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Preface

This book documents the main ideas and concepts of Systemic Risk Moni-
tor (SRM), a model for systemic financial stability analysis and stress testing of
the Austrian banking system. These ideas constitute the foundations of SRM and
are results from a research program on banking regulation and systemic risk un-
dertaken at the research department of Oesterreichische Nationalbank. Based on
these results, the model was developed jointly by the OeNB research department
and financial stability division in collaboration with the University of Vienna and
Fachhochschule Vorarlberg. The output of the project is a software that allows
quantitative systemic stability analysis and stress testing for analysts of the fi-
nancial stability division of OeNB. Results are shared with banking supervisors at
OeNB and the Austrian Financial service Authority (FMA). This book is focused
on the main concepts and ideas. Application handbooks for the software itself are
written down in separate documents.

We have made an attempt to present the model at various levels of detail so
that it is useful both for readers who want a quick overview as well as for readers that
are interested in open research questions or technical modeling details to implement
their own systemic risk analysis model. A quick preview of the different chapters
can be given as follows:

Chapter 1 This is an introductory chapter. It gives a general overview and shows
some applications to illustrate the analysis usually undertaken by SRM with
a typical data set.

Chapter 2 This chapter explains how SRM models risks affecting the banking
system. For this purpose a multivariate distribution of risk factor changes is
modeled by a two step procedure. In the first step models for the marginal
distributions are selected based on optimal out of sample density forecasting
criteria. In a second step dependency is captured by a grouped t-copula.

Chapter 3 This chapter gives an introduction to the modeling of market risk in
SRM. It is short because in this respect SRM relies on traditional techniques
well established in quantitative risk management.

Chapter 4 This chapter givens an introduction to the modeling of credit risk with
counterparties outside of the banking system, mostly corporations and private
households. While the credit risk model is embedded in established techniques
known from the literature the modelling of systematic risk that drives default
correlation differs from traditional models. In SRM the credit risk model is
related to the multivariate distribution of risk factor changes by a statistically
estimated relation between macroeconomic risk factors and default rates in
various industry sectors.
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Chapter 5 This chapter gives an introduction to the core element of SRM which
takes traditional market- and credit risk analysis to the system level by com-
bining it with a network model of interbank relations. This is the core inno-
vation of SRM that allows an integrated analysis of different risk categories
and different data on the banking system as a whole.

Chapter 6 This chapter gives an overview of the data used by SRM. In the imple-
mentation of the model the organisation of the data to make them useful and
usable as a regular input was a major practical challenge. This chapter might
be therefore be of particular interest to readers at other institutions that are in
charge of financial stability of supervision and consider to use similar models.

Chapter 7 This chapter gives a conceptual overview of the implementation of the
model. It conveys the main ideas and principles of the organisation of the
software.

Appendix The appendix gives a technical discussion of the model. This might be
of interest for researchers who want to see the ultimate details of the model.

To get a broad idea and a quick overview of the general principles of SRM and how
they are applied we hope that the reader gets a fairly clear picture from reading
the introductory chapter 1. A reader who is happy with the broad overview of the
concepts given in chapter 1 might be interested to learn more about the practical
matters such as data and implementation. In this case it might be interesting to
combine chapter 1 with chapter 6 and 7. An overview of the different model parts
in greater detail can be gained from reading chapters 2 to 5. Reading this part of
the book will be most suitable for the reader who wants to get an idea of the main
concepts and some information about the technical details of the different parts of
the model without going into all of the technical details and derivations of the ideas.
Finally a reader who is technically interested in the model is best advised to start
by chapter 1 and then go directly to the appendix.

The work on the project has left us indebted to a number of people who
supported us with resources, advice and hands on help in many practical aspects
of the work. We would first of all like to thank Oesterreichische Nationalbank for
supporting our project that had an unusually long time horizon. We benefited
very much from the support of Andreas Ittner, Eduard Hochreiter and Michael
Wuerz. Among the many colleagues who helped us with their expert advice and
direct support we would like to mention particularly Martin Jandacka, Wolfgang
Wegschaider, Simon Flory and Christine Zulehner.

Vienna, March 2006.
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Chapter 1

Introduction to Systemic
Risk Monitor

1.1 Systemic Financial Stability Analysis

The ultimate mandate of central banks is to achieve and maintain price stabil-
ity. Safeguarding and maintaining financial stability has always been regarded as
a necessary prerequisite for this task. Institutionally this combination of tasks was
until very recently achieved by putting the central bank in charge of the oversight
of individual financial institutions. Following the lead of the UK, many countries,
including Austria, have transferred responsibility for the oversight of individual fi-
nancial institutions to new financial supervision authorities, while the central banks
kept the mandate to safeguard and maintain systemic financial stability. These in-
stitutional developments have forced central banks to arrive at answers to the new
question what it means to maintain systemic financial stability without having ul-
timate responsibility for the oversight over individual financial institutions.

Beginning in 2002 the Oesterreichische Nationalbank (OeNB) launched in par-
allel several projects that aim to develop modern tools for systemic financial stability
analysis and off-site banking supervision. In these projects OeNB expertise from
financial analysis and research was combined with expertise from the University of
Vienna, the University of Applied Sciences Vorarlberg, the University of Technology
Vienna and the Austrian Financial Service Authority (FMA) (see OeNB and FMA
(2005)).

Systemic Risk Monitor (SRM) is part of this effort. SRM is a model to analyze
banking supervision data and the major loan register collected at OeNB in an
integrated quantitative risk management model. The purpose of SRM is to assess
at a quarterly frequency systemic risk - the probability of a major breakdown in
financial intermediation - in the Austrian banking system. SRM is also used to
perform regular stress testing exercises.

1.2 An Overview of the SRM Model

The basic idea of the SRM model is to combine standard techniques from modern
quantitative market- and credit risk management with a network model of the
banking system. In contrast to standard risk management models, SRM makes the
step from the individual institution perspective to the system level. This step is the
major challenge to be met by any systemic risk model. Only at the system level the

1



2 Chapter 1. Introduction to SRM

two major reasons for simultaneous defaults become visible: Correlated exposures
and financial inter-linkages. The risk of simultaneous defaults of institutions and
the financial losses of such events is the key focus of systemic financial stability
analysis. SRM can draw on a rich modern literature dealing with risk management
and risk monitoring problems for banks or insurance companies. The change of
perspective from the individual institution level to the system level is the main
methodological innovation of SRM. It is this system perspective where SRM had
to explore new territory. This chapter gives an overview of the main concepts and
ideas used in our approach as well as a brief overview of how these concepts are
applied for systemic financial stability analysis. We will follow closely the excellent
discussion in Chapter 2 of McNeil et al. [2005].

1.2.1 Some concepts from quantitative risk management

SRM describes the Austrian banking system at the beginning of each quarter as a
system of portfolios. Each portfolio in the system belongs to one bank and typically
consists of collections of securities such as stocks and bonds across domestic and
foreign markets, a collection of corporate loans as well as other assets and liabilities
such as deposits and interbank loans. The value of a portfolio of a particular bank
i at time s, called the observation time, is denoted by V;(s) and the vector of
portfolio values in the entire banking system is denoted accordingly by V(s) =
(Vi(s),...,Va(s)). Portfolio values are random variables and it is assumed that at
time s the system of portfolio values V(s) is observable from the data available at
OeNB.
For a given time horizon h, which in SRM is always one quarter (approximately
60 trading days) the loss or gain of the system of portfolios over the period [s, s+ h]
is given by the vector
Lissrn = (V(s +h) = V(s) (L1)

While L 1) is observable at s + h it is random from the viewpoint of the obser-
vation time s. The ultimate goal of SRM is to model the distribution of L, s1p)
over a quarterly horizon. All questions concerning systemic risk, the probability of
simultaneous failures and the losses associated with these events are answered with
respect to this distribution.

We adopt the usual practice from risk management to think of future portfolio
values as a function of time ¢ as well as a d-dimensional vector of risk factors
Zt = (Zt,h ceey Zt,d)

Vi =1(t,Z:) (1.2)

f(t,Z;) is the vector (f1(¢,Z¢), ... fn(t,Z;)) consisting of the individual functions f;
of each bank. It is assumed that the risk factors are observable and known at the
observation time. In risk analysis we are usually interested in risk factor changes
over the analysis horizon. Denoting the vector of risk factor changes by X; the loss
of the system of portfolios can be written as

Liv1 = (f(t + 1,2 + Xi11) — £(2,Zt)) (1.3)

All individual modeling steps as well as the practical challenges that arise in SRM
have to do with the details of how we describe the system of functions mapping risk
factor changes to portfolio losses.

From this discussion we see a fundamental modelling choice taken in SRM.
Following the literature on risk management of individual institutions the analysis
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is undertaken for a given system of portfolios observed at the observation time.
The value of the portfolios is assumed to be completely determined by the risk
factors and all behavioral considerations are not taken into account. The longer
the time horizon under consideration the more problematic is such an assumption.
In particular in our framework where we aim at an integrated analysis of portfolio
positions who can be turned over easily with others that are much more difficult
to change even at a 60 day horizon, this assumption is debatable for some of the
portfolio positions. We ask the following question: given the portfolio positions
we observe today in the system and given the potential future realizations of risk
factors, how would these changes influence portfolio values ceteris paribus? This
allows a statement about the risk inherent in the current system of portfolios.

1.2.2 Mapping risk factors to portfolio positions

In the construction of portfolios for the Austrian banking system we conceptually
distinguish three major categories of positions. The first category are positions of
marketable securities such as stocks, bonds, or assets and liabilities denominated in
Euro or in in foreign exchange. The second category contains all loans with coun-
terparties outside of the banking system, mainly corporations. The third category
contains all positions held among the Austrian banks, interbank loans as well as in-
terbank shares. The three categories can be distinguished by the complexity of the
function mapping risk factor changes into losses (or gains) of the portfolio values.

For marketable securities the situation is fairly simple. Supervisory data allow
us a fairly coarse reconstruction of positions of market values of securities that are
held on the bank balance sheet. The picture is coarse because individual stocks are
lumped into Austrian and foreign and interest and currency sensitive instruments
are mapped into broad maturity and currency buckets. Consider for instance a sim-
ple stock portfolio consisting of Austrian and foreign stocks. Risk factor changes
are then the logarithmic changes in the Austrian and a foreign stock price index.
To calculate gains or losses from the stock portfolios we can use a linearized approx-
imation of the loss function. This amounts then to simply multiplying the position
values with the risk factor changes to get the portfolio gains and losses. For interest
and currency sensitive positions we can equally arrive at gains and losses by using
linearized losses and the relevant risk factor changes, that is changes in different
exchange rates, the main international exchange rates with the Euro or interest
rate changes for different maturities and different currencies.

For loans to non banks the situation is more complicated because the de-
pendence between loan losses and risk factors is more indirect. We don’t have a
simple analogue to market returns. Defaults of loans in particular industry sector
- the units to which we can break down loans in SRM - are driven by default in-
dicators. The probability distribution of these indicators depends mainly on risk
factors describing the aggregate state of the economy, i.e. the driving risk factors
are macroeconomic variables. Due to the discrete nature of the default indicators
linearized losses are of little importance for the analysis of credit risk. Therefore
SRM uses a credit risk model to calculate losses from corporate loan portfolios. The
basic idea is that the default probability of a loan in a particular industry sector —
say construction — depends on a set of macroeconomic variables according to a func-
tion the parameters of which are statistically estimated from historical data. Given
a realization of macroeconomic variables and the implied probability of default for
different industry sectors, loan defaults are assumed to be conditionally indepen-
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dent. Under this assumption a loan loss distribution can be derived for each bank
for each value of macroeconomic risk factor changes. Loan losses are then calculated
by independent draws from these loan loss distributions. For loan losses, therefore,
the function mapping risk factor changes (changes in macroeconomic variables) to
loan losses is more complicated.

Finally gains and losses from interbank positions are calculated by the use of a
network clearing model. The basic idea of this model is to capture interbank loans
and shares by a matrix of all bilateral positions as observed at the observation time.
Risk factor changes that have an impact on the value of loans and market positions
together with the network of interbank loans determine for each bank whether it can
fulfill its interbank promises or not. If one or more banks are unable to fulfill their
interbank obligations for a particular realisation of risk factor changes a clearing
procedure redistributes the value of insolvent institutions among the creditors until
all financial claims after the realization of risk factor changes become consistent.
Thus in the case of interbank positions the function mapping risk factor changes
into interbank losses is a fairly complicated function of market and credit losses and
the clearing procedure.

All these losses in combination determine

Lt+1 = (f(t + 17 Zt + Xt-',—l) — f(t, Zt)) (14)

in SRM.

Whereas the modelling of non-interbank market and credit losses is rooted in
standard quantitative risk management techniques the combination with an inter-
bank network model to arrive at total gains and losses in the banking system in
SRM are new. Both generalizations of standard individual risk management tech-
niques, the simultaneous consideration of portfolio values across the system for given
risk factor changes and the resolution of bilateral claims via an network clearing
model, focus on the main issues for an institution in charge of monitoring systemic
financial stability, the probability of joint default of institutions and its financial
consequences.

1.2.3 Calculating systemic losses

A graphical description of the model structure is given in Figure 1.1. The figure
displays the modular construction of SRM. All modules will be described in detail
in the following chapters.

At the top of Figure 1.1 is a model of a multivariate risk factor change dis-
tribution. This distribution is estimated every quarter based on past observations
of market price changes and changes of macroeconomic variables that have an im-
portant impact on default probabilities. The modeling strategy treats the marginal
risk factor distributions and the dependency structure separately. While marginal
distributions are chosen according to statistical tests that select for each risk factor
a model which gives the best out of sample density forecast of changes in each risk
factor over a three month horizon, the dependence is modeled by fitting a grouped
t-copula to the data. Together the marginal distribution and the copula character-
ize the multivariate risk factor change distribution. For the simulation of scenarios
vectors of risk factor changes are drawn at random from this distribution.

Each draw of risk factor changes from the multivariate distribution character-
izes a scenario. Scenarios are then translated into profits and losses at the system
level by the procedures described above. This is achieved in two steps. In a first step
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Distribution of Risk Factor Changes

Scenarios

Interbank Network Model Non Interbank
A

Market Risk Losses (== Credit Risk Losses

| |

Default Statistics of Banking System

Decomposition Fundamental, Contagious Defaults
Value at Risk for Lender of Last Resort

Figure 1.1. The figure shows the basic structure of the SRM model. Banks
non interbank portfolios are exposed to shocks from a risk factor change distribution
of market and credit risk factors. The value of inter-bank positions is determined
endogenously by the network model and a clearing mechanism that makes all finan-
cial claims consistent ex post after shocks have been realized. The clearing of the
inter-bank market determines the solvency of other banks and defines endogenous
default probabilities for banks as well as the respective recovery rates. The output
consists of insolvency statistics, a decomposition into fundamental and contagious
defaults and an estimate about the amounts of liquidity a lender of last resort hast to
stand ready to inject into the system. The individual loss components are available
for the analyses of the overall loss distribution as well as the market-, credit- and
interbank risk losses.

each scenario is analyzed with respect to its impact on the value of non interbank
market and credit positions.

These positions are then combined with the network model. The output of the
clearing model gives the final result for the banking system for each scenario. Sim-
ulating many scenarios we get a distribution of insolvency and gains and losses for
the banking system that allows us to make probability assignments for insolvencies
over a three month horizon.

We use four main risk concepts to look at the simulation output.

1. Analysis of fundamental and contagious defaults.

2. Analysis of PD distribution according to rating classes.
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3. Analysis of aggregate loss distributions.

4. Quantification of resources that might have to be mobilized by a lender of last
resort.

Since the risk of bank defaults in particular of joint defaults and the large scale
breakdown of intermediation is of major interest to the central bank we put a par-
ticular focus on bank defaults and default probabilities. The network model allows
us to distinguish default events that directly result from changes in risk factors
from defaults that result indirectly from contagion of insolvency through interbank
relations. We call defaults fundamental if they result directly from risk factor move-
ments and we call them contagious if they are a consequence of interbank insolvency
contagion. Apart from analyzing the number of fundamental and contagious de-
faults we look at the distribution of the simulated default probabilities according
to the OeNB’s rating classes. We look at the aggregate loss distribution both for
all risk categories in combination and for certain subcomponents such as market
risk, credit risk and contagion risk. Finally we make an attempt to quantify the
resources a lender of last resort might have to mobilize to prevent insolvencies.

1.2.4 Stress Testing

An advantage of a quantitative model is that it allows the consideration of hypo-
thetical situations. In the context of systemic risk assessment one kind of thought
experiments is of particular importance. Usually it is of interest how the risk mea-
sures for the banking system will behave under extreme developments of risk factor
changes. Such thought experiments are known as stress testing. Systemic risk
monitor provides a coherent framework to consistently conduct such stress testing
exercises.

In a stress test one or more risk factors of interest are constrained to take ex-
treme values, like a certain drop in GDP, or a hike in short term interest rates. Since
we have a complete model of the multivariate risk factor distribution we can then
perform a model simulation conditional on the constraint that certain risk factors
are at their stressed values. The risk measures of the model can then be studied
relative to the baseline simulation based on the unconditional risk factor change
distribution calibrated to historical data. The main advantage of this approach is
the consistency with the dependence structure of the risk factors and therefore the
consistency with the quantitative framework. Such an approach is advocated by
Elsinger et al. [2006a] or Bonti et al. [2005].

1.3 Data

The main sources of data used by SRM are bank balance sheet and supervisory
data from the monthly reports (MAUS) to the Austrian Central Bank (OeNB)
and the database of the OeNB major loans register (Groflkreditevidenz, GKE). In
addition we use default frequency data in certain industry groups from the Austrian
rating agency Kreditschutzverband, financial market price data from Bloomberg,
and macroeconomic time series from OeNB, the OECD and the IMF International
Financial Statistics.

Banks in Austria file monthly reports on their business activities to the cen-
tral bank. In addition to balance sheet data, MAUS contains a fairly extensive
assortment of other data that are required for supervisory purposes. They include
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Bank Market Share Cumulative Share
Bank Austria Creditanstalt 16.75% 16.75%
Erste Bank AG 10.19% 26.94%
RZB 7.89% 34.83%
BAWAG PSK 7.21% 42.04%
Kontrollbank 3.64% 45.68%
OeVAG 2.20% 47.88%
RLB OOE 2.15% 50.03%
Kommunalkredit 2.13% 52.16%
Hypo Alpe Adria 2.06% 54.23%
RLB NOE Wien 1.95% 56.18%

Table 1.1. The 10 largest Austrian banks in 2005 and their respective
market shares in terms of total assets.

numbers on capital adequacy statistics, interest rate sensitivity of loans and deposits
with respect to various maturity buckets and currencies, and foreign exchange ex-
posures with respect to different currencies.

In our analysis we use a cross section from the MAUS database of all reporting
banks in the relevant observation period.

In December 2005 the aggregate total assets of the Austrian Banks amount to
725 billion Euro. This is approximately 2.7 times the Austrian GDP in 2005. The
banking industry is highly concentrated. As we see in Table 1.1 the two largest banks
account for a quarter of aggregate total assets. The market share of the 10 largest
banks is more than 55%. The domestic interbank liabilities (deposits) amount to
113 billion Euro (120 billion Euro). The liabilities against foreign banks sum up
to 98 billion Euro (deposits 88 billion Euro). The share of interbank exposures to
total assets varies a lot across banks from 0% up to 96%. The average (median)
exposure is 13% (8%).

To estimate shocks on bank capital stemming from market risk, we include
positions in foreign currency, equity, and interest rate sensitive instruments from
MAUS. For each bank, we collect foreign exchange exposures for USD, JPY, GBP,
and CHF only, as no bank in our sample has open positions of more than 1% of total
assets in any other currency at the observation date. We collect exposures to foreign
and domestic stocks, which are equal to the market value of the net position held
in these categories. For the exposure to interest rate risk we use the interest rate
risk statistics, which provides exposures of all interest sensitive on- and off balance
sheet assets and liabilities with respect to 13 maturity buckets for EUR, USD, JPY,
GBP, CHF, and a residual representing all other currencies. On the basis of this
information we calculate net positions in the available currencies - neglecting the
residual - with respect to four different maturity buckets: up to 6 months, 6 months
to 3 years, 3 to 7 years, more than 7 years. For the valuation of net positions in
these maturity buckets we use the 3 month, 1 year, 5 years and 10 years interest
rates in the respective currencies.

This procedure gives us a vector of 26 exposures, 4 FX, 2 equity, and 20
interest rates (4 maturities for each currency), for each bank. Thus we get a N x 26
matrix of market risk exposure.

To analyze credit risk we use in addition to the data provided by MAUS the
major loans register of OeNB (GKE) which provides us with detailed information on
the banks’ loan portfolios to non-banks. This database contains all loans exceeding
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a volume of 350,000 Euro on a loan by loan basis.

We assign the domestic loans to non-banks to 13 industry sectors (basic in-
dustries, production, energy, construction, trading, tourism, transport, financial
services, public services, other services, health, private households, and a residual
sector) based on the NACE-classification of the debtors. Furthermore we add re-
gional sectors (Western Europe, Central and Eastern Europe, North America, Latin
America and Carribean, Mid East, Asia and Far East, Pacific, Africa, and a resid-
ual sector) for foreign banks and non-banks individually, resulting in a total of 18
non-domestic sectors. Since only loans above a threshold volume are reported to
the GKE we assign domestic loans above this threshold to the domestic residual
sector. This is done on the basis of a report that is part of MAUS and provides the
number of loans to domestic non-banks with respect to different volume buckets.
For non-domestic loans no comparable statistic is available. However, one can as-
sume that most of cross-border lending exceeds the threshold of 350,000 Euro and
hence the associated risk can be neglected.

The riskiness of an individual loan to domestic customers is assumed to be
characterized by two components: the rating which is assigned by the bank to the
respective customer and the default frequency of the industry sector the customer
belongs to. The banks rating is reported to the GKE and is mapped within the
OeNB on a master scale, which allows assigning a probability of default to each loan.
The default frequency data are from the Austrian rating agency Kreditschutzver-
band (KSV). The KSV database provides us with time series of insolvencies and
the total number of firms in most NACE branches at a quarterly frequency starting
in 1969. This allows us to calculate a time series of historically observed default
frequencies for our 13 industry sectors by dividing the number of insolvencies by
the number of total firms for each industry sector and quarter. The time series
of default frequencies is explained by macroeconomic risk factor changes using an
econometric model. By this estimated equation we can translate macroeconomic
risk factor changes in probabilities of default for each industry branch. These de-
fault probabilities serve as input to the credit risk model. To construct insolvency
statistics for the private and the residual sector, where no reliable information on
number of insolvencies and sample size is available, we take averages from the data
that are available. Default probabilities for the non-domestic sectors are calculated
as averages of the default probabilities according to the ratings that are assigned
by all banks to all customers within a given foreign sector.

1.4 Applications

OeNB uses the SRM model mainly for two applications: Systemic risk assessment
and stress testing. Systemic risk assessment performs a simulation at the beginning
of each quarter as soon as all new data are available. The output of this simulation
is a risk report containing system wide measures of default probabilities of Austrian
banks and a quantification of potential shortfalls that might have to be covered if
wide spread default occurs. In the Stress tests one or more risk factors of interest are
deliberately set to an extreme value and the simulation is performed conditional on
the assumption that these risk factors are at their hypothetical extreme realizations.
The output of this simulation can then be compared to the baseline simulation.

