INTRODUCTION TO SYMPLECTIC TOPOLOGY

Milena Pabiniak

Friday October 20, 2006

GRADUATE STUDENT SEMINAR

A symplectic vector space is a pair (V, ω) consisting of finite dimensional real vector space V and a non-degenerate, skew symmetric bilinear form $\omega : V \times V \to \mathbb{R}$, that is skew symmetry

$$\forall_{v,w\in V} \ \omega(v,w) = -\omega(w,v)$$

non-degeneracy

$$\forall_{v \in V} \left(\forall_{w \in V} \ \omega(v, w) = 0 \Rightarrow v = 0 \right)$$

Fact: The vector space V is necessary of even dimension.

Linear map F : $(V_1, \omega_1) \rightarrow (V_2, \omega_2)$ is called symplectic if

 $F^*\omega_2 = \omega_1,$

where $F^*\omega_2(v,w) = \omega_2(Fv,Fw)$.

Example:

$$V = \mathbb{R}^{2n}, \ \omega(x, y) = x^T J_0 y$$
, where
 $J_0 = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$

That is

$$\omega \left((x_1, ..., x_{2n})^T, (y_1, ..., y_{2n})^T \right) =$$
$$= \sum_{i=1}^n (y_i x_{n+i} - x_i y_{n+i}).$$

Moreover, this is essentially the only example of a symplectic vector space. Precisely: if (V, ω) is symplectic, then we can always find a cannonical basis $e_1, \ldots, e_n, f_1, \ldots, f_n$ of V such that:

$$\omega(e_i, e_j) = \omega(f_i, f_j) = 0$$
$$\omega(e_i, f_j) = \delta_{ij}.$$

Hence two symplectic vector spaces of the same dimension are isomorphic.

Let matrix A represent linear map

$$A: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$$

Map A is symplectic if and only if

$$A^T J_0 A = J_0.$$

Matrices satisfying condition above are called symplectic.

Exercise:

$$\Psi = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

A, B, C, D - real $n \times n$ matrices Prove that Ψ is symplectic iff

$$\Psi^{-1} = \begin{pmatrix} D^T & -B^T \\ -C^T & A^T \end{pmatrix}$$

More explicitly it means A^TC , B^TD are symmetric and $A^TD - C^TB = I$.

Let M be C^∞ smooth manifold, without boundary, compact.

M is a symplectic manifold if there exist on M closed, non-degenerate 2-form ω (called symplectic structure).

Diffeomorphism $\psi : (M_1, \omega_1) \to (M_2, \omega_2)$ is called symplectomorphism if $\psi^* \omega_2 = \omega_1$. Example: $M = \mathbb{R}^{2n} \text{ with coordinates } p_1, \ldots, p_n, q_1, \ldots, q_n,$ and

$$\omega_0 = \sum_{i=1}^n dp_i \wedge dq_i$$

Note that

$$\omega_0((x_1, ..., x_{2n}), (y_1, ..., y_{2n})) = \sum_{i=1}^n (x_i y_{n+i} - y_i x_{n+i}) = -\langle x, J_0 y \rangle$$

Fact: Diffeomorphism $\psi : (\mathbb{R}^{2n}, \omega_0) \to (\mathbb{R}^{2n}, \omega_0)$ is a symplectomorphism if and only if its Jacobi matrix $d\psi$ is a symplectic matrix. **Theorem 1** (Eliashberg) Group of symplectomorphisms

 $Symp(M,\omega) = \{g : M \to M | g^*\omega = \omega\}$

is C^0 -closed, that is if $g_i \in Symp(M, \omega)$ and $g_i \to g_\infty$ uniformly, then $g_\infty \in Symp(M, \omega)$.

Theorem 2 (Darboux) For any point y on a symplectic manifold (M^{2n}, ω) of dimension 2n, there exist an open neighborhood U of y and a differentiable map $f : (U, \omega) \to (\mathbb{R}^{2n}, \omega_0)$ such that $f^*\omega_0 = \omega_{|U}$.

Denote by $B^{2n}(r)$ the closed Euclidean ball in \mathbb{R}^{2n} with centre 0 and radius r and by

$$Z^{2n}(r) = B^2(r) \times \mathbb{R}^{2n-2}$$

the symplectic cylinder.

Theorem 3 (Gromov's Nonsqueezing theorem) If there is a symplectic embedding $B^{2n}(r) \hookrightarrow Z^{2n}(R)$ then $r \leq R$.

For open subset U of a symplectic manifold (M, ω) define Gromov's capacity

 $c(U) = max \{ \pi r^2 \mid \exists B^{2n}(r) \hookrightarrow U \text{ symplectic} \}.$

Theorem 4 Any diffeomorphism that preserves capacity i.e. c(g(U)) = c(U) for all open U is such that $g^*\omega = \omega$.

Example:

 S^4 does not admit a symplectic structure.

Assume ω is a closed and non-degenerate 2form on S^4 . As the second de Rham cohomology group of S^4 vanishes, ω has to be exact, that is there exist a 1-form α such that $d\alpha = \omega$. Then also the volume $\Omega = \omega \wedge \omega$ form is exact: $d(\omega \wedge \alpha) = d\omega \wedge \alpha + \omega \wedge d\alpha = \omega \wedge \omega = \Omega$. Thus by Stoke's theorem we have

$$\int_{S^4} \Omega = \int_{\partial S^4} \omega \wedge \alpha = 0,$$

which is impossible for a volume form. So we see that on S^4 we cannot impose a symplectic form.