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The class H∞(D)

D =df {z ∈ C : |z| < 1}
H∞(D) is the set of all bounded analytic functions
f : D → C.
For f ∈ H∞(D), let

‖ f ‖∞= sup{|f (z)| : z ∈ D}.

H∞(D) is a Banach space under ‖ ‖∞.
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Kinds of functions in H∞(D)

Q ∈ H∞(D) is outer if there is a positive measurable
φ : ∂D → R such that log φ ∈ L1(∂D) and

Q(z) = λ exp
{

1
2π

∫ π

−π

eit + z
eit − z

log φ(eit)dt
}

.

for some λ ∈ ∂D.
u ∈ H∞(D) is inner if limz→z0 |u(z)| = 1 for almost all
z0 ∈ ∂D.
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Singular functions

Definition
A function s ∈ H∞(D) is singular if there is a finite positive
Borel measure on ∂D, µ, that is singular with respect to
Lebesgue measure and such that

s(z) = exp
{
−

∫ π

−π

eit + z
eit − z

dµ(t)
}

Theorem
If s is singular, then:

1 s is inner.
2 s(0) is a positive real number.
3 s has no zeros.
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Blaschke products

Definition
Let A = {an}∞n=0 be a sequence of points in D− {0}. The
product

BA,k (z) =df zk
∞∏

n=0

|an|
an

an − z
1− anz

is called a Blaschke product. We abbreviate BA,0 with BA.
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Definition
Let A = {an}∞n=0 be a sequence of points in D− {0}. The series

ΣA =df

∞∑
n=0

(1− |an|)

is called the Blaschke sum of A. The inequality

∞∑
n=0

(1− |an|) < ∞

is called the Blaschke condition.
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Theorem
Let A = {an}∞n=0 be a sequence of points in D− {0}.

1 If A satisfies the Blaschke condition, then BA,k is an inner
function.

2 If A satisfies the Blaschke condition, then the terms of A
are precisely the zeros of BA. Furthermore, the number of
times a zero of BA appears in A is its multiplicity.

3 If A does not satisfy the Blaschke condition, then BA ≡ 0.
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Definition
N is the class of all f ∈ H∞(D) such that

sup
0<r<1

∫ π

−π
log+ |f (reiθ)|dθ < ∞

Theorem
(Canonical Factorization Theorem) If f ∈ N, then there exist
λ, F , B, S1, and S2 such that

f (z) = λF (z)B(z)
S1(z)

S2(z)

where λ ∈ ∂D, B is a (possibly finite) Blaschke product, and S1,
S2 are singular functions.
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Corollary
(Factorization of Inner Functions) If u is an inner function,
then there exist unique λu, bu, su such that u = λubusu,
λu ∈ ∂D, bu is a (possibly finite) Blaschke product, and su is a
singular function.
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For each closed K ⊆ D and each positive measure σ on K , let
Uσ : D → D be defined by the equation

Uσ(z) =

∫
K

log
1

|z − ζ|
dσ(ζ).

Definition
Let F ⊆ D be closed. We say that F has zero capacity if for
every positive measure on F , σ, with σ 6= 0, Uσ is not bounded
on any neighborhood of F . Otherwise, we say that F has
positive capacity. If U is an arbitrary subset of D, then we say
that U has positive capacity just in case it has a closed subset
with positive capacity; otherwise, we say that it has zero
capacity.
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Facts about capacity

Theorem
Every zero-capacity set has measure zero.

The Cantor set has positive capacity.
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For a, z ∈ D with |a| < 1, let

Ma(z) =
z − a

1− az
.

Theorem
(Frostman’s Theorem) Let u be a non-constant inner function.
Then, Ma ◦ u is a unit multiple of a Blaschke product for all
a ∈ D except in a set of capacity zero.

The set of values of a for which Ma ◦ u is not a unit multiple of a
Blaschke product is called the exception set of u.
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Corollary
If u is a non-constant inner function, and if ε > 0, then there is a
unit multiple of a Blaschke product B such that ‖ u − B ‖∞< ε.
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Some questions
1 Given A, can one “compute” BA?
2 Given an inner function u, can one “compute” its

factorization?
3 Given an inner function u and a number ε > 0, can one

“compute” a unit multiple of a Blaschke product B such that
‖ u − B ‖∞< ε.
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Fix a finite alphabet Σ with 0, 1 ∈ Σ.

Let Σ∗ be the set of all finite sequences whose terms are all in
Σ.

Let f :⊆ A → B denote that dom(f ) ⊆ A and ran(f ) ⊆ B.

Timothy H. McNicholl Computable Aspects of Inner Functions



Background from analysis
Background from computability theory

Results
References

Computability over the natural numbers
Type Two Effectivity

Turing machines
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Definition
A function f :⊆ Σ∗ → Σ∗ is computable if it can be computed by
a Turing machine. Meaning:

1 If input string σ is not in domain of f , then machine does
not halt on input σ.

2 If input string σ is in domain of f , then machine eventually
halts and f (σ) is written on tape.
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Two fundamental ideas:
Representations
Type-two machines

Some notation:
Let Σω be the set of all infinite sequences whose terms are
all in Σ.
Let ι(a0, a1, . . . , an) = 110a00a10...an011.
w / p denote that p can be written in the form p = uwv for
some u ∈ Σ∗ and v ∈ Σω.
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Definition
Let M be a set. A representation of M is a surjective function
δ :⊆ Σω → M.