1The GKE database covers about two third of all loans of Austrian banks in terms of nominal
values.
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Figure 1.2. A screenshot from the SRM interface.

To make SRM operational, it is implemented such that it can be accessed via
an interface that can be called from the analyst’s desk. The interface is a Java client
application which gives users the possibility to run certain predefined simulations
(including a variety of regular stress tests) as well as to parameterize individual
simulations. The level of parameterization covers the point in time for which the
simulation is run, data included in the model, various alternative model components,
as well as their parameters. Additionally stress tests can be defined for market and
credit risk factors. Parameters chosen are stored at database level and written
to configuration files, which are read by the application at runtime. The models
themselves are implemented with Matlab, version 14.3, a programming language
for technical computing, which provides object-oriented means to include various
model components and store complex data sets. Although SRM functionality can
be accessed through Matlabs standard user interface, in its end-user implementation
the source code of SRM is compiled as C Code and called via the SRM interface.
In either case output is written to Microsoft Excel files for further analysis, which
are sent as an e-mail attachment to the analysts desk by SRM after a simulation
request has been finished. A screen shot from the interface is shown in figure 1.2.

1.4.1 Regular Supervisory Data Analysis and Stress Tests

Systemic Risk Monitor will be used to do regular analysis of supervisory data with
respect to systemic risk problems. It will also be used as a stress testing tool. There
is no coherent approach to stress testing so far. While most stress testing exercises
in the past were focused on the analysis of single stress scenarios, SRM allows to
do stress tests via full simulations that take the dependence between risk factor
changes explicitly into account. Instead of analyzing a single stress scenario, we
can set one or more risk factors to their hypothetical stressed value and simulate
from the conditional distribution of risk factor changes. This approach has been
advocated by Elsinger et al. [2006b]. It has also been proposed by risk modelers
from the banking industry (see for example Bonti et al. [2005]).

Of course this approach to stress testing does not exclude more traditional
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single scenario stress tests, that have frequently been used in the past in particular
to support the IMF’s Financial Sector Assessment Program (FSAP). The modular
structure of SRM allows to side step the risk factor distribution model and perform a
network clearing under the assumption that one risk factor or some other parameter
of interest is at its stressed value while all other risk factor values and parameters
are at their default values. SRM is therefore able to nest traditional stress testing
techniques in its overall framework.

We will now illustrate output generated by SRM by looking at some examples
based on a recent simulation for the last quarter of 2005. We present our results
always for a regular simulation, based on the date of the last quarter 2005 and two
stress tests: Stress test number one simulates an unexpected drop in GDP. Stress
test number two assumes a rise in the three month Euro interest rate by 120 basis
points.

1.4.2 Fundamental and Contagious Defaults

The network model generates a multivariate distribution of bank insolvencies across
scenarios. This multivariate distribution contains information on the marginal dis-
tributions of individual bank defaults as well as on default dependency among the
banks. We interpret the relative frequency of default across scenarios as a default
probability.

Our method allows a decomposition of bank insolvency cases into those re-
sulting directly from shocks to the risk factors and those that are consequences of a
domino effect. Bank defaults may be driven by losses from market and credit risk,
(fundamental default). Bank defaults may, however, also be initiated by contagion:
as a consequence of other bank failures in the system (contagious default).

We can quantify these different cases and are able to give a decomposition
into fundamental and contagious defaults. Table 1.4.2 summarizes the probabilities
of fundamental and contagious defaults both in the basic simulation as well as
under both stress scenarios. These probabilities are grouped by the number of
fundamentally defaulting banks.

Tabel 1.4.2 shows that in the base case simulation we have no scenario where
in total more than 5 banks will default fundamentally. Among all the scenarios
including up to 5 fundamental defaults all scenarios show no contagion. This is
result is consistent with the findings in Elsinger et al. [2006a] where it is shown
that contagion is a rare event given a risk factor change distribution calibrated to
historical data. In situations of stress the picture changes. When we have a drop
in GDP where up to 50 banks default fundamentally and there can also be some
contagion once we have 21 to 50 fundamental defaults. The stress test for an interest
rate hike looks less spectacular. The simulation shows no contagion effects but at
least one and up to at most five banks are expected to default. Thus according to
the simulation we have to expect at least one default with certainty under such a
stress scenario. The analyst using SRM has the opportunity to look deeper into the
micro structure of these results and find out details about the institutions that are
most severely hit under the stress scenario.

1.4.3 Distribution of PD according to Rating Classes

Table 1.4.2 gives us the aggregate picture. To get a more precise picture about the
distribution of risk within the banking system we map the probabilities of default
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Number Base Case GDP-Stress Interest-Stress

of Banks fund. cont. fund. cont. fund. cont.

0 74.49% 0.00 % | 68.53%  0.00% 0.00 0.00 %
1to5H 25.51% 0.00 % | 31.27% 0.00% | 100.00 0.00 %
6 to 10 0.00% 0.00 % 0.13% 0.00% 0.00 0.00 %
11 to 20 0.00% 0.00 % 0.05% 0.00% 0.00 0.00 %
21 to 50 0.00% 0.00 % 0.02% 0.02% 0.00 0.00 %
more than 50 0.00% 0.00 % 0.00% 0.00% 0.00 0.00 %
total 100.00% 0.00 % | 100.00% 0.02% | 100.00 0.00 %

Table 1.2. Probabilities of fundamental and contagious defaults. A fun-
damental default is due to the losses arising from exposures to market risk and
non-bank credit risk, while a contagious default is triggered by the default of another
bank that cannot fulfill its promises in the inter-bank market. The probability of
occurrence of fundamental defaults alone and concurrently with contagious defaults
is observed. The observation period is December 2005. The time horizon is one
quarter. The column Base Case shows the result for a simulation without stress.
The Column GDP-Stress shows the case of a stress test with an unexpected drop in
GDP. The third column Interest-Stress shows the stress test with a 120 basis point
increase in the short term (three month) Euro interest rate.

into the rating classes used by OeNB, which has seven non-default rating-classes and
eight default classes. This distribution of ratings that is implied by our simulation
can be seen in Table 1.4.3.

Base Case GDP-Stress Interest-Stress
Class OeNB MS | abs. rel. abs. rel. abs. rel.

1 AAA 800 94.67% | 779  92.19% | 791 93.61 %
2 AA 0 0.00% 0 0.00% 0 0.00 %
3 A 8 0.95% 13 1.54% 7 0.83 %
4 BBB 15 1.78% 22 2.60% 15 1.78 %
5 BB 13 1.54% 19 2.25% 15 1.78 %
6 B 8 0.95% 9 1.07% 14 1.66 %
7 C 1 0.12% 3 0.36% 2 0.24 %

Table 1.3. Share of banks in OeNB rating classes.

Table 1.4.3 shows that in the base case simulation about 95% of banks are
expected to be in a triple A rating at the end of the first quarter of 2006. Under
the assumptions about our two stress scenarios the number of top rated institutions
decreases slightly. The biggest increase under stress can be observed in the lower
rating classes. The number of banks and the rating class just above the default
class triples in the first stress scenario (drop in GDP) and doubles in the second
(increase in the Euro interest rate).
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1.4.4 Aggregate Loss Distributions

Going from insolvencies to the distribution of losses over the next quarter we can
draw pictures of the losses due to credit and market risk as well as due to the
combination of both losses. Contrary to familiar pictures from the practice of risk
management these distributions are derived from an integrated analysis of all port-
folio positions and its change in value due to the entire distribution of risk factor
changes. Thus rather than analyzing credit and market risk in isolation these graphs
give us the results from an integrated analysis. Figure 1.4.4 shows four loss distri-
butions. From the figures we can see — as in standard quantitative risk management
— whether or not the system has enough capital to absorb extreme losses. Therefore
loss distribution figures give a first overview of the shock absorption capacity of the
system.

1.4.5 Value at Risk for the Lender of Last Resort

A relevant aspect of our model for the regulator is that it can be used to estimate
the cost of crisis intervention. We estimate the funds that would have to be available
to avoid contagious defaults or even fundamental defaults for different confidence
levels. A lender of last resort’s cost of preventing fundamental default is calculated
as the amount required to prevent banks from becoming insolvent. A lender of last
resort’s cost of preventing contagious defaults is calculated as the amount required
to prevent all but fundamentally defaulting banks from becoming insolvent. Hence,
interbank liabilities are not fully insured but just enough to prevent contagion.
Table 1.4 reports our results for the base line simulation

Base Case GDP-Stress Interest-Stress
Quantiles 95% | 99.5% | 95% | 99.5 % | 95% | 99.5%
Resources | 29.16 33.16 29.16 101.34 1.24 29.76

Table 1.4. Costs of avoiding defaults: In the first row we give estimates
for the 95,99, and 99.5 percentile of the avoidance cost distribution across scenarios.
Amounts are in million euros.

Since defaults occur rarely in the base scenario the amounts that must be
available to prevent default in most of the scenarios are low. In a stress the amount
of funds that have to be mobilized by a lender of last resort increase but they remain
still very low. The analysis shows that for the particular quarter of December 2005
a lender of last resort can expect that even if crises scenarios simulated by the model
do actually occur, in case of crises intervention the amounts to be mobilized will be
small.

1.4.6 Changes in System wide VaR under Stress

Finally we analyze the changes in Value at Risk of the distribution of losses relative
to regulatory capital. That is we look at the distribution of losses in percent of
regulatory capital and look at the quantiles of this distribution. In our case we
analyze the 99% quantile or the 99% value at risk. We look at these measures for
the different subcategories, total losses, market losses, credit losses and contagion
losses. The results are reported in Table 1.5.
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Figure 1.3. Densities of the loss distribution for the whole banking system.
The densities are shown for the entire portfolio and separated according to market
and credit Tisk as well as according to the losses due to contagion.
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Rel. VaR Total Market | Credit | Contagion
Base Case 13.58 % | 211 % | 12.35 % 0.03 %
GDP-Stress 16.95 % | 5.68 % | 12.52 % 0.05 %
Interest-Stress | 15.56 % | 4.34 % | 12.40 % 0.04 %

Table 1.5. 99% quantile of the distribution of losses relative to requlatory
capital for Total losses, losses from market risk, losses from credit risk and losses
from contagion risk. This relative VaR is shown for the baseline simulation, fro the
case of a GDP-stress test and for the case of an interest rate stress test.



Chapter 2

The Multivariate
Distribution of Risk
Factor Changes

In SRM uncertainty is described by a combination of exogenous and endogenous
risk. The exogenous risk drivers are captured by a multivariate distribution of risk
factor changes that affect the value of the non-interbank positions. The value of
interbank exposures is determined endogenously by the network model via a clearing
procedure for all financial claims in the system.

The choice of risk factors is determined by the data that are available to
describe bank portfolios. On the one hand we have aggregate positions of marketable
securities such as stocks, bonds, deposits and securitized liabilities. For all these
categories we have both domestic and foreign positions. The value of these exposures
depends on the change of market prices: stock market indices, interest rates at
different maturities and for different currencies as well as exchange rates. We choose
risk factors in these categories that can be mapped to the exposure information that
we can gain from our data. Loans, which constitute a major part of the bank assets
are not traded on markets and can not simply be valued at market prices. Risk
factors that drive the value for loans are macroeconomic fundamentals that influence
corporate default rates and thus the quality of the loan portfolios of banks.

The joint distribution of all relevant risk factors, market prices and macroe-
conomic variables that drive corporate defaults, describes the exogenous risks and
their impact on banks simultaneously. In SRM the distribution is needed for sim-
ulation. It should enable us to draw as many risk scenarios as we need to get a
good Monte Carlo simulation for the distribution of fundamental and contagious
defaults as well as of the distribution of market and credit risk losses in the system.
Modeling such a distribution poses several challenges.

The first challenge is that the integrated analysis of market and credit risk
factors requires a common time horizon . It is not straightforward which common
horizon is adequate because market positions can be turned over at very short
frequencies whereas positions in the loan book can usually not be turned over quickly
and are held for longer horizons. In SRM we use a common time horizon of both
market and credit exposures of one quarter which is approximately 60 trading days.
This choice of time horizon leaves us with the problem how to integrate market
data, that are available at a daily frequency, with data related to the risk of credit
exposures, which are only available quarterly.

The second challenge is the adequate description of marginal distributions
of risk factor changes. Since we want to use the multivariate distribution model

15
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for simulating portfolio gains and losses over a three month horizon we choose
the models for the marginal risk factor change distributions based on their out
of sample performance rather than their in sample fit. The ultimate purpose of
SRM to simulate fundamental and contagious defaults requires that we forecast the
whole distribution and not only some of its moments. Our criterion is thus to choose
from a class of a priori reasonable models one that gives us the best out of sample
performance in forecasting the multivariate distribution of risk factor changes over
a three month horizon.

The third challenge is to capture dependence in an adequate way. Since we saw
that stylized facts about financial market data often show deviations from normality,
we need a model of dependence that is able to capture this fact. Working with a
framework that is both flexible and tractable we decided to work with a grouped
t-copula for dependence modeling.

2.1 Risk factors: Stylized facts

Risk factors in SRM consist of logarithmic daily changes (returns) of financial mar-
ket prices and of quarterly macroeconomic variables. In the model both set of
variables are brought to a common time horizon of a quarter. Most of the risk fac-
tors are time series data of daily market returns. Aggregation to lower frequencies,
such as a quarter are based on these series.

To better see the empirical motivation for our approach to modelling the
multivariate distribution of changes in risk factors it might be helpful to consider
some stylized facts about financial time series. In the following discussion we confine
ourselves to an illustration of these facts to one example from our data set that shows
these stylized facts most clearly rather than giving a systematic discussion of all
the risk factors used. These stylized facts are well known in empirical finance and
are summarized by McNeil et al. [2005] in chapter 4 of their book.

The first fact is that return series show varying volatility over time and are
not iid (identically independently distributed) although they show little serial cor-
relation. Figure 2.1 shows daily log returns of the DAX from 1990 to 2004 and
simulated iid data from a normal distribution calibrated to the parameters of the
return data. The simulated normal data are visibly different from the empirical
data.

Compared to the simulated series the real series shows the tendency of extreme
returns followed closely by other extreme returns, a phenomenon known as volatility
clustering. If we look at correlograms of the raw data and their absolute values as
well as on the correlogram of the raw data and the simulated data in figure 2.2 we
see very little autocorrelation in the raw data but contrary to the simulated data
the raw data show autocorrelation in the absolute values, a sign that the data are
not independent.

These features can also be found in foreign exchange as well as in all interest
rate series, we use in SRM. It is interesting that the correlogram shows little or no
autocorrelation in the raw data. This expresses a further stylized fact, namely that
conditional expected returns are close to zero. The presence of volatility clustering
suggests however that conditional standard deviations are continuously changing
over time. Thus to capture the nature of financial return series we often need to
model changing volatility.

The final set of stylized facts relates to extreme values. 2.3 shows the empir-
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Figure 2.1. Log returns from DAX index from January 2nd 1990 to De-
cember 31 2004 compared with simulated id data from a normal distribution.

ical quantiles of Dax returns against the quantiles of a normal distribution. The
deviations from the dashed line shows that the data tend to have heavier tails than
the normal distribution.

These facts apply to other financial time series as well but to different degrees.
Furthermore as we decrease the frequency to lower time intervals the features shown
here with respect to the DAX data become less pronounced.

Our approach to the multivariate distribution model of risk factor changes is
motivated by the aim to accommodate these features of the data if necessary, and
to allow a certain discrimination or grouping between different categories of risk
factors, such that we can differentiate whether we describe stocks, interest rates,
foreign exchange or macro variables.

2.2 A Copula Approach

In SRM the realizations of many different risk factor changes determine the portfolio
values and thus the solvency or insolvency of banks in different scenarios. Systemi-
cally important events — risk factor changes that have a potentially high impact on
the banking system — are intimately related to the dependence between these risk
factor changes. It is for instance a stylized fact about banking crises in the past
that episodes of joint bank defaults occur together with high loan default rates and
a situation of depressed asset values (Borio [2003], Goodhart et al. [2003]) In such
a situation risk factor changes that have an impact on credit risk and risk factor
changes that have an impact on market risk move simultaneously in a direction that
bring many institutions under pressure at the same time.

At an abstract level the dependence between changes in risk factors X1, ..., X,
is completely described by their joint distribution

F(z1,...,2y) =Pr(X5 < x1,..., X, < zp)

If the number of risk factors is large, modeling this distribution is a challenging
task. One is typically in a situation where relatively few observations are available to
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Figure 2.2. Correlograms for the two data sets. Dashed lines mark the
standard 95 % confidence interval for autocorrelations of a process of iid finite vari-
ance random variables.

fit a very high dimensional problem. For instance, if one works with the assumption
that the risk factor changes are best described by a 20 dimensional multivariate
normal distribution and we have only quarterly historical data from 1970 until
2005, we have 210 parameters that are estimated with only 2800 observations. The
data situation can be improved as we collect more observations. As soon as we
want to capture features in the data that deviate from the normal distribution
assumption we need distribution models that require to fit additional parameters.
Since market return data, in particular at shorter frequencies (like daily or weekly
intervals) deviate substantially from normality a reasonable model must be able to
accommodate these features in the data.
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Figure 2.3. The figure shows a plot of the empirical quantiles of the DAX
against the quantiles from data simulated from a normal distribution. The plot shows
an inverted S-shape, which is evidence of substantial deviations from normality in
the tails of the distribution.

The copula approach allows a ”divide and conquer” strategy to model the
multivariate distribution and allows at the same time to accommodate potential
deviations from normality that might exist in our data.

Before we explain the details of this approach and how we apply it to our
problem, it might be helpful to explain the divide and conquer strategy in the fa-
miliar context of a normal distribution. Instead of estimating all the parameters
simultaneously we could split the problem in two parts, where we first would esti-
mate the means and the variances of all risk factors separately and then estimate
the correlation coefficients. In other words, we first model all the marginal distribu-
tions and then consider their dependence separately. For more complex dependency
structures, as we usually have them in problems like SRM, this approach does not
help (see Embrechts et al. [2002]). We need a more general model of dependence.

The approach we choose in SRM rests on a generalization of the two stage
strategy used in the case of the normal distribution. We first look only at models for
the univariate margins of risk factor changes. The issue of dependence is then stud-
ied separately by using the concept of a copula. The example of the multivariate
normal distribution is special because only in this case the dependence structure is
characterized by the correlation. If we want to study dependence in a broader con-
text, permitting also risk factor change distributions which deviate from normality,
the copula approach turns out to be very useful.

The approach works such that we first capture the marginal distributions by
different statistical models Fi(x1),..., F,(x,) for each risk factor separately. This
splits the task in the first step into n one dimensional problems for each statistical
model for the marginals. For each of these models for the univariate margins F; we
then select the one that gives the best out of sample density forecast over a three
month horizon.

Once the models for the marginal distributions are chosen, the question of de-
pendence between the single risk factors is modelled separately by a copula function.
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The marginal distributions and the copula in combination then uniquely determine
the multivariate distribution F'(x1, ..., 2, ), a fact that is known as Sklar’s theorem
(see Nelsen [1999]).

Let us start with the more familiar problem of modelling the marginal dis-
tributions of risk factor changes and then explain the more advanced concept of
modeling dependence by a copula in a second step.

2.2.1 Modeling Marginal Distributions

When choosing a model for the marginal distributions we try to work with as few
a priori assumptions about distributional properties as possible. Instead we rely on
statistical out of sample tests of the 60 day density forecasts produced by a group
of reasonable models.

Based on these test results we select a small set of models able to cover all
the relevant time series, rather than picking for each time series the optimal model.
The motivation for this strategy is parsimony and robustness under the inclusion
of new time series. We want to avoid that all models have to be tested on a new
time series whenever a new time series is included.

The risk factors in SRM are logarithmic changes in market prices on the one
hand and in a set of macroeconomic variables on the other hand. For market prices
we look directly at returns. For some market price models we work with models
of changing volatility and tale the residuals of these models as an input for the
multivariate distribution of risk factor changes. For the macrofactors we look at
residuals of a Vector Autoregression of log-changes of macroeconomic variables that
have an impact of credit risk for corporate loans. While financial return data show
very little autocorrelation, for macroeconomic risk factor changes there is usually
a significant impact of lagged values of all macroeconomic risk factor changes on
contemporaneous values and this dependence has to be taken into account in the
modeling strategy. We have first to estimate these systematic dependencies and take
the residuals of these estimates as an input for the copula model of dependence.
Thus we are looking for models of logarithmic changes of market prices on the one
hand and of the residuals of a Vector Auto Regression of logarithmic changes of a
set of macroeconomic variables on the other hand.

Concerning the time horizon we want to consider all risk factor changes at a
quarterly (three months) time horizon. Since market data are available at a higher
frequency we consider the possibility of aggregating the information contained in
higher frequency market data to the lower frequency quarterly time horizon.

Specifically we consider the possibility to model changes of market prices over
shorter periods of 1, 5, 10, 20, or 30 days, and then aggregate these changes over 60,
12, 6, 3, or 2 periods. In this way we can exploit the availability of higher frequency
data in order to get more reliable estimates. On the other hand, estimation errors
will be magnified by the aggregation procedure. Not knowing which effect is stronger
we have tested the 60 day density forecasts produced by aggregating estimated
distributions for various basic periods.

We use the following models for the marginal distributions of market risk factor
changes and for the residuals of the vector auto regression of the macroeconomic
risk factors. The first model uses the assumption that the risk factor changes
come from a normal distribution. The second model assumes that these changes
have a t-distribution. Finally we assume that the risk factor changes come from a
model where the body of the distribution is estimated by a kernel estimator and
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the lowest 10 % as well as the highest 10 % of changes are estimated by an extreme
value estimator based on the generalized Pareto distribution. This distributional
assumption is motivated by limit results in extreme value theory and is frequently
used in risk management applications. This procedure is for instance used in McNeil
and Frey [2000].

To allow for the consideration of stochastic volatility and the clustering of
extreme movements in risk factor changes — as it is often observed in financial
market returns data — we also consider univariate GARCH(1,1) models.

Combining all these features we get a set of models for the market risk factors
and the residuals from the macroeconomic Vector Auto Regression. The models are
shown in Table 2.1. The terminology of the model names listed in Table 2.1 should
be read as follows:

e xxd(m) means that the model aggregates distributions for xx day (months)
changes to arrive at the 60 day distribution.

e G in the model name means that the GARCH(1,1) is used.

e The last part of the model name represents the distributions of returns or
errors: t for the Student, norm for the normal distribution, and EVT for the
kernel plus extreme value distribution.

In this terminology all the models for the marginals of market risk factors are
summarized in Table 2.1.

1d_norm 1d_t 1d_EVT 1d_G_norm 1d_.G_t 1d_G_.EVT
5d_norm 5d_t 5d_EVT 5d_G_norm 5d_G_t 5d_G_EVT
10d.norm 10d_.t 10d_EVT 10d_.Gnorm 10d_-G_t 10d_G_EVT
20dnorm 20d_t 20d_EVT 20d_-G_norm 20d_.G_t 20d_G_EVT
30dnorm 30dt 30d_EVT 30d.G.norm 30d_.G_t 30d_-G_EVT
60d.norm 60dt 60d_.EVT 60d_Gmorm 60d.G_t 60d_-G_EVT

Table 2.1. All models considered for the density forecast of market risk
factor changes.

