Computable Aspects of Inner Functions

Timothy H. McNicholl

mcnichollth@my.lamar.edu Department of Mathematics Lamar University

March 30, 2007 / Graduate Student Seminar, GWU

<ロト <回 > < 注 > < 注 > 、

Outline

- Background from analysis
 - The class $H^{\infty}(\mathbb{D})$
 - Some types of functions in $H^{\infty}(\mathbb{D})$
 - Some types of inner functions
 - Factorization
 - Frostman's Theorem
- Background from computability theory
 - Computability over the natural numbers
 - Computability over uncountable spaces: Type-Two Effectivity Theory
 - 3 Statement of results
 - References

▲ 同 ▶ ▲ 回 ▶ ▲ 回 ▶ ― 回

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Outline

- 1
- Background from analysis
- The class $H^\infty(\mathbb{D})$
- Some types of functions in $H^{\infty}(\mathbb{D})$
- Some types of inner functions
- Factorization
- Frostman's Theorem
- 2 Background from computability theory
 - Computability over the natural numbers
 - Computability over uncountable spaces: Type-Two Effectivity Theory
- 3 Statement of results
 - References

ヘロン ヘアン ヘビン ヘビン

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

The class $H^\infty(\mathbb{D})$

•
$$\mathbb{D} =_{df} \{z \in \mathbb{C} : |z| < 1\}$$

- *H*[∞](D) is the set of all bounded analytic functions
 f : D → C.
- For $f \in H^{\infty}(\mathbb{D})$, let

$$\parallel f \parallel_{\infty} = \sup\{|f(z)| : z \in \mathbb{D}\}.$$

• $H^{\infty}(\mathbb{D})$ is a Banach space under $\| \|_{\infty}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Outline Background from analysis

- The class $H^{\infty}(\mathbb{D})$
- Some types of functions in $H^{\infty}(\mathbb{D})$
- Some types of inner functions
- Factorization
- Frostman's Theorem
- 2 Background from computability theory
 - Computability over the natural numbers
 - Computability over uncountable spaces: Type-Two Effectivity Theory
- 3 Statement of results
 - References

イロン 不良 とくほう 不良 とうほ

 $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Kinds of functions in $H^{\infty}(\mathbb{D})$

• $Q \in H^{\infty}(\mathbb{D})$ is *outer* if there is a positive measurable $\phi : \partial \mathbb{D} \to \mathbb{R}$ such that $\log \phi \in L^1(\partial \mathbb{D})$ and

$$Q(z) = \lambda \exp\left\{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \phi(e^{it}) dt\right\}.$$

for some $\lambda \in \partial \mathbb{D}$.

• $u \in H^{\infty}(\mathbb{D})$ is *inner* if $\lim_{z\to z_0} |u(z)| = 1$ for almost all $z_0 \in \partial \mathbb{D}$.

イロン 不同 とくほう 不良 とうほう

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Outline

- 1
- Background from analysis
- The class $H^{\infty}(\mathbb{D})$
- Some types of functions in $H^{\infty}(\mathbb{D})$
- Some types of inner functions
- Factorization
- Frostman's Theorem
- 2 Background from computability theory
 - Computability over the natural numbers
 - Computability over uncountable spaces: Type-Two Effectivity Theory
- 3 Statement of results
 - References

ヘロア 人間 アメヨア ヘヨア

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Singular functions

Definition

A function $s \in H^{\infty}(\mathbb{D})$ is *singular* if there is a finite positive Borel measure on $\partial \mathbb{D}$, μ , that is singular with respect to Lebesgue measure and such that

$$s(z) = \exp\left\{-\int_{-\pi}^{\pi}rac{e^{it}+z}{e^{it}-z}d\mu(t)
ight\}$$

Theorem

If s is singular, then:

- (2) s(0) is a positive real number.
- s has no zeros.

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Blaschke products

Definition

Let $A = \{a_n\}_{n=0}^{\infty}$ be a sequence of points in $\mathbb{D} - \{0\}$. The product

$$B_{A,k}(z) =_{df} z^k \prod_{n=0}^{\infty} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a_n} z}$$

is called a *Blaschke product*. We abbreviate $B_{A,0}$ with B_A .

イロン 不得 とくほ とくほう 一座

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Definition

Let $A = \{a_n\}_{n=0}^{\infty}$ be a sequence of points in $\mathbb{D} - \{0\}$. The series

$$\Sigma_A =_{df} \sum_{n=0}^{\infty} (1 - |a_n|)$$

is called the Blaschke sum of A. The inequality

$$\sum_{n=0}^{\infty}(1-|a_n|)<\infty$$

is called the Blaschke condition.

