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A symplectic vector space is a pair (V, ω) con-

sisting of finite dimensional real vector space

V and a non-degenerate, skew symmetric bi-

linear form ω : V × V → R, that is

skew symmetry

∀v,w∈V ω(v, w) = −ω(w, v)

non-degeneracy

∀v∈V

(
∀w∈V ω(v, w) = 0 ⇒ v = 0

)
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Fact: The vector space V is necessary of even

dimension.

Linear map F : (V1, ω1) → (V2, ω2) is called

symplectic if

F ∗ω2 = ω1,

where F ∗ω2 (v, w) = ω2 (Fv, Fw).
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Example:

V = R2n, ω(x, y) = xTJ0 y, where

J0 =
[ 0 −I

I 0

]

That is

ω ((x1, ..., x2n)
T , (y1, ..., y2n)

T ) =

=
n∑

i=1

(yi xn+i − xi yn+i).
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Moreover, this is essentialy the only example

of a symplectic vector space. Precisely: if

(V, ω) is symplectic , then we can always find a

cannonical basis e1, . . . , en, f1, . . . , fn of V such

that:

ω(ei, ej) = ω(fi, fj) = 0

ω(ei, fj) = δij.

Hence two symplectic vector spaces of the same

dimension are isomorphic.
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Let matrix A represtent linear map

A : R2n → R2n.

Map A is symplectic if and only if

ATJ0A = J0.

Matrices satisfying condition above are called

symplectic.

Exercise:

Ψ =
( A B

C D

)

A, B, C, D - real n× n matrices

Prove that Ψ is symplectic iff

Ψ−1 =
( DT −BT

−CT AT

)

More explicitly it means ATC, BTD are sym-

metric and ATD − CTB = I.
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Let M be C∞ smooth manifold, without bound-

ary, compact.

M is a symplectic manifold if there exist on M

closed, non-degenerate 2-form ω (called sym-

plectic structure).

Diffeomorphism ψ : (M1, ω1) → (M2, ω2) is called

symplectomorphism if ψ∗ω2 = ω1.
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Example:

M = R2n with coordinates p1, . . . , pn, q1, . . . , qn,

and

ω0 =
n∑

i=1

dpi ∧ dqi

Note that

ω0((x1, ..., x2n), (y1, ..., y2n)) =∑n
i=1(xiyn+i − yixn+i ) = − < x, J0 y > .

Fact: Diffeomorphism ψ : (R2n, ω0) → (R2n, ω0)

is a symplectomorphism if and only if its Jacobi

matrix dψ is a symplectic matrix.
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Theorem 1 (Eliashberg) Group of symplecto-

morphisms

Symp(M, ω) = {g : M → M |g∗ω = ω}
is C0-closed, that is if gi ∈ Symp(M, ω) and

gi → g∞ unifromly, then g∞ ∈ Symp(M, ω).

Theorem 2 (Darboux) For any point y on a

symplectic manifold (M2n, ω) of dimension 2n,

there exist an open neighborhood U of y and a

differentiable map f : (U, ω) → (R2n, ω0) such

that f∗ω0 = ω|U .
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Denote by B2n(r) the closed Euclidean ball in

R2n with centre 0 and radius r and by

Z2n(r) = B2(r)× R2n−2

the symplectic cylinder.

Theorem 3 (Gromov’s Nonsqueezing theorem)

If there is a symplectic embedding B2n(r) ↪→
Z2n(R) then r ≤ R.

For open subset U of a symplectic manifold

(M, ω) define Gromov’s capacity

c(U) = max {πr2 | ∃ B2n(r) ↪→ U symplectic}.

Theorem 4 Any diffeomorphism that preserves

capacity i.e. c(g(U)) = c(U) for all open U is

such that g∗ω = ω.
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Example:

S4 does not admit a symplectic structure.

Assume ω is a closed and non-degenerate 2-

form on S4. As the second de Rham cohomol-

ogy group of S4 vanishes, ω has to be exact,

that is there exist a 1-form α such that dα = ω.

Then also the volume Ω = ω∧ω form is exact:

d(ω ∧ α) = dω ∧ α + ω ∧ dα = ω ∧ ω = Ω.

Thus by Stoke’s theorem we have
∫

S4
Ω =

∫

∂S4
ω ∧ α = 0,

which is impossible for a volume form. So we

see that on S4 we cannot impose a symplectic

form.
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