Since macroeconomic data are available only at a quarterly basis, aggregation
of higher frequency distributions is not an option. So the models for the marginals
of the residuals of the VAR model for macroeconomic risk factors are:

|3m_norm 3mt 3mEVT 3m_Gnorm 3m._G.t 3m_G_EVT|

Table 2.2. All models considered for the density forecast of macroeconomic
risk factor changes.

2.2.2 Testing Density Forecasts for Different Models of
Marginal Risk Factor Change Distributions

Scenarios in SRM are produced by simulation from the multivariate distribution of
risk factor changes. In order to do so we need to have the right overall distributional
properties, not just the right means or covariances. Therefore we have to test
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statistically for the adequacy of the distributions forecasts for all models of the
marginals as described in Tables 2.1 and 2.2. Our test procedure is based on the
work of DeRaaij and Raunig [2002].

The technical details of the tests are described in the appendix. The general
idea of our testing procedure is based on the theory of density forecast tests based
on the so called probability integral transform (see Rosenblatt [1952]). The idea of
this distributional test is based on a simple fact from probability theory: Given a
random variable X with distribution function F, the random variable U = F'(z) is
uniformly distributed on the interval [0, 1]. By definition of a distribution function,
F can only take values between 0 and 1. The fact that the values of F' have to
be uniformly distributed also follows directly from the definition of a distribution
function. If 0 < u < 1, we have

Pr(F(z) <u)=Pr(z < F ' (u)) = F(F ' (u)) =u

This argument is rigorous when the distribution function F' is strictly increasing.
Thus if our model of the distribution Fs coincides with the true distribution Fp
of the data the distribution of the probability transformed data must be uniform.
For the construction of statistical tests it is often convenient to transform the uni-
form data to the normal distribution by using a quantile transform suggested by
Berkowitz [2001]. Using this (additional) transformation, the transformed variables
must be distributed according to a standard normal distribution if the model dis-
tribution matches the true distribution.

The tests we use for model selection are based on this idea. We use two tests
to check whether the transformed data under the different models of the marginal
distributions satisfy normality. One is the Kolmogorov-Smirnov test. This test
compares the sample values with the values of a standard normal distribution. The
Null Hypothesis of the test is that the sample values follow a standard normal dis-
tribution. The alternative hypothesis is that the sample does not have a standard
normal distribution. Intuitively the Kolmogorov Smirnow test is based on consid-
ering the whole distribution. Its disadvantage is that it is not very powerful against
deviations from the Null Hypothesis. Therefore we use additionally an alternative
route which is based on work of DeRaaij and Raunig [2002]. Their procedure is more
focused on moments rather than on the entire distribution. We rank our models for
the marginals according to the criterion for how many risk factors jointly pass the
Kolmogorov Smirnov test and the tests of DeRaaij and Raunig [2002]. The models
with the highest scores in this ranking are selected. For a technical discussion of the
test procedures we refer the reader to the appendix. Based on this test procedure
the 3m_G_EVT model gave overall the best out of sample distribution forecasts and
is therefore used in SRM. In the practical use of SRM we do not make a model
selection in every new quarter based on this test procedure. We do however update
the model selection in regular longer intervals.

2.2.3 The Grouped t-Copula

To explain the idea of a copula we recall the fact that for a random variable X
it must be true that F(z) is uniformly distributed on [0,1]. Using this fact we
can use the marginal distribution function of each risk factor to transform it to a
uniformly distributed random variable on the interval [0, 1], by evaluating each F;
at the sample points. This transformation removes the influences of the original
marginal distributions and leaves only the intrinsic dependence between variables.
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This discussion motivates the abstract definition of a copula: A copula is
the joint distribution of uniformly distributed random variables. If Uy, ..., U, are
U(0,1), then the function C from x%_,[0,1] — [0, 1] defined by

C(ut,...,up) = Pr(Us <wui,...,Up <up)

is a copula. Moreover, if X1,...,X,, are random variables with distribution func-
tions F1i, ..., F, respectively, then the copula of the uniform random variables
Uy =Fi(X1),...,Un = Fr(Xy) (2.1)

is called the copula of (X1,...,Xp).
An important example of a copula, which we build on in SRM is the d-
dimensional t-copula which takes the form

Clﬁ,P(u) = tV,P (tljl(ul)v cee 7t;1(un)) (22)

where ¢, is the distribution function of a standard univariate ¢ distribution and ¢, p
is the joint distribution function of the vector X ~ t4(v,0, P) and P is a correlation
matrix.

The simulation of a t-copula is relatively easy. First we have to simulate a
random vector X ~ tq(v,0,P). Then return a vector U = (t,(X1),...,t.(X4q))
where t, denotes the distribution function of a standard univariate ¢ distribution.
The random vector U has distribution function Cf p. Details on the simulation
of multivariate t-distributed random vectors can be found in Demarta and McNeil
[2004] or in McNeil et al. [2005].

The grouped ¢-copula has been introduced by Daul et al. [2004]. It is a copula
closely related to the t-copula where different sub-vectors of the vector X of risk fac-
tor changes can have different levels of tail dependence. In the grouped t-copula the
marginal distributions Fy(X1), ..., F,(X,) have univariate ¢ distributions but with
different degree of freedom parameters v, ..., v,. The rationale is that risk factors
can be grouped by their dependence properties described by the same v; parame-
ter, while using established techniques known from the estimation and calibration
of t-copulas.

Such an approach has a natural application to SRM where we have different
categories or risk factors: changes in stock indices, changes in foreign exchange and
changes in interest rates of different maturities and different currencies as well as
the residuals from a vector auto regression of macroeconomic variables.

Logarithmic changes in market prices are known to usually show deviations
from normality, in particular heavy tails which can be captured by the grouped t-
copula. If some data groups are close to normality this feature is also picked up by
the grouped t-copula because the normal distribution is the limit of a ¢-distribution
for the degrees of freedom going to infinity. For practical purposes this means
degrees of freedom of larger than 30.

The grouped t-copula is a parametric copula and can be relatively easily fitted
to data, once the models for the marginal distributions are specified. The exact
procedure how the fitting is done is explained in detail in the technical appendix.

We considered two possible groupings. Grouping A is: (Al) all macro time
series which were used in the VAR model, (A2) all market time series. Grouping
B is: (B1) all macro time series which were used in the VAR model, (B2) all
interest rate time series, (B3) all FX time series, (B4) all equity time series. In our
implementation we use grouping (B).
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For reasons of computational efficiency but also for reasons of stress testing
it is desirable if we are able to simulate scenarios not only from the unconditional
copula but also from the conditional multivariate distribution of risk factor changes
of risk factor changes or the conditional copula. How such conditioning can be built
into the procedures is also described in the technical appendix.
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The Market Risk Model

Following standard methods from risk management (see Jorion [2000]), we construct
a mapping from market risk factors to portfolio positions based on the MAUS
database.

Contrary to related problems in the banking industry where market risk is
modelled at a fairly short time horizon with a very detailed picture of individual
instruments and positions, our portfolios that can be reconstructed from MAUS is
much coarser and considered over a time horizon of a quarter (approximately 60
trading days).

Our basic idea is to take all portfolio positions we can reconstruct from MAUS
and that we can relate to an appropriate market risk factor and simulate the gains
and losses to these portfolios as a part of the overall gains and losses of the banks
in the system.

A detailed description of the particular risk factors used in SRM is given in
chapter 6. We identify from MAUS positions of stocks in domestic and foreign
equity. These positions are mapped to a domestic stock market index and a world
stock market index. We can also identify broad maturity buckets of three months,
one, five and ten years of interest rate sensitive exposures as well as exposures
denominated in the five currencies most important for Austrian banks, USD, JPY,
GBP and CHF. For all interest rate sensitive foreign exposures we include the
appropriate term structure of interest rate according to the maturity buckets we
can construct from the MAUS database.

The change in value of instruments sensitive to market risk factor changes is
determined by a first order approximation of the market portfolio loss. To explain
this concept, remember the notation for portfolio losses we have developed in the
introduction. Denoting the vector of market risk factor changes by XM and take
the function of portfolio losses subject to market risk of any particular bank in the
system. This function can be written as

LMy = (ft+ 1,2 + X)) = f(t,27)) (3.1)

If f is differentiable we can consider a first order approximation of the loss L4 of

the form
d

Ly = filt, Ze) + Y foi(t: Ze) Xy (3:2)

i=1

where the subscript to f denotes partial derivatives (see McNeil et al. [2005]).
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This idea is applied to our problem as follows: Denote the price process of
instrument ¢ subject to market risk by (Si;)ien. As risk factors we use logarith-
mic values, therefore Z,; = InS;;, ¢ = 1,...,d. Risk factor changes X:11,; =
InSi41,, —InS;; then correspond to growth rates of the position values in the port-
folio and hence

d
Liyi=Viqn — W) = Zvist,i(exp(XtJrl,i —1). (3.3)

i=1
where v; denotes the value of position i. The linearized loss is then given by

d
Ly, = Zvist,iXt+1,i (3.4)

i=1

The losses for all the banks due to market risk factor changes is then obtained
by calculating the vector of linearized losses of all banks in the system in each
scenario. Simulating many scenarios we therefore obtain the distribution of gains
and losses of the sub portfolio of positions that are subject to market risk.
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The Credit Risk Model

For banks credit risk is relevant for all assets that have the nature of a debt contract.
SRM distinguishes debt that is held between banks from debt held with parties out-
side of the banking system, such as loans to corporates or to households. While the
value of interbank debt is determined in the network clearing model, the potential
losses from non-interbank debt are captured by a credit risk model. The credit
risk model used in SRM is a variant of the Credit Risk+ model (see CreditSuisse
[1997]). While standard credit risk models are developed for the loan portfolio of a
single institution, the credit risk model of SRM has to deal with a system of loan
portfolios for different banks simultaneously.

From a risk analysis perspective the two major aspects of credit risk modeling
is the distribution of the default frequency and the distribution of losses. While the
distribution of default events contains information on whether the overall credit risk
quality of the portfolios is improving or deteriorating, the loss distribution allows
an assessment of the financial impact of the potential losses.

As in CreditRisk+, SRM makes no assumptions about causes of defaults. For
each bank in the system there is exposure to default losses from a large number of
obligors and the probability of default for each obligor is small. Such a situation
is captured very well by the Poisson distribution. We consider the distribution of
the number of default events over a quarter within portfolios of obligors having a
range of different quarterly probabilities of default. The quarterly probability of
default is determined by a mapping that combines individual rating information
with industry sector default rates.

However default rates are not constant over time and have a high degree of
variation. This fact has to be captured by the model. If default rate volatility is
included the distribution of default events becomes skewed to the right with a signif-
icantly higher probability of extreme events while the expected number of defaults
stays the same. In SRM the effects of default rate volatility are captured by combin-
ing the multivariate distribution of risk factor changes with an econometric model
of default probabilities. This model ”translates” macroeconomic risk factor changes
to default probabilities for different industry sectors. Drawing macroeconomic risk
factor changes many times from the multivariate distribution of risk factor changes
allows us to incorporate the effects of default rate volatility.

Given the number of default events the distribution of default losses can be
calculated of every bank in the system in every scenario. This distribution differs
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Figure 4.1. The figure shows two loss distributions of a bank’s loan port-
folio under two different assumptions about default correlation. The blue curve is
the loss distribution under the assumption that individual default events are Pois-
son distributed and independent. The red curve shows the loss distribution for the
same portfolio assuming that individual default probabilities are themselves random
variables and follow a probability distribution. Individual default events are assumed
conditionally independent for each draw of individual default probabilities from this
distribution. The ex ante loss distribution (red line) is skewed to the right and has
fatter tails. This is the result of correlation of default events due to the volatility
of individual default probabilities. The fact that individual default probabilities are
high or low at the same time induces correlation in credit portfolio losses.

from the distribution of default events because the amount of the loss depends
on the exposure level of different obligors. The variation in exposure magnitudes
results in a distribution that is not Poisson however the distribution is amenable
to computation. The impact of considering default rate volatility is that the loss
distribution has fatter tails than when default rate volatility is ignored. An example
is shown in Figure 4.1. The blue density of losses is derived under the assumption
that individual obligor defaults are independent. The red density function gives the
density of losses under the same portfolio taking variation in obligor defaults rate
into account.
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4.1 From Macroeconomic Shocks to Industry Sector
Probabilities of Default

Credit defaults occur due to risks that are idiosyncratic to the individual obligors.
Often, however, there are background factors that cause default events to be corre-
lated, even though there is no causal link between them. A unusually large number
of defaults in a particular quarter might be the due to a beginning recession with
defaults rates above their average long term level. Macroeconomic developments in
general are the most influential factors behind default correlation and SRM there-
fore tries to capture the macroeconomic variables driving default rates.

To link the historical industry specific default rates to the macroeconomic
variables we propose the model:

eXtBi
Wit = m +eit (4.1)
where we have ¢ = 1,...,1 industries, p;; is the default rate of industry ¢ at

time ¢, X; is a 1 X k vector of macroeconomic risk factor changes, 3; is a k x 1
vector of industry specific factor loadings, and €;; is a noise term. This functional
specification is used in Boss [2002]. Tt takes into account that the default rate by
definition can only take values between 0 and 1. For the calculation of consistent
default rates we first calculate historic default rates p;; for the industry sectors
for the entire observation period. We define in a second step a set of admissible
models and select the best one according to a specified criterion. We estimate the
parameters (3; for the selected model (BZ) Finally for the scenario generation we
calculate the simulated default rates as

R X6
Pis = T34 (42)
where X, are the simulated macroeconomic risk factor changes in scenario s.2

These default rates can be interpreted as estimators of the probability of
default of a loan in a particular industry sector in the given macroeconomic scenario
X. They are the conditional expectation of the default intensities in the different
industry sectors. The conditioning variables are the macroeconomic risk factor
changes that describe a particular macro scenario.

The data used for the estimations are the number of defaults and the number
of firms in particular industry sectors as well as a set of macroeconomic variables.
The first two variables are available at a more disaggregated level and are aggregated
to a set of 11 larger sectors. The aggregated sectors are agriculture, forestry and
mining (1), manufacturing (2), energy and water utilities (3), construction (4),
whole sale and retail industry (5), hotel and restaurant industry (6), transport and
telecommunication (7), banking and insurance industry (8), real estate industry
(9), public services (10), and health industry (11). They are used to calculate the
industry specific default probabilities. The reason why we aggregate is that the
0OeNACE classification system does not necessarily use categories that are the most
useful from a credit risk viewpoint.

2Note that to arrive at the values X't the draw of residuals from the multivariate risk factor
distribution has to be combined with the macroeconomic VAR to calculate the appropriate log
changes in macro variables for each scenario.
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Variable Abbreviation  Transformation

Dummy indicating the break in the year 1995 Y95 No transformation
Timetrend Time No transformation

Gross domestic product GDP Logs and first differences
Consumer Prices CPI Logs and first differences
Industrial production domestic IPD Logs and first differences
Industrial production international IPI Logs and first differences
Real effective exchange rate XRATE Logs and first differences
Oil prices OIL Logs and first differences
Domestic private debt DEBT Logs and first differences
Money MONEY Logs and first differences
Share prices SHARES Logs and first differences
Interest rate IRATE First differences
Inflation rate InfRat First differences
Disposable Income IncVgr Logs and first differences
IFO Index IndExplfo Logs and first differences
Fixed investment Inv Logs and first differences
Investment in plant and equipment InvEqu Logs and first differences
Unemployment rate seasonally adjusted UemRatSa First differences

Real rate of return on 10 year bonds Int10YRel First difference

Dow Jones Industrials Djx Logs and first differences

Table 4.1. Set of macroeconomic variables considered as candidates for
the macro-econometric panel estimation of industry sector default intensities.

Firm number data are collected from various sources. To get these data at
a quarterly frequency we had to apply interpolation and extrapolation techniques,
since number of firm data on the industry sector level are not usually available
quarterly before 1997.

As a measure for historical default probabilities we use the actual default rate
at an industry specific level. The default rate is the ratio between the number of
defaults and the number of firms, such that

Number of defaults; ¢

M'L',t = (43)

Number of firms; 4
where i denotes the industry and ¢ denotes the time period with data available at
a quarterly frequency.

The set of macroeconomic variables that were considered as candidates is
summarized in Table 4.1. These data are from the IMF Financial Sector Statistics,
from the OECD from the Austrian Central Bank (OeNB) and from the Austrian
Institute of Economic Research (WIFO).

The estimation technique is based on a paper by Papke and Wooldrige [1996]
and is described in the technical appendix.

We estimate model (4.1) for the 11 industry sectors that we have aggregated
from the OeNACE sectors. The dependent variable is the default rate and the
exogenous variables are drawn from a pool of macroeconomic variables. This pool
includes 19 variables.

To find the most parsimonious model we pursue the procedure from ”simple to
general”. We start with models that contain only one right hand side variable and
go on to models with more variables. All combinations of macroeconomic variables
are estimated and the best model is taken. However, to save computer time the
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number of possible combinations of variables on the right hand side is restricted to
four. Thus, we select at most four variables out of 19.

To select to best model for each industry sector, the likelihood and the Bayesian
information criterion (BIC) are used. The first model selection is done by finding
the model with the largest likelihood; the second by finding the model with the
smallest BIC. In the implementation of SRM we use the model selected based on
the data of September 2005.

Add some examples, pictures and typical graphics

4.2 From Industry Default Probabilities to Loss
Distributions

Once we have determined obligor default probabilities, we follow closely the Credit
Risk+ framework. So far we have only developed a model to determine default
intensities at the level of 11 aggregate industry sectors. Applying these default
intensities as estimators of the probability of default of a loan in a particular indus-
try would imply that we treat every loan in — say construction — as equally risky
irrespective of the borrower to which this loan has been extended. This is a broad
brush of corporate obligor’s risk assessment. Since we have also individual rating
information in the central loan register we can adjust the estimate of the industry
level default intensity by the rating information. Denote by uff the probability
of default of an obligor based on his rating and let fi; the default intensity for a
particular macroeconomic scenario. If p;o is the empirical default rate in industry
1 in the observation period, we write the estimator of the default probability of an
individual obligor as

i = pft (4.4)
Hi0

Based on these values p; we proceed as in CreditSuisse [1997]. The technical

derivation is described in the appendix. The general idea of the approach is to

develop a model for the distribution of default events and for credit losses that is

amendable to efficient computation, while taking into account correlating factors of

default events. The idea can perhaps be best described graphically and is shown in
4.2.

In the simulation this recursion is used to build a loan loss distribution for each
bank. From this distribution a loss is drawn independently for all banks. To save
computing time we draw for a given macro scenario and thus for a given system of
loan loss distributions more than one credit loss profile. The corresponding market
risk losses are combined with these credit risk losses by taking market return draws
from the conditional risk factor change distribution. For example we could gen-
erate 1000 macro-scenarios and take 1000 draws from the credit loss distributions
for each macro-scenarios and combine these draws with 1000 draws from the con-
ditional distribution of market risk factor changes we generate 1.000.000 different
loss scenarios.



32

Chapter 4. Credit Risk Model

Bank A

1. Draw macro-scenario
_ . from multivariate risk
factor change distribution
(common economic shock)

Bank B

Bank C

N

. Calculate obligor pds

N >
His = 7 —%,5,
14e*tPi

| |

w

. Compute loan loss
distributions

Scenario generating loop

l

4. Draw independent
loan losses for each bank
(idiosyncratic shock)

I

|

Figure 4.2. Macroeconomic scenarios are part of the simulation draws
from the multivariate distribution of risk factor changes. Given this draw obligor
default probabilities can be determined and loss distributions are calculated. Losses
are drawn for this scenario independently from these loss distributions. Then a new

scenario is drawn.
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The Network Model

The simultaneous analysis of market and credit risk in SRM is combined with a
detailed model of interbank relations. This network model both adds a detailed
picture of bilateral financial relations among domestic banks, both in terms of debt
and equity, and allows to close the model by a system wide clearing procedure. The
clearing procedure gives a precise answer to the question under which conditions
the financial claims in the banking system are consistent with the promises implicit
in the complex network of financial contracts ex ante and after uncertainty has been
resolved.

What does consistency mean in this context? Ex ante banks are related by
financial promises that require them to pay or entitle them to receive certain pay-
ments after uncertainty has unfolded and risk factor changes have been realized. In
an adverse scenario this may imply that given these (past) promises and this (cur-
rent) realization of risk factor changes the total net value of one or more institutions
is negative. In this case banks with a negative value are insolvent. The value of
shares others hold in these bank is zero in such a case and the value of debt is what-
ever creditors can realize from the remaining asset value under a certain sharing
rule. This potentially reduced value of claims may induce further insolvencies of
banks that would not have been insolvent under more favorable risk factor changes
in a second round effect. The clearing procedure works out this value adjustment
process for each realization of risk factor changes. For a complex network of in-
terbank debt and equity claims working out this clearing procedure is a nontrivial
task.

In this chapter we describe the network model in an informal way, we introduce
some notation and concepts and illustrate them by way of toy examples. A technical
description containing concepts and proofs is in the appendix.

5.1 Describing the banking system

Our network model of interbank credits and share holdings is an extended version of
the model of Eisenberg and Noe [2001]. The inclusion of interbank share holdings
is an innovation of SRM and allows a fully fledged network analysis of financial
interbank relations.

We denote the set of banks by N = {1, ...,n}. Between the banks we have debt
and equity claims. Interbank debt is described by a matrix L € R:*"™ of nominal
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interbank liabilities. We use the convention that L;; denotes the nominal liabilities
of bank ¢ toward bank j. Since the interbank liabilities of bank i are at the same
time the interbank assets of bank j we see the values of interbank liabilities in the
rows and the values of interbank assets in the columns of matrix L. We have also
a matrix © € [0,1]"*" of (outside) shareholdings between banks. ©;; denotes the
share that bank 7 holds in bank j, so that

> o<1 (5.1)
=1

The specification does allow for the case that a bank is among the outside share-
holders of its own shares (6;; < 1). The only restriction we impose on the interbank
shareholdings is that there is no group of banks in which each bank is completely
owned by other banks in that group, in particular ©;; < 1. This is summarized in
the following

Assumption There exists no subset Z C {1,...,n} such that

> ;=1 forall jeT.
€L

O is called a holding matriz if it fulfills this assumption.

Banks hold not only financial positions among each other but also with other
parties, outside of the banking system. These financial positions and the risk of
their value changes are described by the market and credit risk model of SRM.
In the network model these positions are considered as the endowment of a bank
with an exogenous income position e; € R. Note that this position also includes
shareholdings in other companies than banks.

In each state the banking system is thus completely described by four objects:
The interbank liability matrix, the interbank share holding matrix, and the income
position e, (L,0,e). These are the parameters we try to identify form the data in
the initial period. Risk factor changes will initially change the value of e and at
the same time through the clearing procedure also the value of interbank and non
interbank debts and shares as well as other interbank assets.