イロト イポト イヨト イヨト 一座

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Theorem

- Let $A = \{a_n\}_{n=0}^{\infty}$ be a sequence of points in $\mathbb{D} \{0\}$.
 - If A satisfies the Blaschke condition, then B_{A,k} is an inner function.
 - If A satisfies the Blaschke condition, then the terms of A are precisely the zeros of B_A. Furthermore, the number of times a zero of B_A appears in A is its multiplicity.
 - If A does not satisfy the Blaschke condition, then $B_A \equiv 0$.

イロト イポト イヨト イヨト 一座

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Outline Background from analysis

- The class $H^{\infty}(\mathbb{D})$
- Some types of functions in $H^{\infty}(\mathbb{D})$
- Some types of inner functions
- Factorization
- Frostman's Theorem
- 2 Background from computability theory
 - Computability over the natural numbers
 - Computability over uncountable spaces: Type-Two Effectivity Theory
- 3 Statement of results
 - References

ヘロア 人間 アメヨア ヘヨア

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Definition

N is the class of all $f \in H^{\infty}(\mathbb{D})$ such that

$$\sup_{0 < r < 1} \int_{-\pi}^{\pi} \log^+ |f(\textit{re}^{i\theta})| d\theta < \infty$$

Theorem

(Canonical Factorization Theorem) If $f \in N$, then there exist λ , F, B, S_1 , and S_2 such that

$$f(z) = \lambda F(z)B(z)\frac{S_1(z)}{S_2(z)}$$

where $\lambda \in \partial \mathbb{D}$, B is a (possibly finite) Blaschke product, and S_1 , S_2 are singular functions.

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Corollary

(Factorization of Inner Functions) If u is an inner function, then there exist unique λ_u , b_u , s_u such that $u = \lambda_u b_u s_u$, $\lambda_u \in \partial \mathbb{D}$, b_u is a (possibly finite) Blaschke product, and s_u is a singular function.

イロト イポト イヨト イヨト 一座

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Outline Background from analysis

- The class $H^{\infty}(\mathbb{D})$
- Some types of functions in $H^{\infty}(\mathbb{D})$
- Some types of inner functions
- Factorization

Frostman's Theorem

- 2 Background from computability theory
 - Computability over the natural numbers
 - Computability over uncountable spaces: Type-Two Effectivity Theory
- 3 Statement of results
 - References

ヘロン ヘアン ヘビン ヘビン

 $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

For each closed $K \subseteq \mathbb{D}$ and each positive measure σ on K, let $U_{\sigma} : \mathbb{D} \to \mathbb{D}$ be defined by the equation

$$U_{\sigma}(z) = \int_{\mathcal{K}} \log rac{1}{|z-\zeta|} d\sigma(\zeta).$$

Definition

Let $F \subseteq \mathbb{D}$ be closed. We say that F has zero capacity if for every positive measure on F, σ , with $\sigma \neq 0$, U_{σ} is not bounded on any neighborhood of F. Otherwise, we say that F has *positive capacity*. If U is an arbitrary subset of \mathbb{D} , then we say that U has positive capacity just in case it has a closed subset with positive capacity; otherwise, we say that it has zero capacity.

ヘロト ヘ回ト ヘヨト ヘヨト

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Facts about capacity

Theorem

Every zero-capacity set has measure zero.

The Cantor set has positive capacity.

イロト 不同 とくほ とくほ とう

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

For $a, z \in \overline{\mathbb{D}}$ with |a| < 1, let

$$M_a(z)=rac{z-a}{1-\overline{a}z}.$$

Theorem

(Frostman's Theorem) Let u be a non-constant inner function. Then, $M_a \circ u$ is a unit multiple of a Blaschke product for all $a \in \mathbb{D}$ except in a set of capacity zero.

The set of values of *a* for which $M_a \circ u$ is not a unit multiple of a Blaschke product is called the *exception set of u*.

イロト 不得 とくほ とくほとう

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Corollary

If u is a non-constant inner function, and if $\epsilon > 0$, then there is a unit multiple of a Blaschke product B such that $|| u - B ||_{\infty} < \epsilon$.

Timothy H. McNicholl Computable Aspects of Inner Functions

イロト イポト イヨト イヨト 三日

Background from computability theory Results References $H^{\infty}(\mathbb{D})$ Some types of functions in $H^{\infty}(\mathbb{D})$ Some types of inner functions Factorization Frostman's Theorem

Some questions

- Given A, can one "compute" B_A ?
- Given an inner function u, can one "compute" its factorization?
- Given an inner function *u* and a number *ϵ* > 0, can one "compute" a unit multiple of a Blaschke product *B* such that || *u* − *B* ||_∞< *ϵ*.

