An application of algorithmic information theory

Jennifer Chubb

George Washington University Washington, DC

Graduate Student Seminar March 9, 2007

Slides available at home.gwu.edu/~jchubb

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Preliminaries

- A ≤_T B if there is an algorithm using B as an oracle that will compute the characteristic function of A.
- A ≤_{wtt} B if there's an algorithm like before, but also a computable function that limits how much of the oracle B the algorithm can use.
- The Turing degree of the set A, deg(A) is the collection of all sets ≡_T to A.
- The wtt-degree of the set A, deg_{wtt}(A) is the collection of all sets ≡_{wtt} to A.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Background

We consider computable linear orderings (CLOs) $\mathcal{L} = \langle L, <_{\mathcal{L}} \rangle$, and think about an additional relation *R* on the structure.

Example

 $\mathcal{L} \cong \omega + \omega^*$ with additional relation $\mathbf{R} = \omega_{\mathcal{L}}$.

• • • • • •

- The degree spectrum of relation R on a computable structure M, DgSp_M(R), is the collection of all Turing degrees of images of R in computable structures N ≅ M.
- The wtt-spectrum of relation R on a computable structure *M*, DgSp^{wtt}_M(R), is the collection of all wtt-degrees of images of R in computable structures *N* ≅ *M*.

Context and some facts about $\omega + \omega^*$

Let \mathcal{L} be a CLO isomorphic to $\omega + \omega^*$, and $\omega_{\mathcal{L}}$ the ω -part of \mathcal{L} .

- (Harizanov, 1998) The (Turing) degree spectrum of ω_L is exactly the Δ₂⁰-degrees.
- Is the same true of the wtt-spectrum? Does it consist of all wtt-degrees that are wtt-computable from the halting set? No.

This is what we *can* say:

Theorem

For every Δ_2^0 set *A*, there is a CLO \mathcal{L} of order type $\omega + \omega^*$ with $A \leq_T \omega_{\mathcal{L}} \leq_{wtt} A$.

We'll see that this is the best we can do: \leq_T can't be replaced with \leq_{wtt} in the Theorem.

A much stronger statement

Theorem

There is a c.e. set *D* that is not wtt-reducible to any initial segment of any computable scattered linear ordering.

(A linear ordering is *scattered* just in case it fails to contain a copy of $Q = \langle \mathbb{Q}, <_{\mathbb{Q}} \rangle$. For example, $\omega + \omega^*$.)

The punchline: The halting set, 0', itself will be this set.

We will see that if 0' is wtt-reducible to an initial segment of a CLO, then that linear ordering is not scattered.

Though 0' is at the top of the Δ_2^0 sets, we can find a *low* c.e. set that does the same thing.

A nice fact about scattered linear orderings

Let \mathcal{L} be a countable linear ordering. Then \mathcal{L} is scattered iff \mathcal{L} has only countably many initial segments.

If \mathcal{L} is a CLO, then \mathcal{L} is scattered iff each of its initial segments is *ranked* – an element of a countable Π_1^0 class.

(日) (日) (日) (日) (日) (日) (日)

(A set of sets of natural numbers is a Π_1^0 class if it is the collection of paths through a computable tree.)

Fact

Let \mathcal{L} be a countable linear ordering. Then \mathcal{L} is scattered iff \mathcal{L} has only countably many initial segments.

Proof. \leftarrow . If \mathcal{L} has a copy of \mathcal{Q} , it has as many initial segments as \mathcal{Q} does... uncountably many.

 \rightarrow . Suppose ${\cal L}$ has uncountably many initial segments... then it has a copy of ${\cal Q}$:

- Let *I* be the collection of initial segments of *L* (view these as paths through a subtree of 2^{<ω}).
- \mathcal{I} is a closed uncountable set in Cantor space 2^{ω} , and so has a perfect subset \mathcal{J} . Take T to be the perfect subtree of $2^{<\omega}$ with $[T] = \mathcal{J}$.
- For each branching node of *T*, take *a_σ* to be an element of *L* that the extending nodes disagree on.
- It's easy to check that these a_{σ} 's form a copy of Q.

So, we need to show that if an initial segment of a CLO wtt-computes 0', then that CLO has uncountably many initial segments.

Equivalently, the collection of initial segments has a (nonempty) perfect subset.

To do this, we'll use facts about Π_1^0 classes and their members since the collection of initial segments forms a Π_1^0 class.

(日) (日) (日) (日) (日) (日) (日)

Some definitions.

- For finite strings σ, the Kolmogorov complexity of σ, C(σ), is the length of the shortest program you can write that will output σ.
- An *order* is a computable, nondecreasing, unbounded function.
- A set A is *complex* if there is an order g so that

 $\forall n \ C(A \upharpoonright n) \geq g(n).$

A function *f* is *diagonally non-computable* (DNC) if for each *e* ∈ ω, the value of *f*(*e*) is different from φ_e(*e*) whenever φ_e(*e*) ↓.

(ロ) (同) (三) (三) (三) (○) (○)

Some facts.

Theorem (Kjos-Hanssen, Merkle and Stephan) A set *A* is complex iff there is a DNC function $f \leq_{wtt} A$.

So...

- If $A \leq_{wtt} B$ and A is complex, so is B. (\leq_{wtt} is transitive.)
- 0' is complex. Why? 0' wtt-computes

$$f(e) = \begin{cases} \varphi_e(e) + 1 & \text{if } \varphi_e(e) \downarrow \\ 0 & \text{if } \varphi_e(e) \uparrow \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A theorem about Π_1^0 classes

Theorem

Let P be a Π_1^0 class with a complex element A. Then P has a perfect Π_1^0 subclass Q with $A \in Q$.

Proof. Let *q* be an order witnessing that *A* is complex:

 $\forall n \ C(A \upharpoonright n) > g(n).$

Set $Q = \{X \in P | \forall n \ C(X \upharpoonright n) \ge g(n)\}$, and note that Q is a Π_1^0 subclass of P and that it is nonempty. (A is in it.)

By definition, every element in Q is complex, and so can't have any isolated elements (they would be computable!), so Q has to be perfect.

0' is not wtt-reducible to any initial segment of any scattered CLO

Take a CLO \mathcal{L} with an initial segment *A* that wtt-computes 0'. Let *P* be the (Π_1^0) class of initial segments of \mathcal{L} .

A is complex since 0' is, and is an element of P, so P has a nonempty perfect Π_1^0 subclass by the Theorem we just proved, and so \mathcal{L} must have uncountably many initial segments.

By the earlier lemma, we see that \mathcal{L} contains a copy of the rationals, and so is not scattered.

(日) (日) (日) (日) (日) (日) (日)

References

- Chisholm, Chubb, Harizanov, Hirschfeldt, Jockusch, McNicholl, Pingrey. Π⁰₁ classes and strong degree spectra of relations, accepted for publication in the *Journal of Symbolic Logic*.
- Harizanov. Turing degrees of certain isomorphic images of recursive relations, *Annals of Pure and Applied Logic* 93 (1998), 103 – 113.
- Kjos-Hanssen, Merkle, Stephan. Kolmogorov complexity and the recursion theorem, STACS 2006: *Twenty-Third Annual Symposium on Theoretical Aspects of Computer Science* (Marseille, France, February 23-25, 2006, Proceedings, Springer LNCS 3884), 149-161.