Let us illustrate the concepts introduced by an example: Consider a system
with three banks. The inter-bank liability structure is described by the matrix

0 0 2
L= 3 0 1
31 0

Bank 3 has liabilities of 3 with bank 1 and liabilities of 1 with bank 2. It has
of course no liabilities with itself. Reading this matrix row wise gives us the value
of interbank assets. Assume bank 1 holds 30% in banks 2 and 3, bank 2 holds 10%
in bank 3 and bank 3 holds 20% in bank 1 and 10% in bank 2. This would give a

matrix © as

0 0 0.2
o= 03 0 0.1
03 01 0

Lets assume that the net income position of other activities outside of interbank
relations is summarized by the vector e = (1,2,6). To decide whether this system
of financial promises is consistent, we need a clearing procedure.
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5.2 Clearing

A bank is insolvent whenever its net income position form non interbank business
plus the amounts received from other banks are insufficient to cover its liabilities.
In case of default the clearing procedure has to respect three criteria:

1. limited liability, which requires that the total payments made by a bank must
never exceed the cash flow available to the bank,

2. priority of debt claims, which requires that stockholders in the bank receive no
value unless the node is able to pay off all of its outstanding debt completely,
and

3. proportionality, which requires that in case of default all creditors are paid off
in proportion to the size of their claim on firm assets.

To operationalize proportionality let p; be the total nominal obligations of
bank 1,

pi=>» Lij+D; (5.2)
j=1
and define the proportionality matrix II by
L if p,
e pi >0
Hi - Pi 5-3
/ { 0 otherwise (53)

Evidently, it has to hold that II - T < T where T is an n x 1 vector of ones. Let
p=(p1,---,pn) € RY be the actual payments made by banks to its interbank and

non interbank creditors under the clearing mechanism. Let V' > 0 be a vector of
equity values and define the map

Y(V,p,e,],O) =[e+T'p—p+OV] VD (5.4)

For a given vector p a consistent vector of equity values V*(p) is a fixed point
of Y(:;p,e,11,0) : R} — R

Vi(p)=[e+I'p—p+OV*(p)] V0 (5.5)
where 0 denotes the n x 1 dimensional zero vector. In the Appendix we give a proof

which establishes that there exists a unique fixed point, V*(p). A vector of actual
payments p* that respects the clearing criteria,

0 if ei+ 2 (Wip; + 045V (p") <0
j=1

s

) (Hjip; + @ijVj*(P*)) <pi

pr = ei+ > (Hjip; + @ijVj*(p*)) if 0<e+
j=1 J

Di if i < e+ Zl (Ijip; + ©45V (p*))
=

is called a clearing payment vector. This can be summarized in a more compact
notation in the following

Definition 5.1. A wvector p* € [6, p] is a clearing payment vector if and only if

pr= {[6+H'p* +OV*(p*)) vﬁ} AP (5.6)
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where V*(p*) is the unique solution of Equation 5.5.

Technically a clearing vector p* is a fixed point of the map ®(+;II,p, e, ©) :
[0,p] — [0, p] defined by

(pi1Lp,e,0) = {[e+Wp+OV*(p)] VI Ap (5.7)

In the appendix we show that under our assumptions on (L,0,e) and the
clearing procedure clearing payment vectors always exist and are unique. Further-
more we present an algorithm we can use to calculate clearing payment vectors.

5.3 Analyzing clearing payment vectors

From the solution of the clearing problem, we can gain not only information about
insolvencies but also with respect to systemic stability. Default of bank ¢ is called
fundamental if bank 7 is not able to honor its promises under the assumption that all
other banks honor their promises A contagious default occurs, when bank i defaults
only because other banks are not able to keep their promises. This distinction allow
us to analyze defaults that result directly from risk factor movements form defaults
that indirectly result from second round effects of insolvency contagion through
interbank relations.

Insert toy example about here

5.4 Simulation

As there is no closed form solution for the distribution of p*, given the distribution
of e, we have to resort to a simulation approach where each draw is called a scenario.
We know that there exists a (unique) clearing payment vector p* for each scenario.
Thus from an ex-ante perspective we can assess expected default frequencies from
inter-bank credits across scenarios as well as the expected severity of losses from
these defaults given that we have an idea about the distribution of bank values V.

5.5 Estimation of bilateral interbank loans

Insert updated description of L estimation here

5.6 Extensions

In the appendix we add two additional features to the network model. The first
feature is that we allow for a richer structure of seniority between different forms
of debt. In the discussion of the network model presented here we have treated all
debts as if they belonged to the same seniority class. Second we add bankruptcy
costs to to picture. In the version of the model we have presented here we have
always assumed that in the case of default the full value of the insolvent institution
is proportionally transferred to the creditors. In reality part of the value will be lost
in insolvency and sometimes all interbank payments will be stopped immediately.
With the inclusion of bankruptcy costs we can analyze models with these more
realistic assumptions.
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Data

6.1

Data Input

SRM uses two different categories of data as input:

Panel-data reported by Austrian banks to the OeNB reflecting on- and off-
balance sheet positions of banks at the end of a pre-specified quarter and other
relevant for supervisory information purposes like regulatory capital.

Time-series data from internal external sources reflecting historical movements
of market-, credit and macroeconomic riskfactors.

6.1.1 Data reported by Austrian banks to OeNB

Regarding this data category the following reports are used in SRM on a bank by
bank basis

MAUS-A (Monatsausweis, Teil A, Geschéaftsstrukturdaten): Part A of the
monthly report of Austrian banks covering the asset and the liability structure
of the balance sheet as well as information on off balance sheet items.

MAUS-B2 (Monatsausweis, Teil B2, Zinsrisikostatistik): The quarterly re-
ported statistic on interest rate risk, which provides a breakdown of all interest
rate sensitive on- and off-site balance sheet assets and liabilities with respect
to their repricing maturity, i.e. each instrument is reported with respect to
the maturity bucket within which the next fixing of the respective interest
rate takes place.

MAUS-C (Monatsausweis, Teil C, Aufsichtsrelevante Zusatzdaten): Part C
of the monthly report, which covers additional supervisory information, in
particular on capital requirements and net open positions in foreign currencies.

Data on the structure of participations among Austrian banks, which is calcu-
lated by the OeNB on the basis of banks reports on their direct and indirect
participations in other financial and non-financial institutions

GKE (Grosskreditevidenz): The central Austrian register on large credit ex-
posures, which covers credit risk sensitive instruments with a volume of more
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than EUR 350.000 on a customer by customer basis. It includes the outstand-
ing volume of securitized and non-securitized loans, guarantees and commit-
ments as well as respective collaterals, specific provisions and the internal
rating of the customers credit quality.

e Basic data on banks like the identification code, the name, the zip code, the
sector according to the official breakdown of the Austrian banking sector, etc

e Basic data on the debtors included in the GKE, like an (anonymous) identi-
fication code, the industry sector according the NACE-classification, etc.

e Basic data on the positions reported by banks, like their identification code,
the respective risk category, etc.

Given B banks and D debtors® and P positions reported by banks to MAUS
and P% positions reported to GKE we have the following input data:

e A matrix of panel data of dimension B x PM
e An array of panel data of dimension B x D x P¢
e A vector of information on banks of length B

e A vector of information on banks of debtors of length D

6.1.2 Time Series from External Data Sources
This category includes the following

e Macro-economic time series on a quarterly basis from the OeNBs macroeco-
nomic database starting with the first quarter of 1969.

e Time series for market risk factors from Bloombergs financial data services
with the first quarter of 1980.

e Quarterly Time series on the number of insolvencies and the total number of
Austrian firms according to the NACE-classification (OeNace Level2) starting
with the first quarter of 1969.

e Basic data on the time series, like an identification code, the respective risk
category, etc

Given S time-series in sum and Q quarters of observations in time we have
the following input data:

e A matrix of time series data of dimension Q x S.

e A vector of information on time series of length S.

6.2 Building Risk Positions from Banks Report Data

In this section it will be described how the data provided by Austrian banks through
various reports is used within SRM to build up risk and capital positions

3With B=845 and D=70.000 as of end December 2005, where B does not include branches of
foreign banks in Austria (internal type equals ZW), which can be included in SRM optionally, but
are excluded by default.
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6.2.1 Positions exposed to market risk

Positions exposed to foreign exchange rate risk. For the net open positions
in foreign currencies SRM uses the peaks of net open positions within the last
month referred to the reporting date. This is an exception to the rule of SRM,
which in general requires the analysis to be based on positions at the end of
each quarter. However, as no such data is available and because the actual
risk at the end of each quarter will at most be overestimated, the peaks of net
open positions are used.

The respective positions are reported by banks directly with respect to 12
major currencies and include on-balance as well as off-balance sheet items.
For the other currencies, reporting is on a voluntary basis. As no bank in
our sample has open positions of more than 1% of total assets in any other
reported currency, currently in SRM exchange rate risk is considered with
respect to USD, CHF, JPY, and GBP.

It should be noted, that reporting with respect to currencies of Central and
Eastern European countries is not yet mandatory. As some Austrian banks
are highly active in these countries respective open currency positions could
be relevant in terms of risk. However, reporting of open positions in these
currencies will be mandatory in the future and the respective data will be
included in SRM as soon as it is available.

Positions exposed to interest rate risk Data on interest rate sensitive posi-
tions are reported by banks within the statistics on interest rate risk. It covers
all interest rate sensitive on-balance and off-balance sheet items. In general,
the statistics includes banking as well as trading book positions. However,
banks running a ”large” trading book (according to the Banking Act) do not
report their trading book positions in this statistics (as these positions are
subject to own funds requirements for interest rate risk according to the Cap-
ital Adequacy Directive). The data represent book values of the interest rate
sensitive positions. The positions are slotted into 13 time buckets according
to the time to next interest rate adjustment of a position (time to re-pricing).
Assets and liabilities are reported with respect to these maturity buckets sep-
arately for EUR, USD, JPY, GBP, CHF, and a residual representing all other
currencies. On the basis of this information we calculate net positions in the
available currencies - neglecting the residual - with respect to four different
maturity buckets: up to 6 months, 6 months to 3 years, 3 to 7 years, more
than 7 years. For the valuation of net positions in these maturity buckets we
use the 3 month, 1 year, 5 years and 10 years interest rates in the respective
currencies. The number of maturity buckets was reduced from 13 to four in
order to reduce the number of risk-factors necessary to value the respective
positions.

Positions exposed to equity price risk. With respect to equity price risk the
available data are with respect to on-balance sheet positions only. Equity
data are structured by the legal definition of the equity share (participation,
share in affiliated company, other), by the fact whether the equity is listed
on a stock exchange or not and by origin into domestic and foreign. On the
basis of this data domestic and foreign positions exposed to equity price risk
are calculated where only equity listed on a stock exchange is included.
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Code Net open position in Riskfactor
Fx.Chf CHF Exchange Rate EUR/CHF
Fx.Gbp GBP Exchange Rate EUR/GBP
Fx.Jpy JPY Exchange Rate EUR/JPY
Fx.Usd USD Exchange Rate EUR/USD
Equity.NonDom Non-domestic equity Domestic equity index ATX
Equity.Dom Domestic equity MSCI-World-Index

IntRate.Eur.00Y03M00D
IntRate.Eur.01Y0O0MOOD
IntRate.Eur.05Y00M0O0D
IntRate.Eur.10YOOMO0OD
IntRate.Usd.00Y03MOOD
IntRate.Usd.01YOOMOOD
IntRate.Usd.05Y00MOOD
IntRate.Usd.10YOOMOOD
IntRate.Chf.00Y03MO00D
IntRate.Chf.01Y00MOOD
IntRate.Chf.05Y00MO0O0OD
IntRate.Chf.10Y0O0MOOD
IntRate.Jpy.00Y03MOOD
IntRate.Jpy.01Y0O0MOOD
IntRate.Jpy.05YOOMOOD
IntRate.Jpy.10YO0MOOD
IntRate.Gbp.00Y03M0O0D
IntRate.Gbp.01YOOMOOD
IntRate.Gbp.05Y00MOOD
IntRate.Gbp.10Y00MOOD

EUR up to 6 month

EUR between 6 month and 3 years
EUR between 3 and 7 years

EUR of more than 7 years

USD up to 6 month

USD between 6 month and 3 years
USD between 3 and 7 years

USD of more than 7 years

CHF up to 6 month

CHF between 6 month and 3 years
CHF between 3 and 7 years

CHF of more than 7 years

JPY up to 6 month

JPY between 6 month and 3 years
JPY between 3 and 7 years

JPY of more than 7 years

GBP up to 6 month

GBP between 6 month and 3 years
GBP between 3 and 7 years

GBP of more than 7 years

3-month interest rate in EUR
1-year interest rate in EUR
5-years interest rate in EUR
10-years interest rate in EUR
3-month interest rate in USD
1-year interest rate in USD
5-years interest rate in USD
10-years interest rate in USD
3-month interest rate in CHF
1-year interest rate in CHF
5-years interest rate in CHF
10-years interest rate in CHF
3-month interest rate in JPY
1-year interest rate in JPY
5-years interest rate in JPY
10-years interest rate in JPY
3-month interest rate in GBP
1-year interest rate in GBP
5-years interest rate in GBP
10-years interest rate in GBP

Table 6.1.

Positions. Times are times to maturity

The procedure described above gives us a vector of 26 market risk exposures,

4 foreign currency, 2 equity, and 20 interest rate (4 maturities for 5 currencies), risk
exposures for each bank. Thus we get a B x 26 matrix of market risk exposures
with respect to the following risk factors summarized in Table 6.1.

6.2.2 Positions Exposed to Credit Risk

To analyze credit risk we use in addition to the data provided by MAUS the major
loans register of OeNB (GKE) which provides detailed information on the banks’
loan portfolios to non-banks. This database contains securitized and non-securitized
loans as well guarantees and other instruments affected by credit risk to domestic
and foreign customers and banks exceeding a volume of 350.000 Euro on a bor-
rower by borrower basis. Outstanding volumes are reported as well as credit lines.
However, there are two additional exceptions regarding the reporting to the GKE.
First, loans to the central and regional governments are exempted from reporting in
general and second, interbank loans referring to short term interbank transactions
are also not required to be reported .

In addition to instruments affected by credit risk itself, for each borrower the
sum of collaterals and eventual specific provisions regarding the outstanding volume

4The GKE database covers about two third of all loans of Austrian banks in terms of nominal
values.
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are reported. On the basis of the different instruments and collaterals reported to
the GKE the net credit risk exposure of each bank with respect to each borrower
is calculated as follows.

Net credit risk exposure equals

e outstanding volume of non-securitized loans (nonrevolving, revolving, and
trustee loans, exchange bills and claims related to leasing activities) plus

e outstanding volume of securitized loans plus
e non-exercised volume of credit lines regarding non-securitized loans plus
e other commitments affected with credit risk plus
e outstanding volume of granted guarantees affected with credit risk plus
e non-exercised volume of credit lines regarding granted guarantees

less the maximum of

e outstanding volume guarantees provided by the government plus non-exercised
volume of credit lines regarding government guarantees and

e collaterals

According to the reporting rules government guarantees should be included
in collaterals. However, in some cases this is obviously not the case, as reported
government guarantees exceed reported collaterals. Hence, it was decided to use
the maximum of both positions in order to determine total collaterals. Depending
on whether specific provisions are considered in the capital positions or not (see
section 6.5 ), specific provisions reported for each borrower are also subtracted in
cases where provisions are not included in capital.

In order to cover loans below the reporting threshold of GKE, we use a statistic
included in MAUS-A, which provides the number of loans to domestic customers
according to the following buckets: up to 10.000 EUR, 10.001 to 50.000 EUR, 50.001
to 100.000 EUR, 100.001 to 500.001 EUR, 500.001 to 1.000.000 EUR, 1.000.001 to
3.000.000 EUR and above 3.000.000 EUR. These buckets are used to build up the
loan portfolio to domestic customers below the reporting threshold of GKE for
each bank, where the following buckets are considered: up to 10.000 EUR, 10.001
to 50.000 EUR, 50.001 to 100.000 EUR, 100.001 to 349.999 EUR. The number of
loans in the last of these buckets is calculated as the number of loans to domestic
customers reported according to MAUS-A in the bucket 100.001 to 500.001 EUR
minus the number of loans to domestic customers with a volume up to 500.001 EUR
reported to GKE.

Finally, each bank reports its internal rating for each borrower to the GKE.
Within the OeNB the individual ratings provided by banks are mapped on a gen-
eral master scale. There are two versions of the OeNB master scale. The rough
version this master scale provides 7 non-default rating classes and 6 default rating
classes, while the precise version provides 21 non-default rating classes and six de-
fault rating classes. However, in many cases, in particular with small banks, only
the rough mapping is available. The master-scales allow the assignment of a certain
probability of default for each rating class according to Table 6.2.

However, in cases were a certain borrower is rated by more than one bank,
because he has loans from more than one bank, the borrowers rating could be
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Code | Type Probability of Default (Pd)
Average Lower Limit | Upper Limit

1 rough 0.0020% 0.0010% 0.0040%
2 rough 0.0100% 0.0040% 0.0220%
3 rough 0.0490% 0.0220% 0.1090%
4 rough 0.2440% 0.1090% 0.5460%
5 rough 1.2210% 0.5460% 2.7310%
6 rough 6.1060% 2.7310% 13.6530%
7 rough 30.5280% 13.6530% 68.2630%
8.1 rough 100.0000% 100.0000% 100.0000%
8.2 rough 100.0000% 100.0000% 100.0000%
8.3 rough 100.0000% 100.0000% 100.0000%
8.4 rough 100.0000% 100.0000% 100.0000%
8.5 rough 100.0000% 100.0000% 100.0000%
8.6 rough 100.0000% 100.0000% 100.0000%
10 precise | 0.0011% 0.0009 % 0.0015%
20 precise | 0.0020% 0.0015% 0.0026%
30 precise | 0.0033% 0.0026% 0.0044%
40 precise | 0.0057% 0.0044% 0.0075%
50 precise 0.0098% 0.0075% 0.0128%
60 precise | 0.0167% 0.0128% 0.0218%
70 precise 0.0286% 0.0218% 0.0374%
80 precise | 0.0488% 0.0374% 0.0639%
90 precise 0.0835% 0.0639% 0.1092%
100 precise | 0.1428% 0.1092% 0.1868%
110 precise | 0.2442% 0.1868% 0.3194%
120 precise | 0.4176% 0.3194% 0.5461%
130 precise | 0.7141% 0.5461% 0.9338%
140 precise 1.2211% 0.9338% 1.5968%
150 precise 2.0881% 1.5968% 2.7305%
160 precise 3.5706% 2.7305% 4.6692%
170 precise | 6.1057% 4.6692% 7.9841%
180 precise 10.4406% 7.9841% 13.6527%
190 precise 17.8531% 13.6527% 23.3458%
200 precise | 30.5284% 23.3458% 39.9207%
210 precise | 52.2028% 39.9207% 68.2635%
220.1 | precise | 100.0000% 100.0000% 100.0000%
220.2 | precise | 100.0000% 100.0000% 100.0000%
220.3 | precise | 100.0000% 100.0000% 100.0000%
220.4 | precise | 100.0000% 100.0000% 100.0000%
220.5 | precise | 100.0000% 100.0000% 100.0000%
220.6 | precise | 100.0000% 100.0000% 100.0000%

Table 6.2. The OeNB Master Scale

different for different banks and it is not obvious, which rating should be assigned
to this specific borrower. Hence SRM provides various options in order to deal with

these cases.

e Reported: assigns to each loan the rating assigned by the bank. Hence a
borrower specific rating can be different depending on the bank granting the

loan.

e Maximum: assigns always the worst rating reported by one bank for the
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specific borrower.

e Mean: assigns always the mean rating (correct: the mean respective Pd),
reported by one bank for the specific borrower.

The riskiness of an individual loan to domestic customers is assumed to be char-
acterized by two components: the rating which is assigned by the bank to the
respective customer and allows us to assign a probability of default to each bor-
rower according to the table given above, and the default frequency of the industry
sector the customer belongs to.

The default frequency data are from the Austrian rating agency Kreditschutzver-
band (KSV). The KSV database provides us with time series of insolvencies® and
the total number of firms in most NACE branches at a quarterly frequency starting
in 1969. This allows us to calculate a time series of historically observed default fre-
quencies for the 13 industry sectors described by dividing the number of insolvencies
by the number of total firms for each industry sector and quarter.

Starting with the first quarter of 1997 the number of insolvencies per quarter
and industry sector is provided directly from the KSV database. However, before
this date the respective information was only available on paper. Hence, for the
present project this information had to be preprocessed in order to get a time
series of the number of insolvencies per quarter and industry sector starting from
the first quarter of 1969 to the last quarter of 1996. This was done on the basis
of weekly insolvency reports, which were available on paper only and provided to
the SRM project team. The weekly lists were then scanned into the computer
and preprocessed by an OCR-software in order to produce text files of the weekly
insolvency list. Finally these lists were processed semi-automatically in order to
assign a NACE code to each case of insolvency. Finally this procedure resulted in
a quarterly time-series of the number of insolvencies in each industry sector for the
period of the first quarter of 1969 to the last quarter of 1996, which could the be
connected with the data provided by the KSBV data base.

The time series of default frequencies is explained by macroeconomic risk
factor changes using an econometric model described in chapter 4. By this estimated
equation we can translate macroeconomic risk factor changes in probabilities of
default for each industry branch. These default probabilities serve beside the
default probabilities provided through GKE - as a second input to the credit risk
model. To construct insolvency statistics for the private and the residual sector,
where no reliable information on number of insolvencies and sample size is available,
we take averages from the data that are available.

We assign the domestic loans to non-banks to 13 industry sectors (basic in-
dustries, production, energy, construction, trading, tourism, transport, financial
services, public services, other services, health, private households, and a residual
sector) based on the NACE-classification of the debtors. Furthermore we add re-
gional sectors (Western Europe, Central and Eastern Europe, North America, Latin
America and Carribean, Mid East, Asia and Far East, Pacific, Africa, and a resid-
ual sector) for foreign banks and non-banks individually, resulting in a total of 18
non-domestic sectors. Since only loans above a threshold volume are reported to
the GKE we assign domestic loans below this threshold to the domestic residual

5Insolvencies refer to the opening of bankruptcy proceedings as well as to dismissals of
bankruptcy filings for lack of assets. The number of enterprises per quarter and industry sec-
tor was estimated on the basis of data provided by the Association of Austrian Social Security
Institutions, Statistics Austria and the KSV.
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Code

Credit Exposure to

Source of Sector

Dom.NonBanks.Bas
Dom.NonBanks.Prod
Dom.NonBanks.Engy
Dom.NonBanks.Cstr
Dom.NonBanks.Trad
Dom.NonBanks.Tour
Dom.NonBanks.Trsp
Dom.NonBanks.Fin
Dom.NonBanks.SrvC
Dom.NonBanks.SrvP
Dom.NonBanks.HIth
Dom.NonBanks.Priv
Dom.NonBanks.Oth

Domestic non-banks , basic industries
Domestic non-banks , production
Domestic non-banks , energy

Domestic non-banks , construction
Domestic non-banks , trading
Domestic non-banks , tourism
Domestic non-banks , transport
Domestic non-banks , financial services
Domestic non-banks , public services
Domestic non-banks , other services
Domestic non-banks , health

Domestic non-banks , private households
Domestic non-banks , residual sector

Macro-model
Macro-model
Macro-model
Macro-model
Macro-model
Macro-model
Macro-model
Macro-model
Macro-model
Macro-model
Macro-model
Macro-model
Macro-model

Dom.Banks.
NonDom.NonBanks.Europe. West
NonDom.NonBanks.Pacific
NonDom.NonBanks.America.North
NonDom.NonBanks.Asia.East
NonDom.NonBanks. America.South
NonDom.NonBanks. Asia.West
NonDom.NonBanks.Africa
NonDom.NonBanks.Europe.East
NonDom.NonBanks.Oth
NonDom.Banks.Europe. West
NonDom.Banks.Pacific
NonDom.Banks.America.North
NonDom.Banks.Asia.East
NonDom.Banks.America.South
NonDom.Banks.Asia. West
NonDom.Banks.Africa
NonDom.Banks.Europe.East
NonDom.Banks.Oth

Domestic banks (not included in the network model)
Foreign non-banks, Western Europe

Foreign non-banks, Pacific

Foreign non-banks, North America

Foreign non-banks, Asia and Far East

Foreign non-banks, Latin America and Carribean
Foreign non-banks, Mid East

Foreign non-banks, Africa

Foreign non-banks, Central and Eastern Europe
Foreign non-banks, Residual, Int. Org. and Unallocated
Foreign banks, Western Europe

Foreign banks, Pacific

Foreign banks, North America

Foreign banks, Asia and Far East

Foreign banks, Latin America and Carribean
Foreign banks, Mid East

Foreign banks, Africa

Foreign banks, Central and Eastern Europe

Foreign banks, Residual, Int. Org. and Unallocated

Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating
Average rating

Table 6.3. The Sector Classification

sector. This is done on the basis of a report that is part of MAUS and provides the
number of loans to domestic non-banks with respect to different volume buckets.
For non-domestic loans no comparable statistic is available. However, one can as-
sume that most of cross-border lending exceeds the threshold of 350.000 Euro and
hence the associated risk can be neglected.