Computability over the natural numbers Type Two Effectivity

Outline

- Background from analysis
 - The class $H^{\infty}(\mathbb{D})$
 - Some types of functions in H[∞](D)
 - Some types of inner functions
 - Factorization
 - Frostman's Theorem
- 2 Background from computability theory
 - Computability over the natural numbers
 - Computability over uncountable spaces: Type-Two Effectivity Theory
- 3 Statement of results
 - References

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Computability over the natural numbers Type Two Effectivity

Fix a finite alphabet Σ with $0, 1 \in \Sigma$.

Let Σ^* be the set of all finite sequences whose terms are all in $\Sigma.$

Let $f :\subseteq A \rightarrow B$ denote that $dom(f) \subseteq A$ and $ran(f) \subseteq B$.

Computability over the natural numbers Type Two Effectivity

Turing machines

Timothy H. McNicholl Computable Aspects of Inner Functions

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Computability over the natural numbers Type Two Effectivity

Definition

A function $f :\subseteq \Sigma^* \to \Sigma^*$ is *computable* if it can be computed by a Turing machine. Meaning:

- If input string σ is not in domain of *f*, then machine does not halt on input σ .
- If input string *σ* is in domain of *f*, then machine eventually halts and *f*(*σ*) is written on tape.

イロト イポト イヨト イヨト 一座

Computability over the natural numbers Type Two Effectivity

Outline

- Background from analysis
 - The class $H^{\infty}(\mathbb{D})$
 - Some types of functions in H[∞](D)
 - Some types of inner functions
 - Factorization
 - Frostman's Theorem
- Background from computability theory
 - Computability over the natural numbers
 - Computability over uncountable spaces: Type-Two Effectivity Theory
 - Statement of results
 - References

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Computability over the natural numbers Type Two Effectivity

Two fundamental ideas:

- Representations
- Type-two machines

Some notation:

- Let Σ^ω be the set of all *infinite* sequences whose terms are all in Σ.
- Let $\iota(a_0, a_1, \ldots, a_n) = 110a_00a_10...a_n011$.
- *w* ⊲ *p* denote that *p* can be written in the form *p* = *uwv* for some *u* ∈ Σ^{*} and *v* ∈ Σ^ω.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Computability over the natural numbers Type Two Effectivity

Definition

Let *M* be a set. A *representation of M* is a surjective function $\delta :\subseteq \Sigma^{\omega} \to M$.

Representations are also called *naming systems*.

If $\delta(p) = x$, then we say that p is a δ -name of x.

Definition

 $x \in M$ is δ -computable if it has a computable δ -name.

イロン 不得 とくほ とくほう 一座

Computability over the natural numbers Type Two Effectivity

A recipe for representations

- Start with a second countable T_0 space (M, σ) (σ a countable subbasis).
- **2** Assume you have surjective $\nu : \Sigma^* \to \sigma$ such that $\{(w, w') \mid \nu(w) = \nu(w')\}$ is computable. Define $S = (M, \sigma, \nu)$.
- For each $p \in \Sigma^{\omega}$, let $\delta_{\mathcal{S}}(p)$ be the $x \in M$ (if there is one) such that

$$\iota(\mathbf{W}) \triangleleft \mathbf{p} \iff \mathbf{X} \in \nu(\mathbf{W})$$

for all $w \in \Sigma^*$.

(The idea is that $\delta_{\mathcal{S}}(p) = x$ iff p "encodes an enumeration" of all subbasic neighborhoods that contain x.)

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Computability over the natural numbers Type Two Effectivity

Some useful representations

- ρ^2 . A representation of \mathbb{C} . Start with standard basis for \mathbb{C} .
- δ_{CO}. A representation of C(C). Start with compact-open topology on C.
- [ρ²]^ω. A representation of set of all infinite sequences of complex numbers. Use product topology.
- Given S₁ and S₂, let [δ_{S1}, δ_{S2}] be the representation given by starting out with the product topology of S₁ and S₂. Define [δ_{S1}, δ_{S2}, δ_{S3}] = [[δ_{S1}, δ_{S2}], δ_{S3}]. *etc.*

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Computability over the natural numbers Type Two Effectivity

Type-two machines

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Computability over the natural numbers Type Two Effectivity

Computable functions

Definition

Let $f :\subseteq \Sigma^{\omega} \to \Sigma^{\omega}$. We say that *f* is *computable* if there is a type-two machine *M* such that for every $p \in \Sigma^{\omega}$, when *p* is written on the input tape and *M* is allowed to run, then:

- If $p \in dom(f)$, then *M* writes f(p) on the output tape.
- If p ∉ dom(f), then M writes only finitely many symbols on the output tape.