Representations are also called naming systems.

If δ(p) = x , then we say that p is a δ-name of x .

Definition
x ∈ M is δ-computable if it has a computable δ-name.
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A recipe for representations
1 Start with a second countable T0 space (M, σ) (σ a

countable subbasis).
2 Assume you have surjective ν : Σ∗ → σ such that
{(w , w ′) | ν(w) = ν(w ′)} is computable. Define
S = (M, σ, ν).

3 For each p ∈ Σω, let δS(p) be the x ∈ M (if there is one)
such that

ι(w) / p ⇔ x ∈ ν(w)

for all w ∈ Σ∗.
(The idea is that δS(p) = x iff p “encodes an enumeration”
of all subbasic neighborhoods that contain x.)
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Some useful representations
ρ2. A representation of C. Start with standard basis for C.
δCO. A representation of C(C). Start with compact-open
topology on C.
[ρ2]ω. A representation of set of all infinite sequences of
complex numbers. Use product topology.
Given S1 and S2, let [δS1 , δS2 ] be the representation given
by starting out with the product topology of S1 and S2.
Define [δS1 , δS2 , δS3 ] = [[δS1 , δS2 ], δS3 ]. etc.
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Type-two machines

...
Output tape (write only, one-way)

...
Work tape (read and write, two-way)

...
Input tape (read only, one-way)

M
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Computable functions

Definition
Let f :⊆ Σω → Σω. We say that f is computable if there is a
type-two machine M such that for every p ∈ Σω, when p is
written on the input tape and M is allowed to run, then:

If p ∈ dom(f ), then M writes f (p) on the output tape.
If p 6∈ dom(f ), then M writes only finitely many symbols on
the output tape.

Definition
Let δi :⊆ Σω → Mi be a representation of Mi for i = 0, 1. Let
f : M0 → M1. Then, f is (δ0, δ1)-computable if there exists
computable F :⊆ Σω → Σω such that δ1F (p) = f δ0(p) for all
p ∈ dom(δ0).
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Theorem

(Matheson, McNicholl, 2006) There is a [ρ2]ω-computable
sequence A = {an}∞n=0 such that BA is not (ρ2, ρ2)-computable.

In other words, merely knowing the Blaschke sequence is not
enough to compute the Blaschke product.

Theorem

(Matheson, McNicholl, 2006) If BA is (ρ2, ρ2)-computable, then
A is [ρ2]ω computable.
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Theorem
(McNicholl, 2007) The map (A,

∑
A) 7→ BA is

([[ρ2]ω, ρ2], δCO)-computable.

In other words, if you know a Blaschke sequence and its
Blaschke sum, then you can compute the Blaschke product.

Theorem
(McNicholl, 2007) The map (A, BA) 7→

∑
A is

([[ρ2]ω, δCO], ρ2)-computable. In fact, (A, BA(0)) 7→
∑

A is
([[ρ2]ω, ρ2], ρ2)-computable.

In other words, once you know a Blaschke sequence, in order
to compute the Blaschke product you have to know the
Blaschke sum (or an equivalent piece of information).
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Corollary

(McNicholl 2007) Suppose A is [ρ2]ω-computable. If BA maps
ρ2-computable complex numbers to ρ2-computable complex
numbers, then BA is (ρ2, ρ2)-computable.

This is not the case for power series!

Timothy H. McNicholl Computable Aspects of Inner Functions



Background from analysis
Background from computability theory

Results
References

Theorem

(McNicholl, 2007) There is a ([δCO, ρ2], ρ2)-computable
function Ψ such that if u is inner and ε > 0, then MΨ(u,ε) is a
Blaschke product and ‖ u −MΨ(u,ε) ‖∞< ε.

Timothy H. McNicholl Computable Aspects of Inner Functions



Background from analysis
Background from computability theory

Results
References

Theorem
(McNicholl, 2007) The map u 7→ (λu, bu, su) is not
(δCO, [ρ2, δCO, δCO])-computable.

In other words, merely knowing an inner function is not enough
to compute its factorization.

Let
∑

u denote
∑∞

n=0(1− |zn|) where z0, z1, . . . are the
non-zero zeros of u. Let ku denote the order of u’s zero at 0 if
there is one; if u(0) 6= 0, then let ku = 0.
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Theorem
(McNicholl, 2007) The map (u,

∑
u, ku) 7→ (λu, bu, su) is

([δCO, ρ2, ρ2], [ρ2, δCO, δCO])-computable. (Provided u has
infinitely many zeros.)

Theorem
(McNicholl, 2007) The map (u, ku, bu) 7→

∑
u is

([δCO, ρ2, δCO], ρ2)-computable. (Provided u has infinitely many
zeros.)
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