Default probabilities for the non-domestic sectors are calculated as averages of
the default probabilities according to the ratings that are assigned by all banks to
all customers within a given foreign sector. Finally, we add one sector for domestic
banks, which are for some reason are not included in the network (SRM optionally
allows to restrict the set of banks included into the network according to some
criteria, like total assets). Default Probabilities for this sector are calculated in the
same way as for non-domestic sectors. Thus we get a B x 32 matrix of credit risk
exposures with the following sources of respective default probabilities:
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6.3 Estimation of the matrix of interbank liabilities

As interbank loans and liabilities are partially reported on a bank by bank basis the
matrix describing the liability structure for all Austrian banks has to be estimated
on the basis of the available data. This is done using entropy maximization, which
is presented in detail in chapter 5 and in the appendix. In the following this will be
described in some detail from the perspective of the data defining the constraints
used by entropy maximization. In addition the available data can be used to set
some of the entries to zero

Constraints on single entries of the interbank matrix. There are two sources,
which provide us with information on single entries of the interbank ma-
trix. First, securitized and non-securitized loans exceeding a volume of EUR
350.000 are reported in the central credit register on a bank by bank basis.
Second, banks belonging to one of the hierarchically structured Austrian bank-
ing sectors (Raiffeisen, Savings Banks and Volksbanken) report non-traded
and Euro-denominated loans and liabilities to their respective head institute
within their monthly reports. It should be noted that neither of the two data
sources covers all potential loans and liabilities between two specific banks.
Regarding the central credit register, the volume not captured due to the re-
porting limit could be negligible, but as loans due to short term interbank
transactions are not reported to the central credit register, a potentially large
part of loans will be missed. The data from the monthly report however only
refers to loans and liabilities, which are not traded and denominated in Euro.
Hence as a constraint it will be required the respective entry in the matrix
hast to be equal or greater than the maximum reported by the the two data
sources

Constraints on the sum of columns of the interbank matrix. The sum over
all columns of the interbank matrix is a row vector which elements can be in-
terpreted as the total volume of loans granted by a bank specified by the
rows of to all other banks. This information is reported by Austrian banks
through the positions loans to domestic banks and bonds issued by domestic
bank. Hence the sum of the columns can be constrained to be equal the sum
of these two positions.

Constraints on the sum of rows of the interbank matrix. The sum over all
rows of the interbank matrix is a column vector which elements can be inter-
preted as the total volume of liabilities of a bank specified by the rows with
respect to all other banks. This information is not fully provided by Austrian
banks, as the reported position called liabilities to domestic banks refers only
liabilities, mostly deposits, which are not traded on a stock exchange. There
is no equivalent regarding bonds for the sum of rows, as the issuing bank of a
bond cannot know which part of the issued volume is hold by domestic banks.
However, a bank reports the sum of all bonds it has issued. Hence the sum
of the rows is constrained to be equal or greater than the liabilities to all
domestic banks and equal or less than the liabilities to domestic banks plus
the issued bonds.

Restrictions on Sub-Matrices. Finally we have information on sub matrices
through data provided by MAUS. Each bank reports the loans and liabilities,
which are not traded and denominated in Euro, with respect to each of the
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seven sectors of the Austrian banking system. These sectors are: joint stock
banks, savings banks, state mortgage banks, Raiffeisen banks, Volksbanken,
construction savings and loans, special purpose banks. As this information
refers only to some part of total loans and liabilities to each of the sector,
the sum of the columns representing the banks of a certain sector can be
constrained to be equal or larger than the respective reported loans to this
sector. Analogously, the sum of the rows representing the banks of a certain
sector can be constrained to be equal or larger than the respective reported
liabilities to this sector.

In practice, the algorithm described in the appendix is used to estimate the
interbank matrix as follows. Because the restrictions described above, are inconsis-
tent to some extent, in a first step all constraints on the matrix as described above
are implied to the algorithm. However, due to the inconsistencies in the data, the
algorithm does not converge for this set of constraints. Hence in a second step the
algorithm is restarted neglecting the constraints of category four using the result
from the first step as a prior. Now convergence can easily be achieved. However, in
cases were only few information regarding single entries of the matrix is available,
the algorithm tends to assign a quite low amount of loans and liabilities to a rela-
tively large number of counterparty banks, which in reality may have no interbank
relation to that specific bank at all. In order to avoid this, all connections below a
certain level (i.e. 10,000 EUR) are cut down to zero after convergence was achieved.
Using the resulting matrix as a prior, the algorithm is then restarted until conver-
gence is achieved again. This procedure is repeated until no further connections are
cut down after convergence was achieved.

Figure 6.1 shows the regional structure of the network of interbank loans that
is obtained by this procedure. In order to maintain at least some readability of the
picture for each bank only its interbank-loan with the highest volume is shown:

6.4 The matrix of interbank participations

The matrix of participations - in percent of capital — of domestic banks in other
domestic banks is directly reported from Austrian banks to the OeNB. In order to
capture the full structure of participations we have to consider to different cases:

e Direct participations of domestic banks in domestic banks

e Indirect participations of domestic banks in domestic banks, where at least
one institution in the chain of direct participations, on which this indirect
bank to bank participation relies, is not a bank. Typically this is the case if
one or more banks have participations in a holding-company, which itself hold
participations in one or more banks.

As of end 2005 SRM fully captures the first, but not the latter type of inter-
bank participation. However, indirect participations will be included as well in the
near future.

6.5 Calculation of Capital

The calculation or definition of capital, respectively, is crucial for SRM as it defines
the risk bearing capacity of bank that is how much capital is available to a bank in
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Figure 6.1. Regional Structure of Austrian Interbank Loans

order to cover losses from market, credit or contagious risk. As these resources to
capture potential losses may not only include capital in the classical sense like tierl-
or tier2- capital, but also other this like provisions or profits, the notion capital was
set under quotes in the beginning of this paragraph. However, in the terminology
of SRM we mean by capital all resources to capture potential losses. If the losses
exceed capital, the bank defaults. SRM provides several options for the definition
of capital ranging from a very strict to a rather broad definition:

e Tier 1 capital only is considered.
e Regulatory capital as defined by the Austrian banking act is considered

e Regulatory capital as defined by the Austrian banking act plus actual general
and specific provisions for loans is considered

Depending on the choice for the calculation of capital results regarding the number
of defaults occurring in a given simulation can vary quite substantially. However
the choice of the capital basis to capture potential losses will be part of an ongoing
process during which the practical use of SRM shall be explored in detail.
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Chapter 7

Implementation

7.1 SRM Software Requirements
7.1.1 Scope and Context

To make SRM operational, it is implemented such that it can be accessed via an
interface called from the analyst’s desk. The interface is a Java client application
which gives users the possibility to run certain predefined simulations (including
a variety of regular stress tests) as well as to parameterize individual simulations.
In either case output is written to Microsoft Excel files for further analysis, which
are sent as an e-mail attachment to the analysts desk by SRM after a simulation
request has been finished.

7.1.2 SRM Input

The main sources of data used by SRM are described in detail in chapter 6. These
are bank balance sheet and supervisory data from the monthly reports to Oesterre-
ichische Nationalbank (OeNB) and the database of the OeNB major loans register.
In addition default frequency data in certain industry groups from the Austrian rat-
ing agency, financial market price data from Bloomberg, and macroeconomic time
series from OeNB, the OECD and the IMF International Financial Statistics are
used. These are varied data sources with quite different technical and structural
properties. SRM provides means to read and aggregate data from multiple data
sources with different data structures as well as varying degrees of frequency.

7.1.3 SRM OQOutput

SRM output consists of descriptive system (risk) statistics of individual simula-
tion runs on individual bank and various aggregates. Within SRM four main risk
concepts are used:

e Fundamental and contagious defaults
e Pd distribution according to rating classes

e Aggregate loss distributions
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e Quantification of resources that might have to be mobilized by a lender of last
resort

Accordingly SRM writes output to Excel files to grant users the possibility to further
investigate the statistics along these risk concepts.

7.1.4 The different uses of SRM
SRM is mainly used in three different ways:
e regular quarterly risk assessments,

e infrequent ad hoc simulations, and

e infrequent in depth analysis.

As the three scenarios differ in complexity, they demand increasing familiarity with
SRM, which is reflected in an intuitive three layer approach. The first use corre-
sponds to the regular system stability analysis conducted at the Financial Analysis
Division of OeNB at the beginning of each quarter as soon as all new data are
available. It consists of a simulation and a certain set of predefined stress tests. As
this is regular analysis, SRM provides predefined model configurations as well as
a set of predefined stress tests, to perform the task with a couple of mouse clicks.
The concept of ad hoc simulations corresponds to irregular analyst needs, which are
centred on a topical financial stability problem. It is catered for by SRMs advanced
model and scenario options, which can be set from the interface where users can
choose from a set of different SRM models (for instance varying credit- and mar-
ket risk models) as well as define their main parameters. Additionally the SRM
user interface provides the possibility to customize individual stress tests according
to the demand of the ad hoc analysis. Finally the third complexity level, which
provides means to fine tune SRM models and for instance evaluate model choices
themselves, moves SRM configurability beyond the constraints of the interface. It
relies on numerous configuration files, which contain additional parameters in com-
parison to the standard interface. This kind of configuration, however, is reserved
for expert SRM users.

7.2 SRM Software Architecture
7.2.1 SRM Program Structure

SRM is implemented based on 2-tier architectures [see fig.]. A Java client application
serves as graphical user interface and compiled, object-oriented Matlab code of SRM
models and internal data structures as main application. External data is based on
multiple sources and ranges from the local LDAP server for user authorization to
Bloomberg market data that is read from flat files. SRM output is written to Excel
files for further analysis.

7.2.2 SRM Presentation Layer

The SRM presentation layer is implemented as a client application, which grants the
user the possibility to run certain predefined simulations with SRM or parameterize
individual simulations. The chosen parameters are stored at database level and
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Figure 7.1. SRM Software Architecture

written to M-Files, which in turn are interpreted at run-time by the SRM application
layer. The user interface is implemented with Java 1.4.2, data is held persistent on
the same Oracle 10g database that contains some of SRMs input data. For usability
reasons the authorization of users relies on their profiles of the OeNB LDAP server,
which also holds their email addresses for notification purposes after a full SRM
simulation.

7.2.3 SRM Application Layer

The SRM application layer is implemented with Matlab, version 14.3. Matlab is
a matrix-based programming language for technical computing with data struc-
ture, function, and object-oriented programming features . The application layer
of SRM has been implemented as a set of object-oriented M-files (Matlabs func-
tions and applications) in Matlabs working environment, which includes tools for
developing, managing, and debugging M-files. Additionally to Matlabs standard
function library, SRM makes use of so called toolboxes. In particular, the financial,
optimization, statistics toolboxes as well as the open source econometrics toolbox
(see James [1999] were used. The application layer also contains the internal data
structure of SRM. There are routines for data input and data output as well as
objects that store the data during runtime. The source code can be executed via
Matlabs standard user interface. However, in its end-user implementation, the code
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is compiled as C Code, and called via SRMs Interface. In either implementation
output is written as Excel files for further analysis.

7.2.4 SRM Implementation

In more technical terms, SRMs application layer is comprised of four Matlab classes:
e the DataClass,
e the SimulationClass,
e the ModelClass,
e and the ScenarioClass.

The DataClass contains the banking data as well as time series data for macro,
market and credit risk factors. Additionally general information about one simu-
lation is stored in the DataClass, for instance the date for which a simulation is
executed or information on the directory, where output should be stored. Each
simulation in turn consists of n different runs of SRM. One run usually signifies a
default SRM simulation, other runs stress test the system concerning the impact of
different (groups of) risk factors. The information about individual runs is stored
in the SimulationClass, which also handles the sequence of all runs of a simulation
as well as the export of results. However, all the runs of one simulation share a
certain set of SRM models (market risk model, credit risk model, etc.), which are
stored as function calls in and according to parameters of the ModelClass. SRM is
implemented in an object-oriented manner, therefore the possibility to easily add
additional models is guaranteed, as long as they comply to the implemented inter-
faces. Finally there is the ScenarioClass, which contains the market and credit risk
scenarios for each individual run based on the data from the DataClass, the choice
of stress parameters from the SimulationClass and the models from the ModelClass.

7.3 SRM Data Design
7.3.1 SRM Input Data Structure

For an extensive description of the input data sources and their structures refer to
the previous chapter. Within the SRM data is handled by the DataClass, which
provides all the necessary functions to read and structure data from the various
external sources.

7.3.2 SRM Data Class

The SRM DataClass provides two fundamental functionalities to SRM. As its name
suggests, it contains all of SRMs data in a structured manner, which as the object-
oriented paradigm would suggest is also read and aggregated within the DataClass.
A major role is therefore the provision of data to other classes of SRMs applica-
tion layer. Secondly the DataClass contains all handling of general SRM settings,
whether it is the information on the runtime environment (which risk factors are
includes, what data sources are to be used, where it is read from, and where to store
SRMs output), in or out functions or the progress log.
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Object variables The SRM DataClass stores two types of data, bank specific
data and market data. Bank specific data is organized in four object variables of
the DataClass as follows:

e Banks is an array of banks, with information regarding each individuals code,
name, sector, etc.

e Positions is an array of all reported positions including information such as
their code, name, currency, etc.

e Firms is an array of those firms and individuals for which banks report large
exposures

e BankValues is the object variable that stores the actual values whereas the
other three just hold the information about the data Besides this bank specific
data, the DataClass stores market data, too.

This data is organized in the following three object variables:

e Timeseries is an array of time series, containing the information about each
time series in SRM

e Dates is a vector of dates

o MarketValues is the object that stores the actual values for each time series
and date specified above

Additionally the DataClass contains an object variable Options, which in turn con-
tains general SRM parameter such as the current version, and runtime related
variables. Other Option parameters are concerned with the description of the afore-
mentioned bank specific and time series data.

7.3.3 SRM Output Data Structure

SRM output consists of descriptive system (risk) statistics of individual simulation
runs on individual bank and various aggregate levels. SRM writes its output to
Excel files to grant users the possibility to further investigate these statistics. For
each run there is a separate Excel file, which contains one or more sheets of the
following six categories:

e Parameter sheets

System (risk) statistics sheets

Rating sheets

Lender of last resort sheet

e Scenario sheet

The parameter sheets contain information on the parameters of the simulation run.
They are provided in three levels of granularity according to the three identified
usage scenarios. They therefore range from one reduced sheet, which contains the
name of the run, information on potentially stressed risk factors and the choice
of models, to the most detailed sheet, which contains all of the almost 200 SRM
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parameters. The system (risk) statistics sheets contain the main SRM output,
probabilities of default for fundamental and contagious default over the course of
the next quarter and projected values for a year. It also includes aggregated loss
distributions for market-, credit- and contagion risk losses as VaRs for different
percentiles. Each statistics sheet is provided in absolute values and on another sheet
relative to the current capital definition (which can also be parameterized in SRM).
Values are calculated for the aggregate system and on an individual bank level, as
well as on any level that banks can be grouped (size, sector, etc.), which results in
two statistics sheets (absolute and relative) per level in the SRM output file. In the
so called rating sheets, SRM provides two tables of OeNB rating classes (one more
detailed than the other), to which individual banks are mapped according to their
probability of default during the particular simulation run. The lender of last resort
sheet provides a quantification of resources that might have to be mobilized by a
lender of last resort, structured by total-, market-, credit-, and contagion risk losses.
And finally the scenario sheet, which provides an overview of the SRM scenarios
according to the number of defaults of individual banks, that occurred within each
individual scenario of the current simulation run.

7.4 SRM Functional Design
7.4.1 SRM Functional Sequence

SRM is composed of three main functional blocks [see fig.]:
e the initialization,
e the simulation, and
e the calculation of the results.

During initialization all four SRM object classes are initialized, their parame-
ters are set according to the values in the configuration files. The next steps include
the initialization of SRMs network model, the initialization of the scenarios (i.e. the
market and credit risk models) and the simulation runs. Initialization is the one
functional block that all runs of one SRM simulation share, as each individual run
uses the same network model as well as the same market and credit risk models.
During the simulation phase, each individual run (stressed or unstressed) undergoes
the same three steps:

e the calculation of market risk
e the calculation of credit risk, and

e the network clearing.

The former two consist again each of two steps, the generation of market and credit
risk scenarios (on the ScenarioClass side) for which losses are calculated (on the
ModelClass side). The final simulation step for each run is the clearing of the
network, which includes the calculation of losses due to contagion. Finally the
results are calculated for each individual run of the simulation and exported to Excel
files for further analysis (which is handled by the SimulationClass). The separation
of simulation and result calculation serves the purpose of an easier extension of
either end, but particularly the calculation and export of results, as quite a lot of
selection and aggregation of the generated statistics has to be performed.
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Figure 7.2. SRM Sequence Diagram

7.4.2 SRM Simulation Class

The SRM SimulationClass provides two functionalities to SRM. As its name sug-
gests, it contains the management of individual simulation runs, in case of one run
being a stress test it also includes the management of the stressed risk factor(s) and
the kind of stress that has to be applied. Secondly the SimulationClass handles the
calculation and export of the results of each individual simulation run.

Object variables

Other than the object variable Options, which contains general saving and export
parameter, the SRM SimulationClass stores the structure and values of stressed risk
factors (macro and market time series as well as default rates for different sectors)
alongside general information on how to handle each simulation run.

Functions

7.4.3 SRM Model Class

As its name suggests the ModelClass contains the SRM models. That is the imple-
mentation of these models as functions of the ModelClass and the information on
which of the available models are used for the current simulation. The models in
question include:
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the network model

e the market risk model, either one of the following:

— historical simulation
— multivariate normal model

— copula model

the credit risk model, either one of the following:
— expected loss calculation

— macro model monte carlo

— macro model credit risk plus

e and the network clearing model

Object variables

The SRM ModelClass stores the information which model to use in an object vari-
able called Options, which also contains the parameterization of each of the models
in use. Additionally it is the ModelClass that stores the (banks by scenario) matri-
ces for
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e the network exposures,

e market- and credit risk losses,
e contagious losses, and

o defaults.

This also indicates one ModelClass object exists for each individual run of a sim-
ulation as opposed to Data- and SimulationClass, for which one object exists per

simulation.

Functions

7.4.4 SRM Scenario Class

The ScenarioClass contains the scenarios for each run of a SRM simulation. That
is the implementation of the scenario generation as functions of the ScenarioClass
and the information on which of the available functions to generate scenarios are
used for the current simulation. The methods in question include:

e the market risk scenarios, either one of the following:

— historical scenarios
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— multivariate normal distributed scenarios

— scenarios based on a t-copula

e the credit risk scenarios, either one of the following:

— scenarios according to current default rates

— scenarios based on the simulated macroeconomic risk factors

Object variables

The SRM ScenarioClass stores the information which methods to use in an object
variable called Options, which also contains the parameterization of each method
in use. Additionally the ScenarioClass stores the generated macroeconomic risk
factor scenarios, as they serve as conditional scenarios for the market risk factors.
However market risk scenarios are by default not stored for performance reasons,
but can be saved to hard drive if necessary.
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Functions

7.5 SRM Interface Design
7.5.1 SRM Interface

The interface is a Java client application which aims at high usability for the two
main SRM usage scenarios:

e regular quarterly risk assessments and
e infrequent ad hoc simulations.

The interface therefore gives users the possibility to run certain predefined simula-
tions as well as to parameterize individual simulations. The former corresponds to
the regular system stability analysis conducted at the Financial Analysis Division
of OeNB at the beginning of each quarter as soon as all new data are available.
It consists of a default simulation and a certain set of predefined stress tests. As
this is regular analysis, SRM provides default model configurations as well as a set
of predefined stress tests, which can be selected and executed from the interface
main menu. The later corresponds to infrequent simulations, which are centred on
a topical financial stability problem. It is catered for by SRMs advanced model
and scenario options, which can be set from the interface sub menus, where users
can choose from a set of different SRM models as well as define their main param-
eters. Additionally the SRM user interface provides the possibility to customize
individual stress tests according to the demand of the ad hoc analysis. In either
case output is written to Microsoft Excel files for further analysis, which are sent as
an e-mail attachment to the analysts desk by SRM after a simulation request has
been finished.

7.5.2 Interface Sequence

7.5.3 Main Menu
SRMs main menu consists of four functional groups [see fig.]:
e data configuration,
e bank options,
e simulation types, and
e advanced options.

Data configuration allows the user to set the point in time for which a simulation
is conducted, additionally certain database options can be set. Bank options let
the user define which institutes to include in the simulation and simulation types
provide the aforementioned default simulation as well as the predefined stress tests.
These consist of a sensitivity analysis for each of the included risk factors, and
more complex regular stress simulations such as a GDP shock or a hike in EUR
interest rates. The choice of stress test customization leads to the menu simulation
configuration, where individual stress tests can be defined. Finally the advanced
options, which also lead to further interface menus, namely the advanced model
options for model selection and parameterization and the advanced scenario options
for scenario generation and parameterization.
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Parameter description

The following SRM parameter can be set from the main menu interface (see tab.,
for a complete listing of parameters including their data types, default values, and
a short description):

Insert Table here

7.5.4 Advanced Model Options
SRMs advanced model options menu consists of three functional groups [see fig.]:
e market model options.
e credit model options, and
e clearing model options.
For each of the three model choices are provided, including the calibration of the
main parameters according to the selected model.
Parameter description

The following SRM parameter can be set from the advanced model options interface
(see tab., for a complete listing of parameters including their data types, default
values, and a short description):
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insert table here

7.5.5 Advanced Scenario Options

SRMs advanced scenario menu consists of four functional groups [see fig.]:

e market scenario options
e macro model copula parameter options,
e credit scenario options, and

e credit model parameter options.