Definition

Let $\delta_i :\subseteq \Sigma^{\omega} \to M_i$ be a representation of M_i for i = 0, 1. Let $f : M_0 \to M_1$. Then, f is (δ_0, δ_1) -computable if there exists computable $F :\subseteq \Sigma^{\omega} \to \Sigma^{\omega}$ such that $\delta_1 F(p) = f \delta_0(p)$ for all $p \in dom(\delta_0)$.

Theorem

(Matheson, McNicholl, 2006) There is a $[\rho^2]^{\omega}$ -computable sequence $A = \{a_n\}_{n=0}^{\infty}$ such that B_A is not (ρ^2, ρ^2) -computable.

In other words, merely knowing the Blaschke sequence is not enough to compute the Blaschke product.

Theorem

(Matheson, McNicholl, 2006) If B_A is (ρ^2, ρ^2) -computable, then A is $[\rho^2]^{\omega}$ computable.

イロト イポト イヨト イヨト 三日

Theorem

(McNicholl, 2007) The map $(A, \sum_A) \mapsto B_A$ is $([[\rho^2]^{\omega}, \rho^2], \delta_{CO})$ -computable.

In other words, if you know a Blaschke sequence and its Blaschke sum, then you can compute the Blaschke product.

Theorem

(McNicholl, 2007) The map $(A, B_A) \mapsto \sum_A is$ ([[ρ^2] $^{\omega}, \delta_{CO}$], ρ^2)-computable. In fact, $(A, B_A(0)) \mapsto \sum_A is$ ([[ρ^2] $^{\omega}, \rho^2$], ρ^2)-computable.

In other words, once you know a Blaschke sequence, in order to compute the Blaschke product you have to know the Blaschke sum (or an equivalent piece of information).

Corollary

(**McNicholl 2007**) Suppose A is $[\rho^2]^{\omega}$ -computable. If B_A maps ρ^2 -computable complex numbers to ρ^2 -computable complex numbers, then B_A is (ρ^2, ρ^2) -computable.

This is not the case for power series!

ヘロア ヘビア ヘビア・

Theorem

(McNicholl, 2007) There is a $([\delta_{CO}, \rho^2], \rho^2)$ -computable function Ψ such that if u is inner and $\epsilon > 0$, then $M_{\Psi(u,\epsilon)}$ is a Blaschke product and $|| u - M_{\Psi(u,\epsilon)} ||_{\infty} < \epsilon$.

Theorem

(McNicholl, 2007) The map $u \mapsto (\lambda_u, b_u, s_u)$ is not $(\delta_{CO}, [\rho^2, \delta_{CO}, \delta_{CO}])$ -computable.

In other words, merely knowing an inner function is not enough to compute its factorization.

Let \sum_{u} denote $\sum_{n=0}^{\infty} (1 - |z_n|)$ where z_0, z_1, \ldots are the non-zero zeros of u. Let k_u denote the order of u's zero at 0 if there is one; if $u(0) \neq 0$, then let $k_u = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Theorem

(McNicholl, 2007) The map $(u, \sum_u, k_u) \mapsto (\lambda_u, b_u, s_u)$ is $([\delta_{CO}, \rho^2, \rho^2], [\rho^2, \delta_{CO}, \delta_{CO}])$ -computable. (Provided u has infinitely many zeros.)

Theorem

(McNicholl, 2007) The map $(u, k_u, b_u) \mapsto \sum_u$ is $([\delta_{CO}, \rho^2, \delta_{CO}], \rho^2)$ -computable. (Provided u has infinitely many zeros.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- J. Caldwell, M. B. Pour-El. On a simple definition of computable functions of a real variable- with applications to functions of a complex variable. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 1 - 19.
- J. Garnett, **Bounded Analytic Functions**, 1st ed. (Academic Press, 1981).
- A. Matheson and T. H. McNicholl, Computable Analysis and Blaschke Products, to appear in Proceedings of the American Mathematical Society.
- W. Rudin, **Real and Complex Analysis**, 3rd ed. (McGraw-Hill, 1987).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

- M. Tsuji, **Potential in Modern Function Theory**. (Maruzen, Tokyo, 1959).
- K. Weihrauch, **Computable Analysis. An introduction**, 1st ed. (Springer-Verlag, Berlin, 2000).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで