identifying PTP with p(e, b) would require
identifying that null model with background knowledge
b, and accordingly Faith (1992, p. 268) did so:

The background knowledge, b, reflects other provisionally
accepted explanations relating to how a given tree length could
result from such an analysis. Faith and Cranston (1991, 1992)
argue that this general background knowledge can be repre-
sented by a null model, in which the characters are free to co-
vary randomly. The corresponding null hypothesis is that the
observed test statement (degree of cladistic structure) [tree
length] could have been produced easily under only the
assumptions of the null model.

Faith (1992) modeled his ““provisionally accepted” on
Popper’s acceptance requirement for background theo-
ries, discussed above, but apparently he did not realize
the implications of that requirement. After I pointed out
(Farris, 1995, p. 113) that the randomization null model
is hardly what anyone could consider an accepted theory,
“provisionally accepted” was dropped from later FCT
formulations (Faith and Trueman, 2001, p. 333):

Background knowledge b presents other ways to account for
seemingly positive evidence-as-fit.

Similarly (Faith, 2004, p. 3):

Background knowledge is not the method’s assumed way of
explaining the data (e.g. descent with modification), but the

“In a presentation at the 2004 meeting of the Societé Frangaise
Systematique, Faith showed Popper’s formula for corroboration in
what is often called a wardslide—a slide with a black background, the
first term p(e, hb) in nearly invisible dark red, and the rest of the
formula in brilliant white. He explained that one should concentrate
on p(e, b) and think of p(e, hb) as “just going away”.

potential multitude of other possible explanations for our
observations.

As one might expect from this, Faith and Trueman
(2001) never addressed Popper’s acceptance require-
ment. Neither did Faith (2004, 2006), except that he did
mention the subject in just one passage. There he
defended his choice of background by citing other
discussions (Faith, 2004, p. 6):

Farris et al. (2001) wrongly assumed that background knowl-
edge must be only well-corroborated theories (with the intended
consequence that the null model as used in PTP would be
disallowed). This error has been countered in the clarifications
and examples above (see also Faith and Trueman, 2001).

In fact those other discussions did not exist.

Naturally Faith would have been aware that the PTP
null hypothesis is rejected at a high significance level in
almost all real cases, but he wanted to retain the FCT
view of background knowledge nonetheless. As a way to
keep the null model in b, he resorted to the idea that the
null model—Dbut not the null hypothesis—would be in the
background (Faith, 2004, p. 6):

de Queiroz and Poe (2001) argued that the PTP test tests a null
hypothesis, and so this null hypothesis cannot be part of
background knowledge, which, according to Popper, is not
tested during corroboration assessment. Faith and Trueman
(2001) pointed out that, aside from confusing a null model
(which is part of b) with a null hypothesis (which is not), the
word test in the PTP test is not intended as the test (production
of an evidence statement) of Popperian corroboration.

But this put the wrong quantity in the background. PTP
is the Type I error rate (o value) for rejecting the null
hypothesis (see Farris, 1991), which is to say that PTP is
the tail probability for the observed tree length (which
Faith called ¢) given the null hypothesis. Identifying PTP
with p(e, b)y—as Faith wished—would then require, if
anything, identifying b with the null hypothesis. Even if it
were otherwise sensible, furthermore, putting the null
model—but not the null hypothesis—in the background
still would not save the background from rejection. As the
distribution of tree lengths used in Faith’s (1992, p. 286;
quoted above) null hypothesis was derived from the
random character covariation of his null model, rejecting
that null hypothesis would logically mean rejecting the
null model as well. If the null hypothesis/model is
rejected, finally, it scarcely matters whether the rejection
is called ‘““production of an evidence statement”. As
Faith’s proposed distinction thus seems to contribute
nothing but confusion, I will ignore it.

Rejection is not the only impediment to regarding the
null model as background knowledge. There is a further,
distinctive drawback (Farris, 2000, p. 387):

Suppose that the background b included the randomization
model R. Then, since (according to R) data matrix ¢ would be
entirely independent of tree /1, the probability of e given both &
and b would be just the probability of e given b. That is, p(e, hb)
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would equal p(e, b), so that C(h, e, b) would be identically 0.
Thus there would be no corroboration: given R, the “evidence”
e would be irrelevant to [independent of] 4. This should hardly
be surprising; after all, the premise of R is that there is no
connection between characters and phylogeny.

E(h, e, b) would be identically 0 for the same reason.
This and related difficulties have been pointed out
repeatedly (Farris, 1995; Carpenter et al., 1998; Farris
et al., 2001), but no FCT advocate ever addressed the
problem. Faith and Trueman (2001), however, seemed
to have a solution—in the same sense that their
decoupled interpretation was a solution. They main-
tained that background knowledge should be chosen to
maximize p(e, b) (Faith and Trueman, 2001, p. 340):

We must try through nomination of background knowledge to
make p(e, b) high.

This would generally have minimized corroboration,
and it would always have done so on their view, in which
“corroboration” was just 1-p(e, b). Thus (Faith and
Trueman, 2001, p. 341):

Corroboration assessment is not a search for the right combi-
nation of evidence and background knowledge to achieve a low
probability [p(e, b)]; it is about challenging apparently good
evidence by searching for background knowledge that might
imply that the evidence was probable anyway.

According to Faith and Trueman, then, it would have
been desirable to pick the background to eliminate
corroboration whenever possible—and it would always
have been possible for them, as they were willing to
include even rejected null models in background
“knowledge!

But then how did Faith and Trueman justify picking
the background to minimize corroboration? As they
presented it, the idea was Popper’s (Faith and Trueman,
2001, p. 340):

Popper advocates varying background knowledge, given that
any improbability of the evidence is to be achieved despite our
best efforts to find background knowledge that shows e to be
probable even without /1 (1963:238; his italics):

While discussing a problem we always accept (if only
temporarily) all kinds of things as wumproblematic: they
constitute for the time being, and for the discussion of this
particular problem, what I call background knowledge.

Further (1983:188; his italics),

this background knowledge is usually varied by us during the
tests, which tends to neutralize mistakes that might be
involved in it.

This was only another gratuitous interpretation.
Neither of those comments of Popper’s mentions min-
imizing corroboration. On the contrary, according to
Popper (1963, p. 288; underlining added):

The total evidence e is to be partitioned into [evidence part] y
and [background part] z; and y and z should be so chosen as to

give C(x, y, z) the highest value possible for [hypothesis] x, on
the available total evidence.

Obviously the background is not chosen to minimize
corroboration.

Faith (2004) still maintained that background knowl-
edge should be chosen to minimize corroboration, and he
adopted two premises that—if true—would have jointly
supported that position. The first, as noted earlier, was
that background knowledge would comprise “‘other
possible explanations” (Faith, 2004, p. 3; quoted in full
above). The second was that other possible explanations,
if found, would preclude corroboration (Faith, 2004, p. 3):

Suppose that some apparent positive evidence for an hypothesis
has been put forward. To judge how well that evidence supports
the hypothesis, we can try to explain that evidence away, that is,
account for it by possible explanations other than the hypothesis
of interest. If, and only if, we fail we can say that the hypothesis
has gained Popperian corroboration from that evidence.

Both of Faith’s premises were mistaken. The error
embodied in the second, in fact, was the point of
Popper’s (1983, p. 237; underlining added) first comment
on Neptune:

For example, let e be the first observation of a new planet
(Neptune) by J. G. Galle, in a position predicted by Adams and
Leverrier, and let 4 be Newton’s theory upon which their
prediction was based. Then e certainly supports s~—and very
strongly so. Yet in spite of this fact e also follows from theories
which, like Einstein’s, entail non-/ (in the presence of b).

Faith (2004) again relied on omission. While he cited
the Neptune example himself, he never mentioned the
underlined sentence. Indeed, Faith (2006) expanded on
that omission, going on to claim that same example as
support for his position. Again using the idea that
strong corroboration requires low p(e, b), he argued
(Faith, 2006, p. 555):

In systematics, this improbability [low p(e, b)] can be inter-
preted to mean that it is difficult to explain-away an achieved
degree of fit by other factors (background knowledge). Thus,
improbable evidence is evidence that cannot easily be accounted
for by some other explanation. This twofold claim as a basis for
the inclusive framework—that evidence can be goodness-of-fit,
and that improbability of evidence reflects the failure of
possible alternative explanations for the evidence—is well
supported by Popper’s own examples. In one such example,
the hypothesis was Newton’s theory and the evidence was the
observation of a new planet, Neptune, in a position close to that
predicted by the hypothesis.

It seems noteworthy that Faith (2006) gave no
citation for Popper’s (1983, p. 237; quoted above)
discussion of Neptune, so providing his readers with
no means of finding Popper’s actual comments. Popper
certainly did regard the observed position of Neptune as
improbable given the background alone, but this does
not mean ‘‘failure of possible alternative explanations
for the evidence”. That evidence is also explained
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perfectly well by Einstein’s theory—as Popper noted in
the underlined sentence.