Market scenario options allow the user to set certain parameter regarding the treat-
ment of time series when estimating market risk scenarios, whereas macro model
copula parameter options provide the possibility to influence the copula estimation
(for example the kind of error distribution used). Credit scenario options provide
the choice of different models for credit risk scenario generation, and credit model
parameter allow users to set the credit model parameter, given credit generation is
set to the option ”macro model”.
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Parameter description

The following SRM parameter can be set from the advanced scenario options in-
terface ( see tab., for a complete listing of parameters including their data types,
default values, and a short description):

7.5.6 Simulation Configuration

Although SRMs simulation configuration menu equally consists of three functional
groups [see fig.], they differ in regard to their structural properties:

e simulation overview manages the individual runs of a simulation

e and a little misleading, simulation contains the parameters of each run, and
is split into:

— parameter, which contain the general parameter of an individual run and
— riskfactors, which provides the possibility to stress each risk factor of one

run

The simulation overview serves as the console to manage the customized runs.
Parameters can not be changed at that level, as it is simply a display of the currently
defined runs. However, one can add and delete individual runs, as well as reset any
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run to general default values. The simulation overview also enables users to select
one run for display, to actually define the parameter.
Parameter description

The following SRM parameter can be set from the simulation configuration interface
(see tab., for a complete listing of parameters including their data types, default
values, and a short description):

Insert Table here

Additionally stress factors can be defined for three groups of risk factors:

e macro factors (Macro),
e market factors (Market), and
e probabilities of default (Credit Pds).

Each group of risk factors can be accessed by a separate panel in the lower third of
the interface. Risk factors that are listed there and can be stressed in three different
ways:

e set the value of a risk factor to a certain level (set),

e in- or decrease the current value of a risk factor by a certain value (abs), or
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e a relative in- or decrease of the current value

However, as stress for macro factors is defined as a deviation from an estimated
baseline, macro risk factors can currently not be set to a certain value.

7.6 SRM Restrictions, Limitations and Constraints

7.6.1 Constraints of the Interface

Adding new parameter
Adding new models
Changing risk factors
Risk factor levels

7.6.2 Constraints within the Application

Default credit model
Stressing macro risk factors

7.6.3 Constraints of the Output

Output parameter
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Appendix A

Appendix

A.1 Modelling Multivariate Distributions of Risk
Factors

Our approach to modeling multivariate distribution of risk factors is based on the
Sklar’s Theorem (Sklar [1959]).

Sklar’s theorem: Let F' be a multivariate distribution function with marginal
cumulative distribution functions F; for ¢ = 1,...,n. Then there exists a function
C :[0,1]™ — R satistying

F(:Cla”-al'n):C(Fl(:cl)a”-aFn(xn))' (Al)

C' is called the copula. If the marginal distributions F; are continuous, then C' is
unique. When C is a copula and F; are arbitrary distribution functions, then the
function F defined by equation (A.1) is the multivariate function of a multivariate
distribution with marginals F;.

Sklar’s Theorem give us the possibility to model the multivariate distribution
function in two steps, namely modeling of marginal distributions (Section A.1.1)
and modeling the copula (Section A.1.3).

A.1.1 Modelling and estimating the marginal distributions

Denote the given time series as S¢, t = 1,...,n. We model the log-returns of the
risk factors
Tt = 11’1(St+1) - hl(St) t= ]., ey

We chose not to model AR effects in the market time series, because no-arbitrage
arguments deny the significance of autocorrelations effects for traded prices.

Aggregating higher frequency models to 60 day models

We concentrate on a time horizon of 60 trading days. Market data are available at
a higher frequency, usually daily or even intra-day. This opens the possibility to
model the distributions of log-returns over shorter periods (1, 5, 10, 20, 30, or 60
days), and then aggregate these distributions in order to arrive at forecasts of 60
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days returns. In this way one can possibly exploit the availability of higher frequency
data in order to get more reliable estimates. On the other hand, estimation and or
modelling errors might be magnified by the aggregation.

When we confine ourselves to the standard deviation of the return distribution,
a simple aggregation method is given by multiplying by the square root of time.
This works correctly if we have i.i.d. returns. Volatility clustering observed in the
markets implies that returns are not i.i.d. This finding questions the appropriateness
of the square root of time-method.

Let us denote an m-period return during time ¢ and ¢t + m by ,,ri. (We
abbreviate the 1-period return 17, between times ¢ and ¢t + 1 by r;.) As we consider
log-returns, we have ,,r; = Z?;Bl Tt4;. When the returns r; are discrete, the
probability that ,,,r; is equal to y is the probability that 221_01 T+ is equal to y. In
this case one has to sum the probabilities of all possible paths of {T‘t.{.i}?lgl which
sum up to y. In analogy, for continuous one-period returns the density function of
mTt 1S

©0 o0 m—1 m—1
fmm (y) = / / f7't+m—1 (y - Z xz) H fm+i71(xi)dx1---d$m—17 (A'Q)
RV i=1 i=1

where f,., denotes the density function of the one-period returns r;, conditional on
the previous realizations of r;.

In general, this multi-period density function can be evaluated only numer-
ically. Therefore, we use a Monte Carlo simulation in order to approximate the
aggregated distribution function of the density (A.2). We simulate 10.000 paths of
m steps by drawing for each step from the distribution given by the density f,,.
Each path yields a value after step m, which is a draw from the aggregated distri-
bution. Simulating enough paths gives a sufficient approximation of the aggregated
distribution.

GARCH

GARCH processes are a popular tool for the description of financial time series
because they are known to describe volatility clustering. Aggregated GARCH pro-
cesses can also capture the heavy tails even if the one-period distribution is normal.

Definition The sequence {ry,t € Z} is defined to be generated by a strong GARCH(1,1)
process if

€ 1= Tt/O't ~ D(O, ].) Zld,

ol =a+br? | +col, (A.3)

where D(0, 1) specifies a distribution of errors with mean zero and unit variance.
The class of strong GARCH processes is somewhat restricted because it as-

sumes that the errors are identically distributed and independent. (Strong, semi-

strong, and weak GARCH processes are defined e.g. in Drost and Nijman [1993].)

Still, in the sequel, we only consider strong GARCH processes

Tt = Ot€¢, (A4)



A.1. Modelling Multivariate Distributions of Risk Factors 69

where € are iid with some distribution, with zero mean and unit variance and volatil-
ity modelled as
o =aocl | +bri, +c (A.5)

In case, where the GARCH effects are not included in the model, the oy is set to a
constant for all t.

The GARCH parameters can be estimated with the quasi maximum likeli-
hood method (see e.g. Berkes et al. [2003], McNeil and Frey [2000]). This method
introduces two additional assumptions. The first is that € is normally distributed
(which actually it is not). The second assumption is a + b < 1 to guarantee sta-
tionarity of the time series (see i.e.Drost and Nijman [1993]). With these two
assumptions the estimation proceeds as the usual maximum log likelihood method.
Our GARCH(1,1) model depends on the parameters a, b, ¢, o3 defined by

) = 5 3 (o2 1)+ 1) + ez, (A6)

a 2 1 0;—1 2

where of is an exogenous starting value and the o, are defined by equation A.5.
Although the quasi maximum likelihood procedure relies on the normality assump-
tion which is known to be violated, the practical applicability of estimation results
is ensured by various asymptotic results, see i.e. Bollerslev and Wooldridge [1992].

Distribution of errors

Another ingredient of our marginal models is the distribution of errors € in equation
(A4).

For the error distributions we admit three possible models.

e norm - uses normal errors. To estimate the parameters we take the usual
estimators of mean and variance,

ot = > (), (A7)

e t - uses the Student distribution.This allows for modelling heavier tails. Ac-
tually, we model the errors as € ~ a + bt,, where ¢, represents the Student
distribution with v degrees of freedom. Since the Student distribution has zero

mean, variance equal to —*5, and kurtosis equal to D—E4 + 3, we can estimate

a, b, v in the following way. In terms of these parameters mean, variance, and

kurtosis of € are given by

H1 (6) =a+bu (tu) = a, (Ag)

pa(6) = Pratt) = (02 f, (4.9)

v—2
pale) _ blpa(e)  pale) 6
pz(e)  (BPua(e))?  p3le) v—4

where p; is the i-th central moment. From equations (A.8, A.10) we directly
get the parameters a and v. From v we can compute b by equation (A.9).

+3, (A.10)
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Alternatively, the parameters a,b and v could be estimated by the maximum
likelihood approach.

e EVT - uses a distribution with the 80% body taken from the empirical distri-
bution (as in in historical simulation), and the 10% data in the left and right
tails are used to estimate the distribution of tails (excess distribution) which
is well approximated by the generalised Pareto distribution (see i.e. McNeil
and Frey [2000], Pickands [1975])

Geoly) =1 (1 + §y>1/§. (A.11)

We estimate o and ¢ of the generalised Pareto distribution with maximum
likelihood method, using as objective function the log-likelihood

In(if) = —mIn(o) — (1 + %) im <1 + §e> , (A.12)

where e represents the excess over the 10%-quantile of the empirical distribu-
tion.

A.1.2 Tests of the marginal distributions

In order to test the 60 days distribution forecasts produced by the various models,
it is not enough to assess whether the means, variances, or some quantiles of the
distributions were correctly predicted. (Back testing, for example, amounts to a
test of a quantile of the predicted distributions.) For many applications the overall
distributional properties are important, not just the means or variances. There-
fore, based on DeRaaij and Raunig [2002], we test for the adequacy of the density
forecasts of the entire distribution.

Consider a time series of returns 7 (¢t = 1,...,n) generated from some true
conditional densities f¢(.) (¢ = 1,...,n). Now some model produces a series of
60 days conditional density forecasts pi(.) (¢t = 1,...,n). The task is to evaluate
whether the true conditional densities fi(.) agree with the predicted conditional
densities p¢(.). Applying the Rosenblatt transformation (see Rosenblatt [1952]) to
the observed returns ry, .

t
Ty 2 = / pt(u)du (A.13)
—0o0
we get a transformed series z; which should be i.i.d. U(0,1) if the predicted condi-
tional densities p:(.) agree with the true conditional densities f:(.). Applying the
inverse of the normal distribution function

2 = g o= BT (), (A.14)

produces a series n; which is standard normally i.i.d. if the original returns r; are
distributed according to the predicted densities p; (see Berkowitz [2001]).

We then perform a Kolmogorov-Smirnov (KS) test for the hypothesis that the
ng are sampled from a standard normal distribution. The KS-test compares the
sample values with a standard normal distribution. The null hypothesis for the
Kolmogorov-Smirnov test is that the sample has a standard normal distribution.
The alternative hypothesis that the sample does not have that distribution. For
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each potential value z, the Kolmogorov-Smirnov test compares the proportion of
values less than x with the expected number predicted by the standard normal
distribution. The test statistic is the maximum difference over all & values. The
Kolmogorov-Smirnov test is moderately sensitive to the whole distribution including
the first and second moment, however fit of the tails is not tested very sensitively.
A model is accepted if the p-value is higher than 5%.

In order to test additionally whether the conditional variance of the n; is
constant and equal to one, DeRaaij and Raunig [2002] consider the regressions

ny = Bo + Bini—1 + ug (A.15)
nf =+ 7171%71 + vy (A.16)

where u; and v; are non-autocorrelated with zero expectation conditional on their
own past values. In case the n; have zero mean and are uncorrelated we have Gy = 0
and 31 = 0. In case the n; have constant conditional unit variance we have vy = 1
and y; = 0. To test whether these restrictions are satisfied, DeRaaij and Raunig
[2002] propose a joint Wald test of the four equalities Sy = 0, 51 =0, 79 = 1, and
v = 0. Additionally, they use the Jarque-Bera (JB) test to see whether the n; have
skewness zero and kurtosis equal to three. The Jarque-Bera test without the Wald
test would not be very powerful since it does not test for mean and variance. The
JB-test evaluates the hypothesis that the sample has a normal distribution with
unspecified mean and variance, against the alternative that the sample does not
have a normal distribution. The test focuses on the sample skewness and kurtosis.
For a normal distribution, the sample skewness should be near 0 and the sample
kurtosis should be near 3. The Jarque-Bera test determines whether the sample
skewness and kurtosis differ significantly from their expected values, as measured
by a chi-square statistic.

To sum up, we perform the following Test 2. A model is accepted if the p-value
of the Jarque-Bera test is higher than 5% and the p-value of the joint Wald test for
Bo =1 =7 =0 and v =1 is higher than 5%.

A.1.3 Modelling and estimating the copula

As already mentioned, our approach to modeling the multivariate density function
is a two step procedure: First we model univariate time series. Then we model
dependence separately by a grouped t-copula. This subsection will focus on the
estimation of the copula. We will begin with short paragraph about the choice of
the copula, and then give a procedure how to construct random variables distributed
according to the grouped t-copula. Then we describe how we estimate the copula
parameters - the correlation matrix and the degrees of freedom for the different
groups. Finally we describe how to draw scenarios from the unconditional and
conditional grouped t-copula.

Choice of copula

Some empirical observations suggest that the multivariate normal distribution is not
optimal for modelling multivariate financial time series. For example, the multivari-
ate normal exhibits zero tail dependence (see i.e. Fortin and Kuzmics [2002]), while
real data often exhibit non-zero tail dependence. To allow for possible tail depen-
dence one of several possible choices is the Student copula. However, if more than
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two risk factors are linked by a Student copula, all pairs exhibit the same tail de-
pendence. This is clearly unrealistic. To allow for different tail dependence between
different pairs of variables, we use the grouped t-copula (Daul et al. [2004]). In this
project we did not perform any systematic tests to evaluate the appropriateness of
other copulas.

Construction of the grouped ¢-copula

By Sklar’s theorem the joint distribution is uniquely determined by the marginal
distributions and the copula function. Our choice for the copula is the grouped
t-copula. This choice is motivated—although not strictly implied— by the desire
to have distributions with non-zero tail dependence, and possibly with different
tail dependences between different risk factors. The usefulness of the t-copula was
examined for example by Dias and Embrechts [2003] and Chen et al. [2004].

Daul et al. [2004] describe how the grouped ¢-copula arises. Let Z be normally
distributed with means zero and correlation matrix p, and U a random variable
uniformly distributed on (0,1), independent of Z. Furthermore, let G, be the dis-
tribution function of y/v/x2, where v is the number of degrees of freedom and 2 is
the y2-distribution with v degrees of freedom. Partition the set of variable indices
{1,2,...,n} into m sets of sizes s1,S2,...,Sm. Let Ry = G;}}(U) fork=1,...,m.
If

Y = (R1Z1, ey R12817R2Z81+1, ey R2Z81+32, ce RmZn)l, (Al?)

then the vector (Y1,Y2,...,Ys, ) has an s;-dimensional t-distribution with v de-
grees of freedom and, for k = 2,...,m the vectors (Y, 4. fs,415---> Ysi4.tspi1)
has an si-dimensional t-distribution with v degrees of freedom. Finally, let Fj
denote the distribution function of Y3 and let Hy, ..., H, be some arbitrary strictly
increasing distribution functions. Then

X = (Hy {(Fi(V), -, Hy Y (Fo (V) (A.18)

n

is a distribution with marginals H1, .. ., H, and the copula within each of the subsets
{1,...;1},{s1+1,...,81+s2},..., {s1+s2+...+Sm-1+1,...5,} being a t—copula
with v, v, ..., v, degrees of freedom.

Two risk factors which are in the same group and which have linear correlation
coeflicient p12 have upper and lower tail dependence equal to

A=2-21 (¢y+ Ty/1— pray/1 +p12) ,

where v is the number of degrees of freedom of the group to which the two risk factors
belong, and ¢, is the distribution function of the univariate Student t-distribution
with v degrees of freedom (see Embrechts et al. Embrechts et al. [2002]).
Estimation of grouped ¢-copula

With given groups we need to estimate two sets of parameters of the copula: the
linear correlation matrix p and the number of degrees of freedom for each group.
Estimation of correlations

We estimate the correlation matrix from Kendall’s tau 7. Assume we are given
a series of n simultaneous observations (z;,y;) of the risk factors X,Y, where all
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x; differ from each other and all y; differ from each other. In an ordering of the
a-values, denote the rank of an observation z; by r(x;). Similarly, in an ordering
of the y-values, denote the rank of an observation y; by r(y;). Now consider all
possible pairings of the n observations. In total there are n(n — 1)/2 pairings of
observations. A pairing ((x;,v:), (xj,y;)) is called concordant either if both r(x;) >
r(z;) and r(y;) > r(y;) or if both r(z;) < r(z;) and r(y;) < r(y;). A pairing
((®i, i), (xj,y;)) is called discordant either if both r(x;) > r(z;) and r(y;) < r(y;)
or if both r(z;) < r(z;) and r(y;) > r(y;). Denote the number of concordant pairs
by C' and the number of discordant pairs by D. Then Kendall’s tau is defined by

C-D

2(X)Y) = —m——.
(X Y) = e T

Kendall’s tau is related to the linear correlation coefficient by

pxy = sin(gTa(X, Y)). (A.19)

The main advantage of estimating linear correlation coefficients via Kendall’s
tau is the robustness of this method and its invariance under strictly increasing
component-wise transformations T1, Ta: 74(X,Y) = 7., (T1(X), T2(Y)) (seei.e. Daul
et al. [2004]). This in turn implies that the estimated correlation matrix does not
depend on the number of degrees of freedom of the group. This leads to the com-
putational advantage that we can estimate the correlations once and then calculate
the log-likelihood for each number of degrees of freedom, instead of calculating the
correlations again for each copula for all degrees of freedom. Other correlation es-
timators depend on the marginal distributions, which are in turn influenced by the
number of degrees of freedom of the group. Therefore it is necessary to recompute
the correlation matrix in every step of the estimation of these copula’s parameters.

One disadvantage of Kendall’s tau approach is that it provides a correlation
matrix p which is symmetric, but does not need to be positive definite. To arrive at
a positive definite correlations matrix we perform the following transformation of p
(see i.e. Rousseecuw and Molenberghs [1993]). In this method the correlation matrix
p is written as p = PDPT, where D is the diagonal matrix of the eigenvalues. A
positive definite matrix would have positive eigenvalues, therefore in a next step
we replace the non-positive eigenvalues by a small positive number (respectively by
their absolute value). Then the new matrix p! is computed using the old eigenvec-
tors and the new modified eigenvalues. By construction the matrix p' should be
positive definite, but this property is not numerically stable. If we rescale p! by

oL
p?j =l (A.20)

\/ PiiPj

we obtain a unit diagonal. The resulting correlation matrix is positive definite, and
this feature is numerically more stable.

Estimation of the copula degrees of freedom

To estimate the copula degrees of freedom we can use the fact that each group taken
by itself has a Student copula and therefore we can use the standard approach for
estimating the number of degrees of freedom of the Student copula. We use the
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maximum likelihood estimator on a multivariate distribution with Student copula
and the normalised time series of eq. (A.13) as marginals.

More precisely the copula density is a function of the marginals and correla-
tion. In the estimation of the copula degrees of freedom we can ignore the marginals,
because they do not depend on the degree of freedom and have only an additive
influence on the objective function. For the correlations, which are also influenced
by the copula, we use the matrix p? of equation (A.20). The resulting log density
is a function of the degrees of freedom and of the normalised risk factors.

For a given number of degrees of freedom v the log-density is computed as

o) = I'((v+m)/2)T(v/2)" !
F((V + 1)/2)’m\/m )

tHy) =t Y (u,v),
a(vt) = VJ;mhl (1 AT Z/> —In(c(v)) = > <I/J2r 1ln(1+ %)) :

v ,
J=1

n
hl(f(l/, u)) = Z ct(lja yz)v
i=1
where ¢, differs from the log-copula density only by a constant and In(f (v, u)) differs
from the log-likelihood function only by a constant which does not depend on the
numbers of degrees of freedom. In(f(v,wu)) is the objective function. The v for
which it is maximised is our estimate of the copula number of degrees of freedom.
An alternative approach would be to use the full density function, i.e. the
density function of the whole vector of risk factors. In this approach we have an
m dimensional optimisation problem (instead of m optimisations in 1 dimension).
The multivariate density can only be evaluated by numeric integration. Therefore
this approach will be much slower.

A.1.4 Drawing Scenarios from Distributions with Grouped
t-Copula

In this section we describe ways how to draw scenarios from the unconditional and
the conditional distributions with grouped ¢-copula and arbitrary marginals.

Drawing Scenarios from the Unconditional Distribution

The goal is to draw m-dimensional scenarios from a distribution with marginal
distribution functions H;, i = 1,...,n, and grouped t-copula with m groups of size
S1,--.,8n and numbers of degrees of freedom v, ...,v,,. One can proceed in the
following way.

1. Generate a random vector Z ~ N (0, p), where p is a linear correlation matriz,
and generate an independent random variable U ~ U(0,1)

2. Denote by G, the distribution function of x2 and let Ry, := G,,}(U) for k =
1,...,m.

3. Then the vector
_ ( Zl Zs Zsl+1 Zsl-‘rSQ Zn )

VERi/vi' T /Rifui /Refve \/Rafva \/Run/Vm
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has by equation (A.18) a grouped t-copula with Student marginals.

4. Denote by t, the distribution function of the one-dimensional Student distri-
bution. Then

X = (Hl_l(tlfl (Yl))v cee aHgl(tvl (}/;1 ))a Hs_larl(tl& (Y51+1))7 ceey Hgl(tvm (st))) )
have grouped t-copula and marginal distribution functions H;, i=1,... n.

Daul et al. [2004] proves that scenarios constructed in this way have the right
distribution. This also follows directly from the proof in Section A.1.4.

Drawing Scenarios from the Conditional Distribution Given the Value of One
Component

The goal is to draw n-dimensional scenarios from the distribution which marginal
distribution functions H;, i = 1,...,n, and grouped t-copula with m groups of size
$1,---,8m and numbers of degrees of freedom vy, ..., v,,—conditional on the value
of the first component being ¢: X; = c.

1. Generate a random variable D ~ X12/1 and set

U=Guy (1 + (t! (1?1(0)))2/1’1)

and

D -1
o \/ T @ ) 421

2. Generate an n-dimensional random vector Z ~ (N(0, p)|Z1 = z1) of the multi-
variate normal conditional on the value of the first component being z1. Then
apply Steps 3 and 4 from Section A.1.J to get the conditioned scenario from
the grouped t-copula.

To see that the resulting scenarios have the right distribution one can argue as
follows. A random vector X with given copula C' and marginals F; can be written
as

FX(Zla-”afL’n) = C(Fl(xl)vaFn(xn))

Define a vector Y by Y; = M;(X;) for i = 1,...,n and some invertible functions
M;. Then we have

Fy(x1,...,2n) = P{Y1,.... Yo} <{x1,...,2,})
=P{X1,..., Xn} <{M; (21),..., M, (zn)}
= Fx(M; ' (21),..., My, ' (zn))
= C(FL(M{(21)), ., Fu(My H(wn))),

For M;(x) = G; *(F;(z)) we have

?

F(M; (20)) = Fi(F;(Gili)) = Gi(as).

(2 K2

This implies that Y has copula C' and marginals GG;. In this way we can generate
from random vectors from a distribution with known marginals and some copula
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random vectors from another distribution with the same copula and arbitrarily
specified marginals.

Now let us turn to generating scenarios from the conditional distribution with
grouped t-copula and some specified marginals, conditional on X; = ¢. By the
definition of Y in Step 3 of Section A.1.4, X; = ¢ amounts to Z1/\/R1/v1 =
t,,1(Hy(c)), where Z; ~ N(0,1) and Ry ~ x2 . Taking D := Rja for some constant,
which will be set later, this condition reads Z, = \/D/(va)t,, 1 (H1(c)). Therefore
the density function of D is proportional to

ole) ~ g, (2) o (St (o)

N (E)(ul—2>/2exp[ Z/a] exp [&]

a 2 2

21=2)/2 gy, [_5 1+ (tull(]jl(c)))Q/y] |

For a := 1+ (t,,}(Hi(c)))?/v we get D ~ x2 , which implies that the distributions
of Ry and Zy, Zs,...,Z, are independent from R;, and therefore can be generated
as a normal vector Z ~ (N(0, p)|Z1 = z1).

Drawing Scenarios from the Conditional Distribution Given the Values of Several
Components in the Same Group

The goal is to draw n-dimensional scenarios from the distribution with marginal
distribution functions H;, i = 1,...,n, and grouped t-copula with m groups of size
$1,...m and numbers of degrees of freedom vy, ..., v,,—conditional on the value
of the first k components being cq,...,cp: X7 = cl, ..., X = cg. Define the
k-dimensional vector d := (¢, ' (H1(c1))//V1,- .., (Hk(ck )/ V1)

1. Generate a random variable D ~ x2 and set U := G,, (D/a), where a is
a:=1+d- p,;}€ -d” and pg}c is the correlation submatriz of the first k
components. Fori=1,...,k take

D
zi =] —d;. (A.22)
a

2. Generate an n-dimensional random vector Z ~ (N(0,p)|Z1 = z1,..., Z =
zr.) of the multivariate normal conditional on the value of the first k compo-
nents having the values z1, ... z,. Then apply Steps 8 and 4 from Section A.1.4
to get the scenario.

The proof is similar to the proof in Section A.1.4.

Drawing Scenarios from the Conditional Distribution Given the Values of Several
Components across Different Groups

In the next step we will only condition on the vector Y, conditioning on X can be
done analytically. For example we have
Zi

Ygzi
\/Ri/l/i

= Cy, (A23)
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for ¢ € I, where I denotes the set of components on which the conditions are placed.
The most natural parametrization is by a random variable U

R, =G, (U),
Z;i = ¢i\/ Ri [ vi, (A.24)

Therefore, if we know the value of U, then we know the distribution of all other
variables (all R;, Z; for i € I). The non-conditioned variables can be generated in
the same way as described in Section A.1.4. Therefore our main goal is to find the
conditional distribution of the random variable U, where the condition is given by
equation (A.24)

PU<zlY;=ciiel)~
/fU((),l)(Z)fN((),pI) (%\/Guqi (W) /Viy,s -y cin\/ G (U)/Vim) du
0

where 41, ...,7, denotes the conditioned components and p; represents the linear
correlation matrix of these conditioned components. This equation give us the
probability density function of the random variable U under the given condition.

Fo(2) ~ o ( S @ e G (z)/m) |

In general the conditioned distribution of U is not an analytically defined distribu-
tion function, but from the density we can numerically approximate the cumulative
distribution function. From this we calculate the inverse of the cumulative distribu-
tion function. Knowing the inverse of cumulative distribution function we proceed
in following way

1. Estimate the inverse cumulative distribution function F[jl(:c) for variable U.
2. Generate a realization from the random variable V' with uniform distribution.

3. Compute Fljl(V), which has the desired distribution. With given U compute
all Ri,v=1,...,n and z; fori e I.

4. Generate an n-dimensional random vector Z ~ (N(0, p)|Z; = zi,i € I) of the
multivariate normal conditional on the value of the components from I having
the values z;,i € I. Then apply Steps 8 and 4 from Section A.1.4 to get the
conditioned scenario.

A.2 Credit Risk Model

A.2.1 From Macroeconomic Shocks to Industry Sector
Probabilities of Default

We have given ¢ = 1,..., I industry sectors. At time ¢ industry sector ¢ has a loan
default rate p; ¢ given by

Number of defaults; ¢
Hit =

Number of firms; ; (A.25)
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The loan default rate in industry ¢ depends on a set of macroeconomic risk factors
and a noise term via the relation

pie = G(Xe3i) + €iq (A.26)
where G(z) is given by
eZ
G(z) =Az) = e (A.27)

X; is a 1 x k vector of macroeconomic risk factors, 3; is a k x 1 vector of parameters,
and €;; is a noise term from a normal distribution with mean 0 and variance equal

to 6;G(X0:)(1 — G(X0;)). We assume that
E(pii|Xe) = G(XeBi) (A.28)

and Cov (g;4,€,| X+, X;) = 0 whenever ¢ # j or ¢t # 1.

The estimation of parameters is based on Papke and Wooldrige [1996]. Pa-
rameters for each sector are estimated separately. The subscript ¢ is dropped in
the sequel. The estimation is done using a quasi-likelihood method where the log-
likelihood is given by

T
W L(b) = 3 {ue I[G(Xeb)] + (1 — )il — G(Xb)]} (A.29)

where X, is the t—th row of X. Maximizing Equation A.29 with respect to b gives a
consistent estimate of § if Equation A.28 holds. The first order conditions require

dlnL - peg(Xeb) (1 — pr)g(Xeb) _
b ; { G(X:b) 11— G(Xb) }Xt =0 (4.30)

where g(z) = dG(z)/dz.
In our case it holds that g(z) = G(2)(1 — G(2)) = A(2)(1 — A(2)). This yields

dlnL &
Gh = 2 = AKX =0 (A-31)
t=1

If we stack p; and A(X;b) and denote this by p and A we get

dlnL B
oy =X (n=14)=0 (A.32)

Define §; = g(Xb) and Gy = G(X;b) where b is the QMLE estimator. The
estimated information matrix of the QMLE is then given by

A G2 X! X
A=Y It (A.33)
t=Zl Gy (1 — Gt)

In our case this reduces to

T
A=A (1 - [\t> X/ X, (A.34)
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Now define D = diag(A). Then in matrix notation
A=X'D(I-D)X (A.35)

where I is the T-dimensional identity matrix.
To get a consistent estimator of the true asymptotic standard error of the

parameters we also need the outer product of the score. Let 4; = py — G(Xb) be
the residuals and define

T A A2 NI

- uy g; X{ X

B=) ottt L9i e (A.36)
t=1 |:Gt(]. — Gt):|

A"'BA™! (A.37)
Define E = diag(sn — A). Then in our case B reduces to
B=X'E*X (A.38)

To select to best model for each industry sector, the likelihood and the BIC
criterion are used. The first model selection is done by finding the model with the
largest likelihood; the second by finding the model with the smallest BIC.

A.2.2 From Industry Default Probabilities to Loss Distributions

Each bank has a set Z = {1,...,I} of non-interbank obligors. Credit defaults of
corporates are described by a Bernoulli random variable X; where

X, = { 1 if obligor ¢ defaults at time T’ (A.39)

1 0 otherwise
and Prob(X; =1) = p;.

Definition A.1. Let X be a discrete random variable. The probability generating
function of X is defined as

Gx(z) = Z Prob(X =1i)2".

The probability generation function of a Bernoulli random variable is given
by
Gx,(z2)=1—pi+piz=1+pi(z—1)
If default events for the individual obligors ¢ € 7 are independent the probability

generating function of default events for the whole portfolio is the product of the
individual probability generating functions.

Gx(z) = HGX7'(Z) = H(l +pi(z—1))
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Writing this expression in logarithms this gives the expression
N
log(G(z)) = Zlog(l +pi(z—1)) (A.40)
i=1

If the default probabilities are uniformly small, we can ignore terms of degree 2 and
higher in the default probabilities. Using a Taylor series expansion of the function
log(1 + x) at xo = 0 this gives us:

log(14+pi(z —1) = pi(z — 1) (A.41)
Thus we write equation (A.40) as
G(z) = eXimiPilz—1) (A.42)

which will hold exactly in the limit, when default probabilities go to zero. Denote
the expected number of default events by

= Zm (A.43)

To identify the distribution that corresponds to the probability generating function
G(z), expand G(z) in its Taylor series, which gives

o —p )
G(Z) = e/-"(zfl) — efﬂ'e/-lfz — Z € 'M Z’L (A.44)
1!
=0

This gives an expression for the probability of realizing ¢ defaults over the holding
horizon of the loan portfolio under consideration. For individual defaults small, the
probability of realizing ¢ default events over the portfolio horizon therefore follows
a Poisson distribution with mean p.

For analyzing the credit losses we want of course to understand the distribution
of portfolio losses over the portfolio horizon and not the distribution of default events
alone. To reduce the computational effort the exposures in a given loan portfolio
are first grouped into exposure bands. Choose an exposure unit U first (for instance
Elsinger et al. [2006a] choose the exposure unit U to be 360.000 euro). Denote an
obligors expected loss by EL; and its exposure at default by FAD; and its loss
given default by LG D;. The exposure that can be lost after an obligor’s default is
then

Ei = EAD,L X LGD,L

The exposure v; and the expected loss ¢€; in multiples of the exposure unit U is
given by v; = E;/U and ¢; = EL;/U. The exact exposures are approximated by
rounding the exposure v; to the nearest integer multiple of the exposure unit U.
Thus every exposure E; is replaced by the closest integer multiple of the exposure
unit U. This partitioning of the exposures into exposure bands mg gives sufficiently
fewer exposures than obligors N and should at the same time be close enough to
the original portfolio. A rule of thumb that is given by Bluhm et al. [2003] is that
the width of exposure bands should be ”small” compared to the average exposure
size of the portfolio. Note that in our banking sample it might be useful to apply
different exposure units to different banks.
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Write ¢ € [j] whenever ¢ is placed into exposure band j. After this grouping
process the portfolio is partitioned into mp exposure bands such that obligors in a
common band [j] have all the common exposure v[;; E where v1;; € Ny is the integer
multiple of U representing all obligors ¢ with

min{|v; —n|:n € No} = |v; — v;] (A.45)

where ¢ = 1,...,1 and j = 1,...,mg. When v; is an odd-integer multiple of 0.5 we
take the convention to round up.

To assign default intensities to given exposure bands we work with the obligors
individual default intensity p; over the analysis horizon of the credit risk model. The
expected number of defaults in exposure band [j] is therefore

i) = Z bi (A.46)

i€[s]

The expected loss in band [j] is then simply the product of the expected number of
defaults in band [j] with the band exposure. On page 36 of the technical document
of Credit Risk+ an adjustment to compensate for the rounding error is suggested.
Credit risk+ suggests an adjustment to the default intensities p;. Bluhm et al.
[2003] for instance suggest to define an adjustment factor for each obligor ¢ by

= 1€[jl,7=1,...,mpg (A.47)
vt

Assume the individual intensities have been adjusted from p; to 7;p;. The number
of expected default events in the entire portfolio is then
mEg

p= = Z V—] (A.48)

The generating function of the loss random variable L; is given by
ZProb L] = Y[tz PAEk (A.49)

By independence we can write for the whole portfolio the generating function as

mg o

GL(Z) = H Z P’I“Ob(L[j] = V[j]i)zy[j]i (A.50)
j=11i=0
This can be written as
mgEg OO
=[I>_ Prob(Ly; = i)z"w (A.51)
j=11=0

Using the Poisson distribution results for the number of defaults

mgEg O

-11>= < ”“ P (A.52)

j=11=0
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This is equal to

mEg
Gr(z) = H e H RG] ZVI) (A.53)
J=1
which is equal to
meg
Gr(z)=exp [ > (20 = 1) (A.54)
j=1

Probabilities for losses can be calculated by derivatives of the generating function:
The probability of losing an amount of nU is given by
1 D"Gy, (Z)
PTOb(L[]] = n) = Hdzinb:o = Pn (A55)
In the technical document of Credit Risk+ it is shown that these probabilities can
be calculated recursively by

.
Po= > P ) (A.56)

v[jl<n

A.3 Estimation of Interbank Loan Matrix L

Assume that we have, in total, K constraints that include all constraints on row
and column sums as well as on the value of particular entries. Let us write these

constraints as
N N
Z Z akijlij = bk (A.57)

i=1 j=1
for k = 1,...., K and ag;; € {0,1}. We seek to find the matrix L that has the

least discrepancy to some a priori matrix U with respect to the (generalized) cross
entropy measure

N N
L
C(L,U) ="l 1n(u—{) (A.58)
i=1 j=1 v

among all the matrices satisfying (A.57) with the convention that {;; = 0 whenever
u;; = 0 and 01n(3) is defined to be 0.

The constraints for the estimations of the matrix L are not always consistent.
For instance the liabilities of all banks in sector k against all banks in sector [ do
typically not equal the claims of all banks in sector [ against all banks in sector k.
We deal with this problem by applying a two step procedure.

In a first step we replace an a priori matrix U reflecting only possible links be-
tween banks by an a priori matrix V' that takes actual exposure levels into account.
As there are seven sectors we partition V and U into 49 sub-matrices V5 and U*
which describe the liabilities of the banks in sector k against the banks in sector [
and our a priori knowledge. Given the bank balance sheet data we define u;; = 1
if bank 7 belonging to sector k might have liabilities against bank j belonging to
sector | and u;; = 0 otherwise. The (equality) constraints are that the liabilities of
bank i against the sector [ equal the row sum of the sub-matrix and that the claims
of bank j against the sector k£ equal the column sum of the sub-matrix, i.e.

Z v;; = liabilities of bank i against sector 1 (A.59)
Jel
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Z v;; = claims of bank j against sector k (A.60)
ick
For the matrices describing claims and liabilities within a sector (i.e. V*¥) which

has a central institution we get further constraints. Suppose that bank j* is the
central institution. Then

v~ = liabilities of bank i against central institution (A.61)

v;-; = claims of bank i against central institution (A.62)

Though these constraints are inconsistent given our data, we use the informa-
tion to get a revised matrix V' which reflects our a priori knowledge better than the
initial matrix U. Contrary to U which consists only of zeroes and ones, the entries
in V are adjusted to the actual exposure levels.

In a second step we recombine the results of the 49 approximations V* to get
an entire N x N improved a priori matrix V of inter-bank claims and liabilities.
Now we replace the original constraints by just requiring that the sum of all (inter-
bank) liabilities of each bank equals the row sum of L and the sum of all claims of
each bank equals the column sum of L.

N
Z l;; = liabilities of bank i against all other banks (A.63)
j=1
N
Z l;j = claims of bank j against all other banks (A.64)
i=1

Again we face the problem that the sum of all liabilities does not equal the sum of
all claims. By scaling them we enforce consistency.” Given these constraints and
the prior matrix V' we estimate the matrix L.

Finally we can use the information on claims and liabilities with the central
bank and with banks abroad. By adding two further nodes and by appending the
rows and columns for these nodes to the L matrix, we get a closed (consistent)
system of the inter-bank network.

A.4 Network Model

The model is an extension of the model of Eisenberg and Noe [2001]. Consider an
economy populated by n nodes. Each of these nodes is a distinct economic entity,
say a bank, that participates in a clearing network. Each of these nodes is endowed
with an exogenous income e; € R.® Each bank may have nominal obligations to
other nodes in the network. The structure of these liabilities is represented by an
n X n matrix L, where L; ; represents the nominal obligation of node ¢ to node j.
As in Eisenberg and Noe [2001] these liabilities are non—negative and the diagonal
elements of L are zero for obvious reasons. The nodes may also have liabilities
of the same seniority as the liabilities to the other nodes, to creditors outside the

6Note that the algorithm that calculates the minimum entropy entries does not converge to a
solution if data are inconsistent. Thus to arrive at the approximation V we terminate after 10
iterations immediately after all row constraints are fulfilled.

7The remaining claims are added to the vector e. Hence they are assumed to be fulfilled exactly.

8Contrary to Eisenberg and Noe [2001] e; might be negative.
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network. We denote these aggregate liabilities by D; > 0. On top of this banks
may hold shares of other banks. We denote this by the matrix © € [0, 1]"*" where
©;; denotes the share that bank ¢ holds in bank j. It has to hold that

> o<1 (A.65)
=1

This specification does allow for the case that a bank is among the shareholders

of its own shares (0; > 0). The only restriction I impose on the holdings is that

there is no group of banks in which each bank is completely owned by other banks

in that group, in particular ©;; < 1. This is summarized in the following
Assumption There exists no subset Z C {1,...,n} such that

> ;=1 forall jeT
€L

O is called a holding matriz if it fulfills this assumption.

Any node may hold shares of companies outside the network. As the value
of these companies is not determined endogenously the value of this holdings is
contained in e.

A node is in default whenever the endowment plus the amounts received from
other nodes are insufficient to cover the liabilities. In case of default the clearing
procedure has to respect three criteria:

1. limited liability, which requires that the total payments made by a node must
never exceed the cash flow available to the node,

2. priority of debt claims, which requires that stockholders in the node receive no
value unless the node is able to pay off all of its outstanding debt completely,
and

3. proportionality, which requires that in case of default all claimant nodes are
paid off in proportion to the size of their claim on firm assets.

To operationalize proportionality let p; be the total nominal obligations of
node 1, i.e.

n
Di = Z Lij + D; (A.66)
j=1

and define the proportionality matrix II by

Lij  p~
My =4 w Hpi>0 (A.67)
0 otherwise

Evidently, it has to hold that II - T < 1 where 1 is an n x 1 vector of ones.
Let p = (p1,...,pn)" € R% be the actual dollar payments made by banks to its
interbank and non interbank creditors under the clearing mechanism. Let V > 0
be a vector of equity values and define the map

Y(V,p,e,ILO) =[e+I'p—p+OV] VD (A.68)
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For a given vector p a consistent vector of equity values V*(p) is a fixed point
of T(:;p,e,11,0) : R} — R

Vi(p)=[e+I'p—p+OV*(p) V0 (A.69)
where 0 denotes the n x 1 dimensional zero vector. Applying Lemma A.12 in section

A.4.4 establishes that there exists a unique fixed point, V*(p). A vector of actual
payments p* that respects the clearing criteria, i.e.

0 if ei + 25 (Wipj + O3V (p7) <0
j=1
pzf = e; + Zl (Hﬂp; + @ij‘/j* (p*)> if 0<e;+ Zl (Hjip; —+ @”‘/j*(p*)) <pi
J= J=
Di if pi <ei+ Zl (ILjip} + ©4;V (p"))
=

is called a clearing payment vector. This can be summarized as

Definition A.2. A vector p* € [6, P] is a clearing payment vector if and only
if
pF= {[e+H’p* +0V*(p) vﬁ} Ap (A.70)

where V*(p*) is the unique solution of Equation A.69.

If p* is a clearing vector it has to hold that p* = {p* + V*(p*)} A p but not
vice versa.

A clearing vector p* is a fixed point of the map ®(+;II, p, e, ©) : [6, p] — [0, p]
defined by

O(p; 11, p,e,0) = {[e+H’p+®V*(p)] vf)} AD (A.71)

A.4.1 Existence and Uniqueness of a Clearing Payment Vector

To show existence and uniqueness of a clearing payment vector we choose an indi-
rect route. We introduce an auxiliary problem and show that any solution of the
auxiliary problem is also a solution of the original clearing problem and vice versa.
In a second step we establish existence and uniqueness of a solution of the auxiliary
problem.

The auxiliary problem can be formulated as follows. Let

QW,p,p,e,11,0) = e+ I'p — p+ O(W V () (A.72)
and denote any fixed point of Q(;p,p, e, II,0) : R — R™ by W*(p), i.e.
W*(p) = [e+1'p — p] + O(W*(p) V 0) (A.73)

and let . .
U(p; 1L, p, e, ©) = { [e LI+ O(W*(p) V 0)} v o} AP (A.74)

Call any fixed point p* of ¥ a solution of the auxiliary problem. The assumption
that © is a holding matrix guarantees by Lemma A.13 of Appendix A.4.4 that
Equation A.73 has a unique solution. Hence, ¥ is well defined.

As a first step we proof that any (super)solution of ® is a (super) solution of
¥ and vice versa.



86 Appendix A. Appendix

Theorem A.3. Let p be a (super)solution of ®, i.e. p > ®(p;11,p,e,0). Then p is
a (super)solution of U with W*(p) = e+ IU'p—p+OV*(p). If p is a (super)solution
of U then p is a (super)solution of ® with V*(p) = (W*(p) v 0).

Proof. 1 prove the assertion for the case of supersolutions. The proof for solutions is
completely analogous. Suppose that p is a supersolution of @, i.e. p > ®(p). Define
X =e+1II'p—p+ OV*(Hp). We have to show that X is a solution to Equation
AT73ie. X =e+Tl'p—p+O(XV 6) As p is a supersolution of ®, V;*(p) > 0
implies p; = p; and hence V;*(p) = X;. On the other hand V*(p) > X. Therefore,
(X v 0) = V(p). This yields

X=e+Ip—p+6(XV0) and p > U(p)

Now suppose p is a supersolution to ¥. Let A = diag(W(p) > 6) Define
X = AW. By Equation A.73 it holds that

X =Ale+1I'p—p+ 0X]
As p is a supersolution to W it holds that Ap = Ap. Hence,
X =Ale+1'p—p+6X]
It remains to be shown that
(I-A)e+T'p—p+OX]<0
As W;(p) < 0 implies that
n n
pi = max(e; + Z Iip; + Z 0i;2;,0)
j=1 j=1
it follows that

n n
e + Zﬂjz‘ﬁj —pit ZGijxj <0

Jj=1 Jj=1

whenever W;(p) < 0. So X solves A.69. That p is a supersolution of ® is evident.
d

If j is a supersolution of W then it holds that V*(p) = [e+II'p—p+OV*(p)] V0.
Theorem A.4. There exists a greatest (pT) and a least (p~) clearing vector.

Proof. If ¥(p) is a monotone increasing function on the complete lattice [0, p] the
Tarski Fixed-Point Theorem (see e.g. Zeidler) guarantees that there exists a smallest
and a greatest fixed point for the auxiliary problem. Lemma A.16 of Appendix A.4.4
establishes that W*(p) and therefore ¥(p) are increasing in p. We know that any
solution vector to the auxiliary problem p* is a solution to the original problem and
vice versa. So if there exists a greatest (pT) and a least (p~) fixed point for one
of the two problems they are the greatest and the least fixed points for the other
problem. O
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The equity values V*(p) = W*(p) vV 0 of the nodes should not depend on the
chosen clearing vector. The next theorem establishes this fact.”

Theorem A.5. The equity values of all nodes are independent of the chosen clear-
ing vector.