Faith (2006, p. 555) invoked the same example to
defend his supposition that background knowledge
would consist of “other possible explanations’:

This corroboration [of Newton’s theory] therefore depended on
a judgment that the evidence, given by a measure of the degree
of fit [!] of observations to the hypothesis, was improbable given
only background knowledge concerning other possible expla-
nations, including elements of chance.

Like many of his conclusions, this one was purely
gratuitous. Popper’s (1983, p. 237, 247; quoted above)
discussion of Neptune includes no mention whatever of
the idea that background knowledge consists of “other
possible explanations”, and in fact background knowl-
edge cannot comprise “other possible explanations™.
Any sincere effort to find other explanations would have
to consider theories other than the hypothesis of interest
h. When there are such theories (Popper, 1983, p. 188):

We always try to discover how we might arrange for crucial
tests between the new hypothesis under investigation—the one
we are trying to test—and some others. This is a consequence of
the fact that our tests are attempted refutations; that they are
designed—designed in the light of some competing hypothe-
sis—with the aim of refuting, if possible, the theory which we
wish to test. And we always try, in a crucial test, to make the
background knowledge play exactly the same part—so far as
this is possible—with respect to each of the hypotheses between
which we are trying to force a decision by the crucial test.

The test should be designed to refute / if possible. But
the background knowledge should be neutral in the
choice between / and competing theories—explana-
tions—and in that case it can hardly consist of the other
explanations. As Popper (1983, p. 236) emphasized:

It is important to realize that » must be consistent with /; thus,
should we, before considering and testing 4, accept some theory
I, which, together with the rest of our background knowledge
is inconsistent with /, then we should have to exclude 4’ from
the background knowledge b.

Actually Faith (2004, p. 6) was aware of that; he
quoted part of the same passage, as did Faith and
Trueman (2001, p. 335). Yet they still contended that
they could include their null model in background
knowledge under “other explanations” (Faith and
Trueman, 2001, p. 335):

Background knowledge, 4 (and the corresponding null hypoth-
esis), does not assume that / is false; rather, it assumes that the
observed evidence may have other explanations than having
been generated under a true A.

But this was mere double-talk, for it was a self-
contradiction. If, as they said, “generated under a true #”
would be an explanation of the observed evidence, then
E(h, e, b) would be positive, and for a good explanation
E(h, e, b) would be close to unity, its maximum value. But

if the null model were in the background, E(#, e, b) would
instead be zero, as was seen above.

The idea that background knowledge would consist of
“other explanations” was never based on any comment
of Popper’s but was instead entirely Faith’s own creation,
an outgrowth of his insistence that PTP would assess
corroboration. PTP began as an ordinary significance
test, in which the null hypothesis of randomness might be
rejected in favor of the alternative hypothesis of struc-
tured data. But when Faith (1992) tried to turn Popper’s
ple, b) into PTP, he had to identify the null hypothesis
(“model””) with b. As that mistake put one of the
competing hypotheses in ‘“‘background knowledge”,
Faith then had to pretend that background knowledge
consisted of “other provisionally accepted explana-
tions”’! Faith’s need to defend his ill-founded identifica-
tion of b with his null model also led to the other claims
reviewed above—that the null model is not really rejected
even when the null hypothesis is rejected; that rejected
models may nonetheless be “background knowledge”;
and that eliminating corroboration is desirable! It might
have been more productive if Faith had tried some other
way to relate statistics to corroboration.

Corroboration

It is not difficult to relate statistics to corroboration
(Farris, 2000; Farris et al., 2001), as was seen at the
beginning of this paper, but that solution was unaccept-
able to advocates of FCT. Faith and Trueman
responded much as has been seen before, by not
mentioning my actual comments and presenting their
own version (Faith and Trueman, 2001, p. 337):

Suppose we were to equate corroboration with Fit, (Table 1)
[p(d, hm) — p(d, m)], which has the same basic form as the
corroboration formulae. For any specific fit criterion and any
data, p(e, hb) = p(d, hm) will be high for the best-fit tree and
ple, b) = p(d, m) will be constant over all # and ignored. Any fit
criterion could create “corroborated” hypotheses under this
scheme; all methods could gain this supposed Popperian
justification.

No, only methods based on accepted—realis-
tic—background theories would be justified, and there
are very few of those. Again Faith and Trueman’s
argument was based only on avoiding any mention of
relevant parts of Popper’s discussion and my own.

Any derivation that led to ordinary phylogenetic
methods would have been objectionable to advocates of
FCT, as the very use of data as evidence would, they
said, preclude ‘“‘true” corroboration (Faith and Tru-
eman, 2001, p. 342):

ple, hb) — p(e, b) as used in cladistics, (¢ = data) implies only
fit, whereas true corroboration requires consideration of p(e, b)
for e equal to fit itself.
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Or alternatively, as Faith (2004, p. 10) maintained:

However, p(data, hb) will always be less than p(data, b) because
the more general model can always fit the data at least as well
(remembering that good fit means high probability, p). Thus,
corroboration with data as evidence would appear to be zero or
negative.

As seen earlier, in his discussion of statistical hypoth-
eses, Popper (1959, p. 410f; quoted above) calculated C
using a sample proportion—data—as evidence. Faith
and Trueman’s (2001) position would thus have implied
that Popper’s own example of corroboration would not
be “true” corroboration! As for Faith’s (2004) version,
recall an illustration given by Farris et al. (2001, p. 441)
but never mention by Faith. In the situation of Popper’s
discussion, take r = 0.5, n = 1000, and the observed
count of property a to be 500. Applying the formulae,
C is then +0.9238 so that Faith’s claim is obviously
false.

Faith (2004) also contended—much like Rieppel
(2003, p. 268; quoted above)—that the probabilitics
used to calculate corroboration could not be probabil-
ities of truth, a category that would include the statistical
probabilities used in my (Farris, 2000; Farris et al.,
2001) derivation. Employing such probabilities, he
warned, would lead to verificationism, and that peril
could only be avoided by using logical probabilities
instead. To show why probabilities of truth would
be unsuitable, Faith (2004, p. 5) began with Bayes’
Theorem:

These logical probabilities satisfy the usual probability calculus,
including Bayes’ Theorem [p(h, eb) = p(e, hb)p(h, b)/p(e, b)].
Given that corroboration implies that p(e, hb) is greater than
ple, b), Bayes’ Theorem implies that corroboration also is
reflected in the magnitude of p(h, eb)/p(h, b).

As support for that conclusion he provided a quota-
tion from Popper (Faith, 2004, p. 5):

According to Popper:

‘the logical probability of a hypothesis /, relative to the
evidence e, also increases with the absolute improbability of
¢’ (Popper, 1983, p. 248; changed to his usual notation).

Faith (2004, p. 5) then argued:

This greater probability of / as a consequence of corroboration
raises important issues, given that Popper attempts to avoid the
‘verificationist’ process of seeing accumulated evidence for an
hypothesis as indicating a greater probability of its truth.
Popper (1983) explains that the greater probability associated
with corroboration is a statement only about that portion of the
content of /4 accounted for by the evidence. The consequent
high p(h, eb) is not interpretable as a high probability that / is
true, it only reflects a change in content of /1 (see also Faith and
Trueman, 2001). That argument countering any charge of
verificationism depends on logical probabilities. If the same
corroboration formulae were to use probabilities that are
interpretable as probabilities of truth, then there would be
verificationism in the consequent higher value for p(h, eb).

But obviously Popper saw nothing wrong in using
statistical probabilities to calculate corroboration, for he
did so himself in his discussion of statistical hypotheses
(Popper, 1959, p. 410f; quoted above). To create a
different impression, Faith again relied on omission,
leaving out the part of Popper’s explanation, here
underlined, that did not suit FCT purposes. Unlike
Faith’s version, Popper’s (1983, p, 248; underlining
added) own comment made provision for the case in
which the hypothesis has zero probability:'>

The logical probability of a hypothesis 4, relative to the
evidence e, also increases with the absolute improbability of e,
provided the absolute logical probability of /1 was not zero, and
that e was derivable or predictable by A.

That case is of particular importance because (Pop-
per, 1983, p. 243):

Interesting scientific theories have always a negligible (if not
zero) probability—including those which are at present gener-
ally accepted.