Proof. Let p* be any clearing vector. It suffices to show that V*(p*) = W*(p*)V0 =
W*(pt) v 0 = V*(pt) where pt is the largest clearing vector. We have already
established that W*(p) is increasing in p. Hence, W*(p*) > W*(p*) and therefore
V*(pt) > V*(p*). Let A = diag(V*(pt) > V*(p*)). Note that AV*(pt) = Ale +
I'pt —pt 4+ OV*(p*)) and AV*(p*) > A(e + II'p* — p* + OV*(p*)). This implies
that

AV (p") =V (p")) < AT =D)(p* —p") + AO(V* (pF) = V*(p"))
Using
Vi) = Vi) = AVT(pT) - V()
rearranging, and premultiplying by g yields
VAL - AV (") - V() < TAQU D" —p)  (AT5)

Note that the left hand side of Inequality A.75 fulfills the assumptions of Lemma
A.10. Hence, if V*(pt) # V*(p*) the left hand side is larger than zero. For the
right hand side note that (p* — p*) > 0 and T’A(I" — I)A < 0. So the right
hand side is smaller or equal to 0. Inequality A.75 can only be true if A = 0, i.e.
Vi(pt) =Vi(p7). O

Using the above Theorem we are able to characterize the structure of the
system that allows multiple clearing vectors.

Theorem A.6. Let p' and p? be two clearing vectors such that p* > p?. Define T
to be the subset of nodes where p' does not equal p?, i.e. T = {i|p} > p?}. Then it
has to hold that 3, 7 11;; =1 for alli € T and

Doei+ D D Wipj+3 > 05V (') =0

i€l i€ j¢T i€T j¢T

Proof. Let A = diag(p* > p?). Note that p; > p? > 0 implies that AV*(p!) =
Ale +T'p! — p' + OV*(p')) and AV*(p?) > A(e + I'p? — p? + OV*(p?)). As
V*(pt) = V*(p?) it follows that

0=AV*(p") = V(") <A ~DAp' —p?)
Summing over both sides yields
0 < T'A(IT —T)A(p' — p?)

This holds only if either A = 0 or I’A(II' = I)A = (’. Given the assumption that the
clearing vector is not unique and hence A # 0 we get Y jer i =1 foralli e 7.

9Eisenberg and Noe [2001] prove this for a model without holdings.
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If p} > p? it has to hold that V;*(p') = 0. Hence,

0=AV*(p') = Ae+1'p" —p' +OV*(p")
Ale +( =DAp' + (I = DI~ A)p" + 6L~ A)V*(p')]

Summation yields

0=TAle+ (I —DAp' + (I = )T — A)p' + O(I— A)V*(p")]

Note that T’A(H’ —DAp' =0 and T 'AIV - I)(I - A)pt = T’AH'(I — A)pt. Hence,
we get
0= eitD D Wipj+> > 05V (")
ieT i€T j¢T €T j¢T
0

The interpretation of the Theorem is straightforward. If there is a subsystem
that has no liabilities against banks outside this subsystem and where the sum of
all inflows equals zero the clearing vector might be not unique.

A.4.2 Calculating a Clearing Vector

Eisenberg and Noe [2001] interpret e; as exogenous operating cash flow. They
restrict e; to be non—negative reasoning that any operating costs like wages can
be captured by appending a sink node to the financial system. Such a sink node
has no operating cash flow of its own, nor any obligations to other nodes. The
implicit assumption is that the operating costs are of the same priority as the
liabilities in the financial system. If these costs are of a higher priority modelling
them via a sink node is not possible.'® Hence, allowing for a more detailed seniority
structure makes it necessary not to restrict e;. Eisenberg and Noe [2001] develop an
extremely elegant algorithm called fictitious default algorithm to calculate clearing
vectors. Unfortunately, this algorithm brakes down as soon as the restriction that
e; is non—negative is dropped.!! But it is still possible to define a simple yet less
elegant iterative procedure to calculate a clearing vector. Start the algorithm with
p° =pand let p = [(W*(p') +p) VO) AP

Lemma A.7. If © is a holding matriz, the sequence p't' = [(W*(p') + p) V 0)] A
started at p° = p is well defined, decreasing, and converges to the largest clearing
vector pt.

Proof. p't! is well defined if W*(p?) is well defined. This is the case as © is
a holding matrix. W*(p?) is calculated applying the procedure in the proof of
Lemma A.15. Let w® = e +II'p — p and A° = diag(w® > 6) Calculate w* =
e+'p—p+OA 1wk and AF = diag(w® > 0). This procedure stops after at most
n steps and yields W*(p?).

To prove that p’ is decreasing note that p! < p = p° by construction. Now
suppose p’ > pt > ... > pt. W*(p) is increasing in p. Hence, W*(p’) < W*(p'~1)
and therefore p'™! < p¢. Now suppose the series converges to some p. This implies

10See Section A.4.4 in the Appendix for a simple example.
1 See Section A.5 in the Appendix for a simple example.
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that
p=[W*®) +p) VO Ap= {[e—l—ﬂlp—I—@(W*(p)\/ﬁ)} \/6} AP

So p is a clearing vector. Next note that W*(p®) > W*(p*). This implies that p! >
pT. Now suppose it holds for i up to k that p* > p*. Hence, W*(p*) > W*(p*).
But this implies that p**! > p™ and § > pt. As pT is the largest clearing vector
by assumption, p = pt. O

A.4.3 Extensions

Two extensions of the basic model are dealt with in SRM. First it is possible to in-
clude bankruptcy costs and second a detailed seniority structure might be included.
All the results for the base case remain true for this extensions.

Bankruptcy Costs

Assume that in the case that node i defaults this node faces fixed bankruptcy costs
of b; > 0. These costs are deducted from the operating income, i.e. they are of
the highest priority. First observe that the definition of a clearing vector has to be
adjusted. It has to hold that p; = p; if

or else
p; = maz(0,e; — b; + Z (H]-Z-p;f + @in;(p*)))
j=1

where X*(p) is the vector of equity values which remains to be defined. The original
definition is not valid anymore. To see this suppose that p* is a clearing vector and
X (p*) is the corresponding vector of equity values. Now if node i defaults we might
get

n n
les + D _Tup; =0} + D 045X, (p")] V0> 0
j=1 j=1
as

pi=lei—bi+ Y Mp5+ Y 05X;(p")V0=0
Jj=1 j=1

A proper definition of equity values in case of bankruptcy costs is
n
Vi*(p) = ei —pi + Z (Iip; + ©45V; (p*))
j=1

if pf = p; or else
Vi(p) =0

Alternatively we may define the equity value of the nodes using W*(p) by X* =
(W* Vv 0).
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To calculate a clearing vector in the case of bankruptcy costs, we have to adapt
the original procedure slightly. Define W = W*(p) — Ab where A = diag(W*(p) <
0). Let p° = p. And let

P = [(We ) +p) V0] Ap

Seniority Structure

To adapt the framework to a more elaborate seniority structure I introduce seniority
classes. Different liabilities are in the same seniority class if in case of default
repayment is rationed proportionally between them. Let S; = (1,2,...,S;) be a the
seniority classes of bank 7. Assume that debt claims in class 1 are satisfied first, then
the claims in class 2 sequentially up to class S; are satisfied. Debt claims include
interbank positions as well as obligations to parties outside the banking system such
as depositors or bondholders. Denote by p;s = Z;VZI lijs +d;s the liabilities of bank

7 in class s. Define
Lijs  p =
Hz]s = { Pis DPis >

0 otherwise

Let IT* be the matrix consisting of IL;js, p.s = (P1s,- - »Pns) and S* = maz;(S;).

Let pjs be the actual payments made by bank j in seniority class s. In
analogy to the case of just one seniority class a consistent vector of equity val-
ues V*(p) for a given p = (p11...P15%,D21 - - D28*, -+ - Pnl - - - Pns+) 1s a fixed point
of Y(:;p,e,11,0) : R} — R

S* S*
Vip)=[e+ > (I1%)ps =Y ps+ OV (p)] VD (A.76)

wherep.s = (p1s, -+ ,Pns)’- A clearing payment vector has to satisfy limited liability
and absolute priority. definition p* > 0 is a clearing vector if and only if Vi €
{1,....,n}and VT € {1,...,5*}

*

195)

s

T-1 N
Py = min (max <6i + Wjisps — D Pis + > O45 V7 (p7), 0) Jh‘T)
1s=1 s=1 j=1

J

Again a clearing vector can be defined as a fixed point of the map
(I)(p) = ((I)ll . CI)IS*;(I)21 . (I)QS*, . aq)nl .. (I)ns*) : [0,]3] — [0,]3] defined by

N s* -1 N
Qip =14 lei+ DY Wiiapje— > Pis+ 3 _Oi Vi (0)| VO p Apir (A7)
=1 s=1 s=1 =1

® is increasing in p on a complete lattice. Therefore, a greatest (p) and a least
(p~) clearing vector exist.

To calculate a clearing vector I use the indirect approach via the auxiliary
problem. Let

S* S*
W p) = e+ S ) ps =3 s + OW*(p) V) (A.78)

s=1
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A clearing vector can be characterized by

N s T—1 N
Qir =< |ei+ Z ZHjispjs - Z Dis + Z Oi(Wi(p) VO)| VO Apir (A.79)
j=1s=1 s=1 j=1

or equivalently

-
Q7 = { lWi(p) + Zpis‘| \Y 0} A DiT (A.80)

s=T

The iterattive procedure to calculate a clearing vector is defined as
g*
pir = { lWi(p’“) + Zm] v 0} A Pir
s=T

with a starting value p® = p.

A.4.4 Shareholding Matrix
Preliminaries

Assumption A.4 guarantees that the equity values are well defined, i.e. (I — ©) is
invertible.

Lemma A.8. Let © € [0, 1]"*™ be the matriz of interbank share holdings and let 1
be the n x n identity matriz. (I — ©) is invertible if an only if Assumption A.J is
satisfied.

Proof. Assume that there is a subset Z C {1,...,n} such that ), ., 0;; = 1 for
all j € Z. Let x be an n x 1 vector with components x; = 1if ¢ € Z and x; = 0
otherwise. Clearly z/(I—0) = 0. Since x # 0, (I— ©) is not injective and thus not
invertible.

Now assume that (I — ©) is not invertible. Then there exists a vector z # 0

such that /(I — ©) = (/. Writing down this system equation by equation we have
a linear system given by

n
xiZZGﬂ'.ﬁj fO’I“ i=1,...,n
j=1
Taking absolute values on both sides gives
n
|xi|:|Z®jixj| for i=1,..,n
j=1
It follows from the triangle inequality that
n n
|Z®jixj| §Z®ji|xj| for i=1,..n
j=1 j=1

Now construct an index set Z C {1,...,n} as follows. A bank i is in Z if and only
if |z;] > |x;| for j = 1,...,n. Since the previous inequality holds for all 4 it holds in
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particular for all ¢« € Z. Thus we have

|$i|§z@ﬁ|$g‘|§|lm| ZGji+Z®ji <|x;| forall ieZ
j=1

Jje€T J¢T
with equality only if Zjez ©;; = 1. Thus invertibility implies that ZjGI ©; =1
for all i € 7 and hence the subset Z violates Assumption A.4. 0O

Up front it is necessary to introduce a bit of notation.

Definition A.9. Lety and b be n x 1 vectors. Then A = diag(y > b) is ann xn
diagonal matriz where Aj; = 1 if y; > b; and A;; = 0 otherwise. diag(y > b),
diag(y <b), diag(y < b), diag(y #b), and diag(y = b) are defined analogously.

Lemma A.10. Let © be an n X n holding matriz, i.e. © fulfills Assumption A.4,
and let w be a n x 1 vector. Define A = diag(u > 0). If A # 0 it holds that
T'A(I-0©)Au > 0.

Proof. A is idempotent. Hence,
T"A(I - ©)Au = T"A(I — ©)AAu

Au > 0 by construction. T’A(I —0)A > 0’ as no column sum of © exceeds one.
This implies that I’A(I — ©)Au > 0. Now, suppose I’A(I — ©)Au = 0 and define
the index set Z := {i|u; > 0}. It has to hold that

o=zw—zz<aijuj=zm—z(z@ij)
€L €T jeT €L JET €L

This implies that >
a

ie7 ©ij = 1 for all j € Z. But this violates Assumption A.4.

Taking z = —u yields immediately the following

Corollary A.11. Let © be an n X n holding matriz, i.e. © fulfills Assumption
A4, and let © be a n x 1 vector. Define A = diag(x < 0). If A # 0 it holds that
T'A(I-0©)Az < 0.
Equity Values
First I prove that Equation A.69 has a unique solution. Let

F(Viu)=[u+0V]Vvo0 (A.81)
and define V by R R

V=[uv0+06ev (A.82)

Note that, given Assumption A.4, Lemma A.8 implies that V is well defined and
unique. Moreover, V > 0 and F(V;u) < V. To see this consider

F(Viu)=[u+0V]V0=[u—(uVv0)+V]VO<V (A.83)
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We get the following

Lemma A.12. Let u € R" and © be a holding matriz. Then the map F(;u) :

R™ — R%, ie.
F(Viu)=[u+0V]V0 (A.84)

has a unique fized point, V* > 0.

Proof. If a fixed point V* exists it has to hold that V* > 0 by construction. Note
that F'(V;u) is increasing in V. As F(0,u) > 0, and F(V;u) <V the Tarski fixed
point theorem implies that there exists a greatest and a smallest fixed point, v+
and V', in the interval [0, V]. Take any fixed point V* not necessarily in [0, V] and

let A = diag(V* > V). Observe that AV* = A(u+0OV*) and AV~ > A(u+0V ™).
This implies that

AV*-V7)<AO (A(V* V) +I-A)(V* - Vf))
Rearranging and premultiplying by 1 yields
VAT -O)A(V* = V) <TAOI - A)(V* = V")

As (I—A) is idempotent and (I—A)(V* —V~) < 0 the right hand side of the above
inequality is less than or equal to 0. Lemma A.10 implies that the left hand side
is larger than 0 as long as A # 0. So it has to hold that V* < V~. As V™ is the

smallest fixed point in [6, V] it follows that V* = V'~ and the fixed point is unique.
d

To prove that Equation A.73 has a unique solution I define
G(W;u) =u+ O[W Vv 0] (A.85)

We get the following

Lemma A.13. Let u € R™ and © be a holding matriz. Then the map G(-;u) :
R" — R", i.e.

)

G(W;u) =u+ O[W Vv (] (A.86)
has a unique fized point, W*.

Proof. Let V* = F(V*;u) be the unique fixed point of F(-;u) and define X =
u+ OV*. Let A = diag([u + OV*] > 0). It holds that AX = [X V0] and V* =
A(u+ ©V™). Hence,

X=u+0V =u+0OAu+0OV") =u+0AX =u+0[X V(|

So X is a solution of A.86.
To prove uniqueness assume there exist two solutions to Equation A.86, W
and W2 and let A = diag(W' > W?). It holds that

AW —W?) = AQ([W! v 0] — W2 V0]
Note that A([W' Vv 0] — [W?V0]) < A(W' —W?). So we may write
AW —W?) < AOAW! —W?2) + (I - A)([W V0] - [W2v]))
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Rearranging and premultiplying by i yields
AT — AW —W?) <T'AOI — A)(W! —W?)

Again, the right hand side is less than or equal to 0 whereas the left hand side is
larger than 0 provided that A # 0. This implies that W' < W? and by symmetry
W?2 < W1, The fixed point is unique. 0O

Lemma A.13 can be proved constructively, too. Before we are able to this we
need the following

Lemma A.14. Let Q) be a positive n X n matrixz such that no column sum exceeds
1. Let y be an x 1 vector and let A be a matriz of zeros and ones such that A;; =0
fori#j and A\i; =0 if y; < 0. For any solution of x = y+ QAx it has to hold that
T >y.

Proof. Let x be such that x = y + QAz and U = diag(z < y). Premultiply both
sides of this equation by U to get Uz = Uy + UQAz. Expand the right hand side to
get the equivalent equation Uz = Uy + UQAUx + UQA(Id — U)x. By construction
(Id—U)x > (Id—U)y and A(Id—U)y > 0. Therefore UQA(Id—U)y > 0. From
these observations it follows that:

Ur —UQAUz = Uy + UQA(Id — U)x
>Uy+UQA(Id—U)y
> Uy

Now 1/(Id — UQA) < 1. This implies that 1'(Id — UQA)Uz < 1’Uz. As long
as U # 0 it holds that Uy > Uz and Uy # Ux. Hence for U # 0 it holds that
Uy > 1'Uz > 1(Id — UQA)Uz > 1Uy. From this contradiction we conclude that
U=0andz>y. 0O

We are now ready to prove Lemma A.13.

Lemma A.15. Let © be an n X n matriz of shareholdings that fulfills Assumption
A.4. Then the equation
W=u+0(WV0)

has a unique solution W* for any n x 1 vector u.

Proof. Existence: Let W = u and let A° = diag(u > 0). By Lemma A.8 we
know that W = u + ©A°W has a unique solution W'. By Lemma A.14 W' > u.
Let A* = diag(W* > 6) The equation W = u + OA*W has a unique solution
WH+l by Lemma A.8. By construction A*W* > A*1WW*  Therefore we have
w4+ OAPWE > u + OAFIWE = Wk Define y = u + OA*W* — W*. It holds
that Wkl — WF = y 4+ OAF(WHFHL — WF). Given that y > 0, the column sums
of © do not exceed 1, and Af, < 0 whenever y; < 0 Lemma A.14 implies that any
solution of z = y + ©A*x has the property that = > y. In our case this means that
W+ _ Wk > ¢ > 0. This in turn implies that A*+t1 > AF. If A¥ = AR~ it follows
that W*t!1 = W* and therefore A¥W* = W* v (. Therefore W¥ is a solution to
W =u+0(WVv0). If AF # A*~! continue the procedure. The iteration stops after
finitely many steps as A¥ < I'd (at the most n steps).
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Uniqueness: To prove uniqueness we show first that if W* and WP are solutions
then there has to exist a W > W* = maxz(W*, W") such that W = u + ©(W Vv 0).
Finally we show that this implies that W2 = W = W.

Let A = diag(W?® > 0), A’ = diag(W® > 0), and A* = maz({\a,Ab).
By Lemma A.8 the equation W = w + OA*W has a unique solution W. Let
y=u+ OA*W* — W*. Evidently, A*W* > maz(A*W*, AYW?) and hence

u+ ONW* > max(W, W) = W*

It follows that y > 0. Now W — W* = Y+ @A*(W — W*). Applying Lemma
A.14 yields that W > W*. Define W% := W and A° = diag(W?). Using the same
iterative procedure as in existence part of the proof we get the result that there
exists a W such that W =u+O(W v 0) > W*.

Note that - o

W-Ww*=0 (AW — A“W“)
Where A = diag(W > 0). The fact that AW < AW implies that
RO (AW — A“W*) = K (W — W*) > AW — AW,

Let z := AW — AW, Tt is easy to verify that x > 0. Define U = diag(z > 0)
and Z = {i|lz; > 0}. If U =0 then W = W* AsUz =Ar =z and UAN =U
it follows that UOUx > Uz. Let 1 be an n x 1 vector of ones and suppose that
U #0. Then 1UOU < 1'U. For all i ¢ T it holds that [I'UOU]; = [1'U]; = 0. So
if ’UOU =# 1'U this would imply that the left hand side is smaller than the right
hand side for some ¢ € Z. But this in turn would imply that 1UOUxz < 1Uz. This

would be a contradiction to UOUx > Ux and x > 0. Therefore T'UOU has to equal
1’U. This equality holds if and only if

d 0=1 Viez

JET
where Z = {i|z; > 0}. This is a violation of Assumption A.4 about ©. Hence,
U = 0. The solution to our problem is therefore unique. 0O

Properties of W*

Theorem A.16. The unique fized point W*(u) of G(W;u) has the following prop-
erties

1. W*(u) is increasing in u

2. u? > ul implies W*(u?) — W*(ul) > u? —u!

9. W -4
© Ouy —
oWy
R

Proof. First, I show that W*(u) is increasing in u. Assume u! and u? are two
vectors in R™ such that u2 > u!. Let w! = u! + @mam(wl,O) and w? = u? +
©maz(w?,0) be the respective fixed points. Let = u? — u' > 0. It holds that

w? —w' =z + O(max(w?,0) — maz(w',0))
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Let A = diag(w! > w?). Note that A(maz(w?,0) —maz(w',0)) > A(w? —w!') and
(I — A)(maz(w?,0) —maz(w',0)) > 0. Hence,
Aw? —w') = Az 4+ AO(max(w?,0) — maz(w',0))

= Az + AOA(maz(w?,0) — maz(w',0))

+ AO(I — A)(mazx(w?,0) — maz(w,0))

> Az + AOA(w? — w')
Rearranging and premultiplying by 1 yields

AT - ©)A(w? —wh) > T'Ax

The right hand side is larger or equal to 0. The left hand side is smaller than 0 by

Lemma A.10 unless A # 0. Hence, w? > w'.
To prove the second claim note that W*(u?) > W*(u!) implies

maz(W* (u?),0) — maz(W*(u'),0) >0

and hence W*(u?) — W*(u') > u? — u'. This in turn implies that 86‘/5?* > 1 and
oW,

wi>0. O

Sink Nodes

Assume that the financial system consist of two banks. Bank 1 has an operating
cash flow of 0.5. Bank 2 has revenues of 2 but has to pay wages of 4. In the
interbank market bank 1 ows 1 bank 2 and vice versa. If wages have the same
priority as the interbank liabilities we append an additional node 3 to the system
for the workers. So

3 010 010 1
e=| 2], L=|10 4|, O=( 1 0 2|, p=1|5
0 0 0 0 0 00 0
Clearing the system yields

1

1 10

p*: 3 , Hlp*+e_p*: 0

0 24

10

The shortfall of node 2 is proportionally shared between bank 1 and the workers.
The workers lose 1.6 and node 1 loses 0.4. If we assume by contrast that wages are
of a higher priority the sink node approach can not be used. Yet, the problem is
still well defined and can be solved. The system

s (B) e (00) (0 ()

has the solution
* 1% * 0
Pt = , Ip*+e—p'={( _3
2

In this case node 1 is bankrupt and loses 0.5. The workers lose 1.5. To introduce
sink nodes is not as innocuous as it may seem.

O =
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A.5 The Fictitious Default Algorithm

To calculate a clearing vector Eisenberg and Noe [2001] propose the following iter-
ative procedure. Let A(p) = diag(Il'p + e < p) and define the map p — FF(p) as
follows:

FFy(p) = A ) (A(p)p + (T - A(p))p+e) + (T— Alp))p

This map returns for all nodes not defaulting under p’ the required payment p. For
all other nodes it returns the node’s value assuming that nondefaulting nodes pay
p and defaulting nodes pay p. This map has a unique fixed point which is denoted
by f(p’). Note that the equation for the fixed point

fF) =AW A (AP f () + X —Ap))p +e) + (T = Ap))p
can actually be written quite compactly:
(I —A@ITAQP))(f(P') —p) = AP (e +1T'p—p)
Premultiplying this withA(p') yields
AP -T)AP)(f(P') —p) = Alp')(e + IT'p — p)

Hence, to calculate the fixed point it suffices to consider the subsystem of defaulting
nodes. This is crucial if the number of nodes is large and default is rare.

Eisenberg and Noe [2001] show that under the assumption that e > 0 (and
O = 6) the sequence of payment vectors p® = p, p' = f(p'~!) decreases to a
clearing vector in at most n interations. The assumption that e > 0 is essential as
is illustrated by the following example.

=(5) (1) () - ()

Setting p° = p yields

A(p(’)<g (1)> plf(p‘))<_11)

Hence, p' is not a supersolution and the algorithm brakes down.
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