But when p(h, b) = 0 corroboration does not increase
the probability of 4, nor is it true that “‘corroboration
also is reflected in the magnitude of p(h, eb)/p(h, b)”. It
is readily seen from Bayes’ theorem

p(hveb) :p(ev hb)p(h,b)/p(e, b),

that if p(h, b) = 0 then p(h, eb) = 0, and then p(h,
eb) = p(h, b) regardless of the value of C. For example,
if

p(h,b) = 0,p(e,b) = 0.001, p(e, hb) = 0.1,

p(h, eb)/p(h,b) = 0/0is not even well defined, and even
though corroboration C(h, e, b) = 0.98 is strong, p(h,
eb) = p(h, b). It is this characteristic of scientifically
interesting theories that is the reason why Popper did not
see “‘accumulated evidence for an hypothesis as indicating
a greater probability”. The reason has nothing to do with
the idea that logical probabilities are not probabilities of
truth, and in fact that idea was a figment of Faith’s
imagination, as Popper (1983, p. 243) made clear:

Thus, I do not deny that the logical interpretation of proba-
bility, or the probability of statements, may be said to give the
degree of probability, or likelihood, or chance, of a statement to
be true.

Faith (2004) completely misrepresented Popper’s way
of avoiding verificationism. Popper’s approach is not
based on attributing some peculiar meaning to “‘prob-
ability”, but instead on the realization that high
probability is a poor guide for selecting hypotheses
(Popper, 1959, p. 399):

5T have changed Popper’s symbols to /1 and e to ease comparison
with Faith’s (2004, p. 5) partial quotation.
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Science does not aim, primarily, at high probabilities. It aims at a
high informative content, well backed by experience. But a
hypothesis may be very probable simply because it tells us
nothing, or very little. A high degree of probability is therefore
not an indication of goodness.

And (Popper, 1963, p. 248):

While the verificationists or inductivists in vain try to show that
scientific beliefs can be justified, or, at least, established as
probable (and so encourage, by their failure, the retreat into
irrationalism), we of the other group have found that we do not
even want a highly probable theory.

Faith should have known that, since he had once
quoted the first of those passages himself (Faith, 1992, p.
266). But there is another connection between verifica-
tionism and Faith’s (2004) discussion. It can be seen
from Popper’s explanation of the drawbacks of a
conceivable requirement (demand) for evidence ¢ to be
regarded as supporting evidence for hypothesis # (Pop-
per, 1983, p. 236f):

One might be inclined to interpret the remark in question by the
demand ‘non-e follows from non-/4 (in the presence of »)’. But
this would amount to another form of verificationism: it would
make e and /i equivalent (in the presence of b), and would thus
allow us to verify /1 by observation, that is, by observing that e
is true. But quite apart from any hostility to verificationism, it is
altogether implausible to demand that non-e would follow from
non-4 (and b). For let us assume that e is an event which
supports i—something predicted by /4, and something nobody
would ever have considered without 4. For example, let e be the
first observation of a new planet (Neptune) by J. G. Galle, in a
position predicted by Adams and Leverrier, and let /& be
Newton’s theory upon which their prediction was based. Then e
certainly supports 4~—and very strongly so. Yet in spite of this
fact e also follows from theories which, like Einstein’s, entail
non-A (in the presence of b).

The last part of that passage, as was seen earlier,
refutes Faith’s contention that finding possible explana-
tions other than & would preclude corroboration of 4
(Faith, 2004, p. 5):

Suppose that some apparent positive evidence for an hypothesis
has been put forward. To judge how well that evidence supports
the hypothesis, we can try to explain that evidence away, that is,
account for it by possible explanations other than the hypoth-
esis of interest. If, and only if, we fail we can say that the
hypothesis has gained Popperian corroboration from that
evidence.

The more extensive quotation from Popper shows
the flaws of Faith’s position in a broader context.
Faith was willing to admit corroboration of / only if
no theory other than /4 could explain e, but in that
case non-e would follow from non-4, so that Faith’s
version of ‘“‘Popperian corroboration” would, as
Popper put it, “amount to another form of
verificationism”.

Building on his thoroughly unPopperian idea that
hypotheses would be selected to maximize p(h, eb), Faith

(2004, p. 5) arrived, he said, at another fault of using
data as evidence:

Suppose we have data, 4 and the assumptions of some
phylogenetic inference method, corresponding to a model, m.
Phylogenetic hypotheses selected to make p(h, dm) large are
ad hoc, having little empirical content because / offers little
content beyond the data plus the model.

Parts of this argument were accurate. 4d hoc hypoth-
eses do have little content, and the content of /& does
decrease as the probability of / increases (Popper, 1983,
p. 241):

The maximum value which C(h, e, b) can attain is equal to 1—
p(h, b) and therefore equal to the content of / relative to b, or its
degree of testability.

Thus maximizing p(h, eb) could easily lead to an ad hoc
hypothesis. One could pick a useless hypothesis such as
h; = “tree t is most parsimonious for data ¢, which
(barring errors in calculating £) would have p(h;, eb) = 1
and no content whatever beyond that of the data. But
there was nothing accurate in Faith’s contention that
Popperians would choose hypotheses to maximize p(/,
eb). Phylogeneticists instead identify the most parsimo-
nious tree ¢ for the data e and then provisionally
conjecture 1, = “‘tis the true phylogeny”. No one could
imagine that the data make /A, certain, so that
p(hs, eb) << 1, and the content of /s,—its testability—is
apparent from the fact that further characters, those not
in the original e, can obviously challenge /. In contrast,
ad hoc h;, which concerns only the original e, could not
conceivably be challenged by further characters. The
phylogenetic hypothesis /15, that is, is definitely not ad hoc.

Faith (1992) had previously accused phylogenetic
methods of yielding “ad hoc” conclusions, but he had
used a different argument then and it will be illuminating
to compare his positions. According to Faith (1992, p.
267), “ad hoc” meant agreement with background
knowledge:

Popper properly defines ad hoc explanations as those that rely
only on our already-accepted facts (thus, an ad hoc hypothesis,
in failing to go beyond background knowledge, has low
corroboration; see Popper, 1963: 61, 287). It follows that the
mpt [most parsimonious tree] would be the most, not least,
ad hoc hypothesis in that it would be most in accord with the
background knowledge.

That criticism rested on a fiction, for Popper’s (1963,
p. 61; underlining added) comment did not concern
background knowledge, but rather available evidence:

One can show that the probability theories of induction imply,
inadvertently but necessarily, the unacceptable rule: always use
the theory which is the most ad hoc, i.e. which transcends the
available evidence as little as possible.

Evidently aware of that, Faith (2004) switched to a
characterization of ad hoc that was more like Popper’s
(Faith, 2004, p. 8; underlining added):
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I argued earlier [Faith, 2004, p. 5; quoted above] that any
goodness-of-fit procedure does nothing more than select an
ad hoc hypothesis, which (in maximising fit) goes as little
beyond the observations (the observed data) as possible.

That argument was not correct either, but Faith’s
paraphrase of Popper’s comment was informative
nonetheless. It revealed that Faith knew what he had
always denied, that Popper’s available evidence referred
to what others call observed data.

Conclusion

It would seem that Faith was not sincere in his repeated
insistence that Popper’s “evidence’ meant fit, that “true
corroboration” required fit as “‘evidence’ and so on, but
then the same applies to most of his arguments. Consid-
ering his pheneticist background, Faith may have been
sincere in advocating his verificationist strategy, but even
if so he could not possibly have believed that verifica-
tionism was Popperian. Nor could he actually have
thought that statistical probabilities should not be used in
calculating corroboration, for if that had been true it
would have barred his own proposed interpretation of
statistical probability PTP. He could scarcely have
thought that a probability could be negative or that
prediction and observation were the same. Nor could he
have believed that he was accurately conveying Popper’s
ideas when he cut Popper off in mid-sentence, or when he
avoided mentioning Einstein’s theory, or when he edited
out the provision for p(h, b) = 0. But if the FCT claims
about Popper cannot have been meant seriously, they
must instead have been advanced merely as pretexts for
objecting to phylogenetic methods, in the hope of
obstructing the legitimate application of Popper’s ideas
in phylogenetic systematics.

Faith’s arguments were extraordinarily convoluted,
but otherwise he was far from alone. If Rieppel actually
thought that Popper’s ideas were not meant for scientific
application, or that Popper did not use statistical
probabilities, or that corroboration behaved asymmet-
rically, this can only have been because he had made no
effort to find out—but that was scarcely the impression
he gave his readers. If de Queiroz and Poe truly believed
that unrealistic background theories could remain
unchallenged, then they must have been afflicted by
remarkably short memories, but even then they could
hardly have thought that they could so argue while
objecting to the realism of “NCM?”, nor even then could
they have imagined that their reworded “NCM” really
made NCM unrealistic. No if applies to Felsenstein. In
pretending that I had not discussed cliques or said how
to count homoplasies, and in never mentioning the
problems of applying statistical consistency as a crite-
rion in realistic cases, he was simply concealing any
information that did not fit his position.

Many, no doubt, would consider such cases depress-
ing, signs of waning integrity among scientists. But there
is a silver lining. If these are the strongest criticisms that
my view of parsimony has to face, then it has a bright
future indeed.
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